
DIVIDE-AND-CONQUER

Divide-and-Conquer paradigm

In divide-and-conquer ,the problem is solved by applying the 3 steps at each level
of recursion

• Divide the problem into a number of subproblems that are smaller instances of the
same problem.

• Conquer the subproblems by solving them recursively. If the subproblem sizes are
small enough, however, just solve the subproblems in a straightforward manner.

• Combine the solutions to the subproblems into the solution for the original problem.

Recurrences are used to characterize the running times of divide-and –conquer

algorithms.

A recurrence is an equation or inequality that describes a function in terms of its

value on smaller inputs.

• If the problem size is small enough, say n <= c for some constant c, the straightforward

solution takes constant time, which we write as Θ(1).

• Suppose that our division of the problem yields a subproblems, each of which is n/b

the size of the original and so it takes time aT(n/b) to solve a of them.

• If we take D(n) time to divide the problem into subproblems and C(n) time to combine

the solutions to the subproblems into the solution to the original problem, we get the

recurrence

Merge sort
The merge sort algorithm follows the divide-and-conquer paradigm. Intuitively,

it operates as follows.

Divide: Divide the n-element sequence to be sorted into two subsequences of n/2

elements each.

Conquer: Sort the two subsequences recursively using merge sort.

Combine: Merge the two sorted subsequences to produce the sorted answer.

Constant-Θ(1)

Θ(n1)
Θ(n)

Θ(n2)

Constant-Θ(1)

Θ(n)

Merge procedure runs in Θ(n)

Recurrence Relation

Divide: compute the middle of the subarray, which takes constant time. Thus D(n)= Θ(1).

Conquer: Recursively solve the two subproblems of size n/2, which contains 2T(n/2) to

the running time.

Combine: Merge procedure on an n-element subarray takes time Θ(n) and so C(n)= Θ(n)

Solve the recursion relation

Recursion tree

Quick sort

Divide: Partition (rearrange) the array A[p..r] into two (possibly empty) subarrays A[p..q-1]

and A[q+1..r] such that each element of A[p..q-1] is less than or equal to A[q], which is, in

turn, less than or equal to each element of A[q+1..r]. Compute the index q as part of this

partitioning procedure.

Conquer: Sort the two subarrays A[p..q-1] and A[q+1..r] by recursive calls to quicksort.

Combine: Because the subarrays are already sorted, no work is needed to combine them:

the entire array A[p..r] is now sorted.

Quick sort Algorithm

Performance Analysis
• The worst-case behavior for quicksort occurs when the partitioning routine

produces one subproblem with n -1 elements and one with 0 elements.

Partition takes Θ(n)

Recursive call of array

size 0 is T(0) is Θ(1)Recursive call of array

size n-1 is T(n-1)

The running time is Θ(n2)

Best-case partitioning

• PARTITION produces two subproblems, each of size no more than n/2, since one

is of size

The running time is Θ(n log n)

Balanced partitioning

Finding the Maximum and Minimum

1. Algorithm StraigthMaxMin (a, n, max, min)
// set max to the maximum and min to the minimum of A[1:n]

{
2. max := min:= a[1];
3. for i: 2 to n do

{
4. if (a[i] >max then max:=a[i];
5. if a[i] < min then min:=a[i];

}
}

StraightMaxMin requires 2*(n -1) element comparisons in the best, average , and
worst case.

1. Algorithm MaxMin (a, i, j, Max, Min)

// i and j are the lower and upper bounds of an array ‘a’. Max and ain contains the maximum

// and minimum elements of an array ‘a’

2. { if (i = = j) then max:=min:= a[i]; // Small(P)

3. else if (i == j -1) then // another case of Small(P)

{

4. if (a[i] < a[j]) then

5. max: = a[j] ; min:=a[i];

else

6. max: = a[i] ; min:=a[j];

}

7. else {

// If P is not small divide P into subproblems .Find where to split the set

8. Mid:= floor((i+j)/2)

// solve the subproblems

9. MaxMin(i ,mid,max,min);

10. MaxMin(mid+1, j ,max1,min1);

// Combine the solutions

11. if (max<max1) then max:=max1;

12. if (min>min1) then min:=min1;

}

}

Maximum
and
Minimum
using
Divide-and
Conquer

1 9

i j max min

22 13 -5 -8 15 60 17 31 47

1 2 3 4 5 6 7 8 9

1 5

1 3 4 5

1 2 3 3

6 9

6 7 8 9

22 13 -5 -5

22 -5 15 -8

22 -8

60 17 47 31

60 17

60 -8

Matrix Multiplication

C11 C12

C21 C22

a11 a12

a21 a22

b11 b12

b21 b22

X=

C11 a11 * b11 += a12 * b21

C12 a11 * b12 += a12 * b22

C21 a21 * b11 += a22 * b21

C22 a21 * b11 += a22 * b21

Matrix Multiplication- using divide and conquer
C11 C12 C13 C14

C21 C22 C23 C24

C31 C32 C33 C34

C41 C42 C43 C44

C11 C12

C21 C22

A11 A12

A21 A22

B11 B12

B21 B22

X

X

=

=

n/2

n/2

A11 A12 A13 A14

A21 A22 A23 A24

A31 A32 A33 A34

A41 A42 A43 A44

B11 B12 B13 B14

B21 B22 B23 B24

B31 B32 B33 B34

B41 B42 B43 B44

C11 A11 * B11 += A12 * B21

C12 A11 * B12 += A12 * B22

C21 A21 * B11 += A22 * B21

C22 A21 * B11 += A22 * B21

Matrix Multiplications : 8
Matrix Additions : 4

Each recursive call multiplies
two n/2 X n/2 matrices.

Matrix Multiplication Algorithm

Recurrence relation

If n=1 only one scalar multiplication

If n>1
8 matrix multiplications of size n/2 x n/2 . Each recursive call takes T(n/2) running
time. So, 8 calls need 8 T(n/2)
4 matrix additions of size n/2 x n/2 . Addition of two matrices of size n/2 x n/2 takes
n2/4 . So, 4 additions take n2

Matrix Multiplication- using divide and conquer
1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

c11 c12

c21 c22

1 2

5 6

1 0

0 1

X

X

=

=

1 1XC11 =

n/2

n/2

c11 c12 c13 c14

c21 c22 c23 c24

c31 c32 c33 c34

c41 c42 c43 c44

+ 2 0X

C12
= 1 0X + 2 1X

C21 = 5 1X + 6 0X

C22 = 5 0X + 6 1X

1 2

5 6
=

A11

A21

A12

A22

B11

B21

B12

B22

C11

C21

C12

C22

A11 B11 XA12 B21
+

X 3 4

7 8

0 0

0 0
X+

C11

3 0XC11 = + 4 0X

C12
= 3 0X + 4 0X

C21 = 7 0X + 8 0X

C22 = 7 0X + 8 0X

A11 B11A12

A21 A22 B21

B12

B22

A11 B11A12

A21 A22 B21

B12

B22

0 0

0 0

1 2

5 6
+

Matrix Multiplication- using divide and conquer
1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

c11 c12

c21 c22

1 2

5 6

0 0

0 0

X

X

=

=

1 0XC11 =

n/2

n/2

c11 c12 c13 c14

c21 c22 c23 c24

c31 c32 c33 c34

c41 c42 c43 c44

+ 2 0X

C12
= 1 0X + 2 0X

C21 = 5 0X + 6 0X

C22 = 5 0X + 6 0X

3 4

7 8
=

A11

A21

A12

A22

B11

B21

B12

B22

C11

C21

C12

C22

A11 B12 XA12 B22
+

X 3 4

7 8

1 0

0 1
X+

C12

3 1XC11 = + 4 0X

C12
= 3 0X + 4 1X

C21 = 7 1X + 8 0X

C22 = 7 0X + 8 1X

A11 B11A12

A21 A22 B21

B12

B22

A11 B11A12

A21 A22 B21

B12

B22

3 4

7 8

0 0

0 0
+

Matrix Multiplication- using divide and conquer
1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

c11 c12

c21 c22

9 10

13 14

1 0

0 1

X

X

=

=

9 1XC11 =

n/2

n/2

c11 c12 c13 c14

c21 c22 c23 c24

c31 c32 c33 c34

c41 c42 c43 c44

+ 10 0X

C12
= 9 0X + 10 1X

C21 = 13 1X + 14 0X

C22 = 13 0X + 14 1X

9 10

13 14
=

A11

A21

A12

A22

B11

B21

B12

B22

C11

C21

C12

C22

A21 B11 XA22 B21
+

X 11 12

15 16

0 0

0 0
X+

C21

11 0XC11 = + 12 0X

C12
= 11 0X + 12 0X

C21 = 15 0X + 16 0X

C22 = 15 0X + 16 1X

A11 B11A12

A21 A22 B21

B12

B22

A11 B11A12

A21 A22 B21

B12

B22

0 0

0 0

9 10

13 14
+

Matrix Multiplication- using divide and conquer
1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

c11 c12

c21 c22

9 10

13 14

0 0

0 0

X

X

=

=

9 0XC11 =

n/2

n/2

c11 c12 c13 c14

c21 c22 c23 c24

c31 c32 c33 c34

c41 c42 c43 c44

+ 10 0X

C12
= 9 0X + 10 0X

C21 = 13 0X + 14 0X

C22 = 13 0X + 14 0X

11 12

15 16
=

A11

A21

A12

A22

B11

B21

B12

B22

C11

C21

C12

C22

A21 B12 XA22 B22
+

X 11 12

15 16

1 0

0 1
X+

C22

11 1XC11 = + 12 0X

C12
= 11 0X + 12 1X

C21 = 15 1X + 16 0X

C22 = 15 0X + 16 1X

A11 B11A12

A21 A22 B21

B12

B22

A11 B11A12

A21 A22 B21

B12

B22

11 12

15 16

0 0

0 0
+

Matrix Multiplication- using divide and conquer

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

C11 C12

C21 C22

1 2

5 6

1 0

0 1

X

X

=

=

1 1XC11 =

n/2

n/2

C11 C12 C13 C14

C21 C22 C23 C24

C31 C32 C33 C34

C41 C42 C43 C44

+ 2 0X

C12 = 1 0X + 2 1X

C21 = 5 1X + 6 0X

C22 = 5 0X + 6 1X

1 2

5 6
=

Performance Analysis

T(n) = 8 * T(n/2) + cn2

= 8 * [8* T(n/4) +cn2/4]+ cn2

= 26 * T(n/4) + 2cn2+ cn2
= 26 *[8 * T(n/8) + cn2/8]+ 2cn2+ cn2

= 29 * T(n/8) + 4cn2 + 2cn2 + cn2

…
…

= (23)k * T(n /2K) + (2K -1) cn2

= (8)k * T(n /2K) + (2K -1) cn2 Let 2K = n then k = log2n

= (8) log2n * T(n /n) + (n -1) cn2

= (23)log2n * T(n /n) + (n -1) cn2

= (2)log2n3 + (n -1) cn2

= n3 + (n -1) cn2

= Θ (n3)

Strassen’s Matrix Multiplication

• The key to Strassen’s method is to perform seven recursive multiplications instead
of performing eight recursive multiplications of n/2 x n/2.

• The cost of eliminating one matrix multiplication will create several new additions
of n/2 x n/2 matrices, but still only a constant number .

Strassen’s matrix multiplication method

Step 2 Step 3

Step 4

Matrix Multiplication- using divide and conquer
1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

c11 c12

c21 c22

1 2

5 6

0 0

0 0

X

X

=

=

1 0XC11 =

n/2

n/2

c11 c12 c13 c14

c21 c22 c23 c24

c31 c32 c33 c34

c41 c42 c43 c44

+ 2 0X

C12
= 1 0X + 2 0X

C21 = 5 0X + 6 0X

C22 = 5 0X + 6 0X

3 4

7 8
=

A11

A21

A12

A22

B11

B21

B12

B22

C11

C21

C12

C22

A11 B12 XA12 B22
+

X 3 4

7 8

1 0

0 1
X+

C12

3 1XC11 = + 4 0X

C12
= 3 0X + 4 1X

C21 = 7 1X + 8 0X

C22 = 7 0X + 8 1X

A11 B11A12

A21 A22 B21

B12

B22

A11 B11A12

A21 A22 B21

B12

B22

3 4

7 8

0 0

0 0
+

In place of
recursive calls
straseen’s use
his formulas
S1 to S10,
P1 to P10,
C11 to C22

Performance Analysis of straseen’s Matrix multiplication

T(n) = 7 * T(n/2) + cn2

= 7 * [7* T(n/4) +cn2/4]+ cn2

= 72 *[7 * T(n/8) + cn2/16]+ 7cn2 /4 + cn2

Solving the Recurrence Relation using
recursion tree

Master’s Theorem

	Slide 1: DIVIDE-AND-CONQUER
	Slide 2: Divide-and-Conquer paradigm
	Slide 3
	Slide 4: Merge sort
	Slide 5
	Slide 6
	Slide 7: Recurrence Relation
	Slide 8: Recursion tree
	Slide 9
	Slide 10: Quick sort
	Slide 11
	Slide 12: Quick sort Algorithm
	Slide 13: Performance Analysis
	Slide 14: Best-case partitioning
	Slide 15
	Slide 16: Finding the Maximum and Minimum
	Slide 17
	Slide 18
	Slide 19: Matrix Multiplication
	Slide 20: Matrix Multiplication- using divide and conquer
	Slide 21: Matrix Multiplication Algorithm
	Slide 22: Recurrence relation
	Slide 23: Matrix Multiplication- using divide and conquer
	Slide 24: Matrix Multiplication- using divide and conquer
	Slide 25: Matrix Multiplication- using divide and conquer
	Slide 26: Matrix Multiplication- using divide and conquer
	Slide 27: Matrix Multiplication- using divide and conquer
	Slide 28: Performance Analysis
	Slide 29: Strassen’s Matrix Multiplication
	Slide 30
	Slide 31
	Slide 32: Matrix Multiplication- using divide and conquer
	Slide 33: Performance Analysis of straseen’s Matrix multiplication
	Slide 34: Solving the Recurrence Relation using recursion tree
	Slide 35
	Slide 36
	Slide 37: Master’s Theorem

