Dynamic Programming



Comparison of Dynamic Programming over Divide-And-Conquer and Greedy Method

Divide-and-conquer

Dynamic Programming

* The Divide-and-conquer algorithms partition the
problem into disjoint subproblems, solve the
subproblems recursively, and then combine
their solutions to solve the original problem.

* A divide-and-conquer algorithm does more work
than necessary, repeatedly solving the common
subsubproblems.

* Dynamic programming applies when the
subproblems overlap—that is, when subproblems
share subsubproblems.

* A dynamic-programming algorithm solves each
subsubproblem just once and then saves its answer in
a table, thereby avoiding the work of recomputing the
answer every time it solves each subsubproblem

Greedy Method

Dynamic Programming

* Greedy Algorithms first make a greedy choice(
the choice that looks best at the time) and then
solve a resulting subproblem ,without bothering to
solve all possible related smaller subproblems

* Dynamic Programming solves all its related
subproblems of a problem and a choice is made to find
an optimal solution to the problem.

 Principle of optimality

Both are applied to optimization problems having optimal substructure.




By saving the sub problems results we can
reuse the result which avoids the re-
computation of same sub problems (i.e., no
recursive calls for same sub problems).
Which is the top-down implementation of DP
for nth Fibonacci number.
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Dynamic Programming — Introduction

The Sequence of four steps to be followed for developing a dynamic-programming algorithm :
1. Characterize the structure of an optimal solution.

2. Recursively define the value of an optimal solution.

3. Compute the value of an optimal solution, typically in a bottom-up fashion.

4

. Construct an optimal solution from computed information.

Elements of Dynamic Programming:
1. Optimal substructure:

A problem exhibits optimal substructure if an optimal solution to the problem contains within it optimal
solutions to subproblems.

2. Overlapping subproblems.
* Two subproblems are overlapping if they are really the same subproblem that occurs as a
subproblem of different problems

« Saving the solution of subproblems in a table can reduce the re-computation of similar
subproblem.

Contd....



There are two equivalent ways to implement a dynamic-programming approach.
1. top-down with memoization.
2. bottom-up method.

Top-down with memoization:
* Write the recursive procedure naturally
* Save the result of each subproblem in a table
* Each new recursive call first checks the table for the instance of the subproblem to be
solved. If table contains the solution, it return the saved value otherwise procedure compute the
value in the usual manner
Top-down approach can be considered as the recursive procedure has been memoized; it “remembers”
what results 1t has computed previously.

Bottom-up approach:
* Solves the subproblems based on the size.
* Sort the subproblems by size and solve them in the size order, smallest first.
* When solving a particular subproblem S;, ensure that all the subproblems of S, are
solved and saved the result.

These two approaches yield algorithms with the same asymptotic running time, The bottom-up
approach often has much better constant factors, since it has less overhead for procedure calls.



All-Pairs Shortest paths

Let G=(V,E) be a directed graph with n vertices and cost is the adjacency matrix for G such that
cost(i,1) =0 1<1<n. The cost(i, j) 1s the length of edge <1, > 1f <1, > € E(G) and cost (1, )= o
if1#j and <1, > € E(G) . The all-pairs shortest-path is to determine a matrix A such that A(1,j) 1s
the length of a shortest path from 1 to .

Terminology Description
Ak (i,]) Length of Shortest path from 1 to j going through no vertex of index greater than k.
Optimal A Shortest path from i to j going through no vertex higher than k either goes through vertex k
substructure of | or it does not. "
the problem If it does then A™ (1, ) = A (1 k) L A (k 7).
If 1t does not, then no mterrnedlate Vertex has 1ndex greater than k-1 then A a,j= A (1 1)
Recurrence A (i,]j)=min {A (1 1, A (1 k) L A (k 1) k=1
formula
Calculate the A, 1) where n is the number of vertices.

optimal value




All-Pairs Shortest paths

Terminology Description
Ak (1,)) Length of Shortest path from 1 to j going through no vertex of index greater than k.
Optimal A Shortest path from i to j going through no vertex higher than k either goes through vertex k
substructure of | or it does not.
the problem If it does then A a,j= A (1 k) A (k 1) .
If it does not, then no intermediate vertex has index greater than k-1 then A i,j= A (1 1)
all intermediate vertices in {1,2,....k — 1} all intermediate vertices in {1,2,.... kK — 1}
(k)
TN e
04
___;d]] intemie;z;g;;;i;;;l {1,2,... I;___
Recurrence Ak (1,]) =cost[i {( k=0
formula = min {A 1(1 1), A (1 k), A 1(k,j)}kZI
Calculatethe | AX (i, j)
optimal value Calculate the optimal value in a bottom-up method in an increasing order of k (k=1,2,3,....n)




Flyod- warshall

0 Algorithm AllPaths(cost, A,n)

1 // cost[l:n,1:n]is the cost adjacency matrix of a graph with
2 // n vertices; Afi, 7] is the cost of a shortest path from vertex
3 // ito vertex j. cost[i,i] = 0.0, for 1 <i <n.

4 A

O for ::=1to n do

6 for j:=1to n do

7 Alt, j] := cost[i, j|; // Copy cost into A.

8 for k:=1to ndo

9 for i :=1 to n do

10 for j:=1to ndo

1 Ali, ] := min(Ali, 5], Ali, k] + Ak, 5])s

12

Time complexity : ©(n3) where n is number of vertices of the graph
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Optimal Binary Search Tree

* Given a sequence K = {a,,a,,a;,...a,} of n distinct keys in sorted order (so that
a,<a,<a;<...<a,), and we wish to build a binary search tree from these keys. For
each key a. , we have a probability p, that a search will be for a.. Some searches
may be for values not in K, and so we also have n + 1 “dummy keys”.



(p1,p2,p3)

Given keys (al,a2,a3)={do, if, while}

Cost (tree a) = 2.65
Cost (tree b) = 1.9
Cost (treec)= 1.5
Cost (tree d) = 2.05
Cost (treee) =1.6

=(0.5,0.1,0.05)
(q0,91,92,93) =(0.15,0.1,0.05,0.05)
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Optimal Binary Search Tree

Terminology | Description
C@a,y) Cost of subtree t;; that contains keys {a;,,,a,,,...3;} and dummy keys {d;,d,.},...d;}
w(i, j) Sum of the probabilities (both p and q) of the keys {a, ,a;;, .....3; } and dummy keys
(didyey,...d)
(1, ) Root of the subtree of keys {a;,,a;,,,...3;}
Optimal we can construct an optimal solution to the problem from optimal solutions to subproblems.
substructure of o
the problem need to select minimum k among keys {a;,a,,,,...a,}

need to select minimum j among keys

{a;,8, 5,...3,_}
T {ag,...a 1} {a .8,

a @ need to select minimum p among keys
{al,...aj_l}‘/

d ...d
{a'ﬂa"'ak-l} { k+1> n}




Optim

al Binary Search Tree

Terminology | Description
Recurrence
formula E{i'. J) — EE‘?{C(LJ k — 1} T ‘C(ka.-"} +:p[:k:] + *;u;r(g',, k — ]-} + w{k.f}}
i<k<j
c(t,) = min{c(i,k — 1) +c(k,j)} + w(i,j)
1< k<]
w(i,j) = p(J) +q(j) +w(i,j — 1),
Calculate the | c(0,n)

optimal value

Calculate the optimal value in a bottom-up method in an increasing order of m = (j- 1) (m=1,2,3,....n)




select optimal subtree
from n-1 keys

select optimal subtree

from n-2 keys

select optimal subtree
from two keys

select optimal subtree
from one key

Y NN

n keys
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two keys

one key
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rO,n
W n-1 Wi
CO,n-l Cl,n
Fo,n-1 Fin
w0’3 w1’4 TIX) Wn_3’n
Cos Cia C.an
r r
0,3 1,4 Fo-3n
Wo.» W3 W4 Whoan
Co, Cis Cya Con
r r r
0,2 1,3 2,4 Moz
Wo 1 W, W, 3 W3, Wiin
Co1 C:» C,3 Cs4 Cotin
Fo,1 Fi2 3 F34 Fn-1,n




n keys

select optimal subtree
from n-1 keys

select optimal subtree
from n-2 keys

n-1 keys

three keys

select optimal subtree
from two keys

two keys

select optimal subtree

from one key
one key

,Nn

c0,n-1 c:l,n
c0,3 C1,4 seee cn-3,n
CO,Z c1,3 C2,4 Cn-2,n
Co1 Ci» C,3 Csa Coin
Wy1 Wi, W,3 W34 Wi1n
Fo,1 ri,2 3 34 n-1,n




Letn=4 and (al,a2,a3,a4)= {do, if, int , while }.
Let
p(1:4)=(3,3,1,1) and q(0:4)= (2,3,1,1,1)

w(0,1) =p(1) +g(1) + w(0,0)= 3+3+2=8
c (0,1) = w (0,1) + min{c(0,0) + ¢(1,1)}

= 8 +min{0+0} =8
r,1) =1

w(1,2) =p(2) +q(2) + w(1,1)= 3+1+3=7
c(1,2) = w(1,2) + min{c(1,1) + ¢(2,2)}
7 +min{0+0} =7
r(1,2) =2
w(2,3) =p(3)+q(3) +w(2,2)=1+1+1=3
c (2,3) = w(2,3) + min{c(2,2) + ¢(3,3)}
= 3 +min{0+0} =3
r2,3) =3
w(3,4) =p(4)+q(4) +w(3,3)=1+1+1=3
€ (3,4) = w(3,4) + min{c(3,3) + c(4,4)}
= 3 +min{0+0} =3
r(2,3) =3

J-
Wo,0= Wi1= W, 2= W3 3= Wy 4=
0 Coo = Ci1= G, = C35= Cyq =
Foo = ri1= F,, = r33 = Fg4 =
Wo1 = Wi = Wi3 = W34 =3
1 C0,1 =8 C1,2 =7 C2,3 =3 C3,4 =3
fog =1 |l =2 I3 =3 |I34 =4
Wo > Wi 3 W) 4
2 Co2 Ci3 Cy4
Fo,2 I3 4
Wo 3 Wi 4
3 Co3 Ci4
o3 Iy 4
Wo 4
a Co.4
Fo,4




Letn=4 and (al,a2,a3,a4)= {do, if, int , while }.

Let
p(1:4)=(3,3,1,1) and q(0:4)= (2,3,1,1,1)

w(0,2) =p(2) +q(2) + w(0,1)= 3+1+8=12

c (0,2) = w(0,2) + min{c(0,0) + c¢(1,2), c(0,1) + c(2,2) }
= 12 +min{0+7,8+0} =19

r(,2) =1

w(1,3) =p(3)+q(3) +w(1,2)=1+1+7=9

c (1,3) = w(1,3) + min{c(1,1) + c(2,3), c(1,2)+c(3,3)}

7 +min{0+3,7+0} =12

r(1,2) =2

w(2,4) =p(4) +q(4) + w(2,3)= 1+1+3=5

c(2,4) = w(2,4) + min{c(2,2) + ¢(3,4), c(2,3) + c(4,4)}
= 5+min{0+3,3+0} =8

r(2,4) =3

J-

Woo= Wjp1= W,,= Wj3= Wy4=

0 Co,o = C1,1 = Cz,z = C3,3 = C4,4 =
Foo = ry1= r,, = r33= Fgq =
Wo1 = Wi = Wi3 = W34 =3

1 C0,1 =8 C1,2 =7 C2,3 =3 C3,4 =3
fog =1 |l =2 I3 =3 |I34 =4
Wo2=12 |W;3 =3 | Wy, =5

2 Cor =19 |C13 =12 |C,, =8
lroo =1 |l13 = rs =3
Wo 3 Wi 4

3 Co3 Ci4
o3 I 4
Wo,4

a Co.4




Letn=4 and (al,a2,a3,a4)= {do, if, int , while }.
Let
p(1:4)=(3,3,1,1) and q(0:4)= (2,3,1,1,1)

w(0,3) =p(3)+q(3)+w(0,2)= 1+1+12=14

¢ (0,3) = w(0,3) + min{c(0,0) + ¢(1,3),
c(0,1) + ¢(2,3),
c(0,2) + ¢(3,3) }
= 14 +min{0+ 12,8+ 3,19+0} =25

r(0,3) =2

w(1,4) =p(4) +q(4) + w(1,3)= 1+1+9=11
c (1,4) = w(1,4) + min{c(1,1) + ¢c(2,4),
c(1,2) + ¢(3,4),
c(1,3) + c(4,4) }
= 11 +min{0+8,7+3,12+0} =19
r(1,4) = 2

Wj3=
C3,3 =

Wy4=
Chs =

Fg4 =




Letn=4 and (al,a2,a3,a4)= {do, if, int , while }.

Let
p(1:4)=(3,3,1,1) and q(0:4)= (2,3,1,1,1)

w(0,4) =p(4) +q(4) + w(0,3)= 1+1+14=16

c (0,4) = w(0,4) + min{c(0,0) + ¢(1,4),
c(0,1) + c(2,4),
c(0,2) + c(3,4),
c(0,3) + c(4,4)}
= 16 +min {0+ 19, 8 + 8, 19+3, 25+0} =32

r(0,4) = 2

Wy4=
Chs =

Fg4 =

W33=
C33=
33 =
W, =3
C3,4 =3
r34 =4




18. form:=2 ton do
19.  fori:=0 to n-m do // Find Optimal trees with m node

1 Algorithm OBST(p.q,n)
2 [/ Given n distinct identifiers a1 < a; < -+ < a,, and probahilities 20. {
3 f/plil, 1<i<mn,and g[i], 0 <1< n, this algorithm computes 21. ji=i+m;
4 [/ the cost ct, j| of optimal binary search trees t,; for identifiers el - 7.
0 / @ir1s... a0 It also computes r|i, 5|, the root tﬂ' tij. 22. W[‘I’j]'_ wii,j-1]+ plj] +alji; % *
6 // wli.j] is the weight of t;;. 23. minval = 999 ; n*(n-m) *n
T A — :
8 fori:=0ton—1do 24. forl.'_lfl toj { _ .
9 { 25. if c[i,l-1]+c[lj] < minval {
10 // Initialize. 26 minval=c[i,l-1]+c[l, j];
11 wli,i] i= qlils 7[i.1] := 0 cfi, ] := 0.05 ' [, L-1]+ell, Ji,
12 / Optimal trees with one node 27. k=1
13 wli,i + 1] := gli] + g[i + 1] + p[i + 1]; 28. }
14 rlii+1] =i+ 13 59 )
15 clivi 4+ 1] = qi] +qli + 1] + p[i + 1] ' — —
16 } 30. clijl:=wli, jl+c[i k-1]+c[k];
17 wlr,n = gnly rln,n] = 0; ¢[n,n] := 0.0 31 r[l,j]:=k;
32. /
33.  write (c[O,n],w[0,n],r[O,n]);
34.}

Time complexity :0(n3)



1. Use function OBST (Algorithm 5.5) to compute w(z,j), r(z,5), and
c(i,7), 0 <1 < j < 4, for the identifier set (ai,a2,a3,a4) = (cout,
float, if, while) with p(1) = 1/20, p(2) = 1/5, p(3) = 1/10, p(4) =
1/20, q(0) = 1/5, ¢(1) = 1/10, ¢(2) = 1/5, ¢(3) = 1/20, and q(4) =
1/20. Using the r(1, 7)’s, construct the optimal binary search tree.



0/1 knapsack problem

 Given n objects a knapsack or bag. Object / has a weight w; and the knapsack has a
capacity m. If an object / is placed into the knapsack, then a profit p; is earned. The
objective is to obtain a filling of the knapsack that maximizes the total profit earned .
Since the knapsack capacity is m, we require the total weight of all chosen objects to

be at most m. Formally, the problem can be stated as

maximize E ;L
I<i<n

subject to Z w;r; < m

1<i<n

Where x,= Oor1

The profits and weights are positive real numbers



Terminology Description
f n (m) The value of optimal solution to knapsack(1,n,m) where n 1s the number of objects and m is
the knapsack capacity
Optimal Items | Optimal value Description
substructure of T
the problem 0 fo (1), £y (2), £y (3),... fy (m) | Initialization
1 f; (1), f; (2), f; (3),... f; (m) | Optimal value of including item 1
2 fy (1), £5 (2), £5 (3),... £, (m) | Optimal value of including all possibilities of item
1,and 2i.e., {1},{2},{1,2}
3 f3 (1), £3 (2), £3 (3),... f3 (m) | Optimal value of including all possibilities of item
1,2,and 3
n f, (1), £, 2), £, (3),... £, (m) | Optimal value of including all possibilities of item
1,2,..n
Recurrence f, (m)=max {f,_{ (m),f,  (m-w,)+p,}
formula
Calculate the f, (m) where n is number of objects and m is the knapsack capacity

optimal value




* A solution to the knapsack problem can be obtained by making a sequence

of decisions on the variables x,,x,,x;,....x,. A decision on variable x; involves
determining which of the values 0 or [ 1s to be assigned to 1t. Let us assume
that decisions on the x; are made in the order x,,x,_,,.,x,,x,. Following a
decision on X, , we may be in one of two possible states :

* the capacity remaining in the knapsack 1s m and no profit has accrued or

* the capacity remaining 1s m - w, and a profit of p, has accrued .

* It 1s clear that the remaining decisions x,_,,...x; must be optimal with respect
to the problem state resulting from the decision on x,. Otherwise , x,....x;
will not be optimal



Consider the knapsack instance n=3 and knapsack capacity m=6

(W19W29W3): (29394)9 (p19p29p3): (11915912) . 1ifw.>w
K[i,w]=K[i-1,w]

K[1,2] = max{ K[1-1,2], K[1-1,2-2 ]+ 11} else
= max{ K[0,2], K[0,0 ]+ 11 } K[i,w]=max { K[i-1,w], K[i-1,w-w; ]+ p; }
=max{ 0,11} =11 K

K[1,3] = max{ K[1-1,3], K[1-1,3-2 ]+ 11 } w
= max{ K[0,3], K[O, 1 ] + 11 } o W, | 0 1 2 3 4 5 6
=max{ 0,11} =11

K[1 ,4] = max{ K[1-1,4], K[1-1,4-2 ]+ 11 } 0101010 0191010109
= max{ K[0,4], K[0,2 ]+ 11 } 11]2]1]0 el el Bl e
=max{ 0,11} =11 151 3 [ 2|0

K[l ,S]Zmax{ K[I-I,S], K[l-l, 5—2]+ 11 } 12 4 3 0

=max{ K[0,5], K[0,3 ]+ 11}
=max{ 0,11} =11

K[1,6] = max{ K[1-1,6], K[1-1,6-2 ]+ 11 }
= max{ K[0,5], K[0,4 ]+ 11}
=max{ 0,11} =11



Consider the knapsack instance n=3 and knapsack capacity m=6

(W19W29W3): (29394)9 (p19p29p3): (11915912) . 1ifw.>w
K[1,w]=K[i-1,w]
K[2,3] = max{ K[2-1,3], K[2-1,3-3 ] +p, } else
= max{ K[1,3], K[1,0]+ 15} K[i,w]=max { K[i-1,w], K[i-1,w-w; ]+ p; }
=max{ 11,15} =15 K
K[2 ,4] = max{ K[2-1,4], K[2-1,4-3 ] +p, } w
= max{ K[1,4], K[1, 1 ]+ 15} polw | i |0]1]2]3]4]5]6
=max{ 11,15} =15
K[2 ,5] = max{ K[2-1,5], K[2-1,5-3 ] +p, } 0100101010190 ]0]09
=max{ K[1,5], K[1,2]+ 15} 112 (1|00 |12 1111|1111
= max{ 11,26} =26 15| 3| 2| 0|0 |11|15]|15]| 26| 26
K[2 ,6] = max{ K[2-1,6], K[2-1, 6-2 ] +p, } 51 al3]o

=max{ K[1,6], K[1,4 ]+ 15}
=max{ 11,26} =26



Consider the knapsack instance n=3 and knapsack capacity m=6

(W19W29W3): (29394)9 (p19p29p3): (11915912) . 1ifw.>w
K[i,w]=K[i-1,w]
K[3 ,4] = max{ K[3-1,4], K[3-1, 4-4 ]+ p; } else
= max{ K[2,4], K[2,0]+ 12} K[i,w]=max { K[i-1,w], K[i-1,w-w; ]+ p; }
= max{ 15,12} =15 K
K[3,5] = max{ K[3-1,5], K[3-1, 5-4 ]+ p; } w
= max{ K[2,5], K[2,1]+ 12} plw | i|O0]1]2]3]4]|5]6
= max{ 26,12} =26 o|lo|lo|lo|o|lo|o|Oo]|oO]oO
K[3 ,6] = max{ K[3-1,6], K[3-1,6-4 ]+ p; } 112 |10 |0 212|211 ]11] 11|11
= max{ K[2,6], K[2,2]+ 12}
 max! 263} = 26 15|32 | 0] 0 |11]15]|15| 26 26
12|43 | 0] 0|11]|15|15]| 2626




Consider the knapsack instance n=3 and knapsack capacity m=6
(Wl 9W2)W3): (2?3?4)3 (p 1 9p29p3): (1 1 > 1 59 1 2) ¢

K
\""}

polw | i|0o]1|2[3]|4|5]6
o|o|oflofo|o|o|o0o|o0]|oO
1112|100 |11 (ﬂj 11| 11| 11
153|200 |11]15]|15] 2626
12| 4|3 |0|0|11|15|15]| 26|26

N’

The solution vector X is

X= (x1,XpX3)=(1,1,0)

X1=1 since 11 doesn’t belong to previous row.

X2=1 since 26 doesn’t belong to previous row.

X3=0 since 26 belongs to previous row i.e.,
profit is not obtained because of item 4



Analysis
* The table filling method will take complexity of O(nW).

* For suppose if the weights of the objects are real numbers, then it is very difficult to
calculate for all possible weights between i £ w < i+1. so, this method is inefficient.

w
p, | w; | P |0 1 (11|12 7 |2]|201] ... | ...
0 0 0O(0| 0] 0O 0| O
11 {23 |1 |0
15 (3.25| 2 | O
12 | 45 |3 |0

* So, we use another method known as ordered set with merging and purging



0/1 knapsack (using Merging and Purging)- Method-2

Consider the knapsack instance n=3 and knapsack capacity m=6
(wl,w2,w3)=(2,3,4), (pl,p2,p3)=(1,2,5) .

(W) —profit and weight ob;ained (P W) —profit and weight obtained by
not including item 1 S%={(0, 0)} Slo ={(1, 2)} including item 1
/ (P,W) —profit and weight obtained by
Si= {(O; 0)1(112)} S11 = {(2; 3);(3;5)} including item 1 and 2 possibilities

\ / (P,W) —profit and weight

Sz — {(O, 0)1(1’2)’(2’ 3)’(3’5)} 512 — {(5’ 4),(6,6),(7, 7)’(8’9)}obtained by including item 1,

2,and 3 possibilities

S3 = {(OI 0)1(112)1(21 3)) (51 4))(616)1(71 7)1(819)}
(3,5) is purged because it is
dominating tuple



1. Generate the sets 5%, 0 < i < 4 (Equation 5.16), when (wy, ws, w3, ws) =
(10,15,6,9) and (p1,p2,p3,pa) = (2,5,8,1).



Traveling SalesPerson(TSP) Problem

Given a graph G= (V,E) and a tour is a directed simple cycle that
includes every vertex in V.

Solving the TSP problem is to find a tour of the given graph
with minimum cost.

TSP is a permutation problem, i.e., if a Graph G contains n-
vertices then the possible tours are n!.

By ap\olying Dynamic Programming technique ,the time
complexity of TSP problem reduces from O(n!i to O(n? 2").

Let G=(V,E) be a directed graph with edge cost matrix C.
The cost matrix is constructed as follows

¢, =0  ifiz]
= cost of the edge <i,j>€E [, o 15 20
= oo <|,j>¢E .5 0 9 10

16 13 0 12

a8 8 9 O




Possible tours from vertex 1




TSP problem —recursive formulation

* Let us assume the tour starts and ends at vertex 1.(In general,
we can starts and ends with any vertex )

* Let g(i,S) be the length of a shortest path starting at vertex |,
going through all vertices in S, and terminating at vertex 1.

g9(L,V —{1}) = min {ei +g(k,V — {1,k})}

The optimal length of the tour starts at vertex 1 and goes
through all vertices V excluding vertex 1i.e., S={2,3,4,...n}.
In general , for any vertex i

g(i,S) = lgleig{cztj +g(7.S —{7})}



Problem Formulation

g1,V — {1}) = min {cix +g(k,V — {1,k})}

=~

* The optimal length tour of the graph G is represented as
8(1,{2,3,4})

g (1,{2,3,4}) - form vertex 1 going to all vertices {2,3,4} exactly once in any order
and back to vertex 1

8(1,{2,3,4}) =min{c;, +g(2,{3,4}), c;5 +8(3,{2,4}), c;, + 8 (4,{2,3])}

g (2,{3,4}) - from vertex 2 going to all vertices {3,4} exactly once in any order
and similarly for g (3,{2,4}) and g (4,{2,3})

g8 (2,{3,4}) =min {{ c,3 +8(3,{4}) , ¢,y + 8 (4,{3}) }

g (3,{2,4}) = min {{ c;, + 8 (2,{4}) , c;, + 8 (4,{2}) }

g (4,{2,3}) =min {{ c,, +8(2,{3}) , c,5 + 8 (3,{2}) }

g (3,{4}) - from vertex 3 going to vertex {4} exactly once and similarly for
g (3,{2}), g (4,{2}), 9 (4,{3}), 9 (3,{2}), and g (3,{4}).

g (3,{4}) = min{c;, + g (4,0)} g(4,{3})= min {c,; + g (3,®)}
g (2,{4}) = min{c,, + g (4,0)} g(4,{2})= min {c,, + g (2,P)}
g (2,{3}) = min{c,; + g (3,9)} g(3,{2})= min {c;, + g (2,P)}
g (4,®)=c,, g(3,9) =c,, g(2,9) =c,,




=35

g(11{2r3r4}) =min { c12 + g(21{3i4})r c13 + g(3r{214})r c14 + g(4r{213})}
= min { 10+25, 15 + 25, 20+23 }

1

\

8(2,{3,4}) =min{C,; +g(3, {4}), C, + 8(4, {3})}
=min{9+20, 10+15}

| g(342,4}) =min{C,, +8g(2,

=min {13 + 18, 12+13

C3, + 8(4, {2})}

=25 =25
|
/ :
2 3
g(3:{4})= C34+ g(4r D) = c43 + g(3r ®)
=12+8 = 9+6
=20 =15 8(2,{8}) = C,,+8(4,®) g(442}) = C,+5(2,)
/ N =10+8 =8+5
= 18 =13
3 4
1 | l
4
3 2
g(4,9)=8 g(3,9)=6

g(4,9)=8

g(2,9)=5

1| 0 10 15
2|5 0 9
306 13 0
a| 8 8 9

g(4,{2,3})) = 23

N




= min { 15 + 25, 20+23 }
=35

g(1,{2,3,4}) = min{ Cli +g(2,{3,4}), C,; + g(3,{2,4}), C,, + g(4,{2,3})}

g(Z,{3,4}) = min{ c23 +g(3, {4 Cz4 + g(4, {3})}
= min{9+20,}
= 25

8(3,{2,4}) =min{C;, +g(2, {4}), C3, + &(4, {2})}
=min{13+ 18, 12+13}
=25

8(4,{2,3} = min{C,, +g(2, {3}), C,; + (3, {2})}
=min{8+15,9+18}

=23
g(3,{4}) = C;, +g(4, ®) g(4,{2}) = C,,+g(2,?)
= 12 +8 =20 = 8+5 =13
g(4,{3}) = C,;3+g(3,?) g(2,{3}) = C,3+8(3, P)
= =15 =9+6 =15
g(2,{4}) = C24 +g(4, D) g(3{2}) = C;, +g(2, ?)
= 10 +8 =18 = 13+5=18
g(4,9)=8 g(3,9)=15 g(2,9)= 18

Optimal tour
J(1,{2,3,4}) =2

Path: 1-- >2

J(2,{3,4})) =4

Path: 1-->2 -->4

)(4,{3}) =3

Path: 1-->2 -->4-->3

Path: 1-->2-->4-->3-->1



Applications of Traveling Salesperson Problem

1. A postvan is to pick up mails from mail boxes located at different sites .

It can be modelled as TSP problem by considering sites as cities and
distance between sites(in kms) as edge cost. The route taken by the
postal van is a tour.

2. A robotic arm to tighten nuts on some piece of machinery in an
assembly line. It can be modelled as TSP problem by considering nuts
as cities and arm movement as edge cost. The path of the arm is a tour
of the graph with nuts as vertices and minimal time needed by the
robotic arm to complete its task.

3. A Production environment in which several commodities are
manufactured on the same set of machines

It can be modelled as TSP problem by considering commodities as
cities and change over cost between commodity i and commodity j as
edge cost. The tour in this problem is the sequence of change of
machines to produce commodities ( which sequence is minimum
change over cost).



	Slide 1: Dynamic Programming
	Slide 2
	Slide 3
	Slide 4: Dynamic Programming – Introduction 
	Slide 5
	Slide 6: All-Pairs Shortest paths
	Slide 7: All-Pairs Shortest paths
	Slide 8: Flyod- warshall 
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13: Optimal Binary Search Tree
	Slide 14
	Slide 15: Optimal Binary Search Tree
	Slide 16: Optimal Binary Search Tree
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25: 0/1 knapsack problem
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32: Analysis
	Slide 33: 0/1 knapsack (using Merging and Purging)- Method-2
	Slide 34
	Slide 35: Traveling SalesPerson(TSP) Problem
	Slide 36
	Slide 37: TSP problem – recursive formulation
	Slide 38: Problem Formulation
	Slide 39
	Slide 40
	Slide 41: Applications of Traveling Salesperson Problem

