DIVIDE-AND-CONQUER

Divide-and-Conquer paradigm

In divide-and-conquer ,the problem is solved by applying the 3 steps at each level of recursion

- **Divide** the problem into a number of subproblems that are smaller instances of the same problem.
- **Conquer** the subproblems by solving them recursively. If the subproblem sizes are small enough, however, just solve the subproblems in a straightforward manner.
- **Combine** the solutions to the subproblems into the solution for the original problem.

Recurrences are used to characterize the running times of divide-and –conquer algorithms.

A *recurrence* is an equation or inequality that describes a function in terms of its value on smaller inputs.

- If the problem size is small enough, say $n \le c$ for some constant c, the straightforward solution takes constant time, which we write as $\Theta(1)$.
- Suppose that our division of the problem yields a subproblems, each of which is n/b the size of the original and so it takes time aT(n/b) to solve a of them.
- If we take D(n) time to divide the problem into subproblems and C(n) time to combine the solutions to the subproblems into the solution to the original problem, we get the recurrence

$$T(n) = \begin{cases} \Theta(1) & \text{if } n \le c ,\\ aT(n/b) + D(n) + C(n) & \text{otherwise} . \end{cases}$$

Merge sort

The *merge sort* algorithm follows the divide-and-conquer paradigm. Intuitively, it operates as follows.

Divide: Divide the n-element sequence to be sorted into two subsequences of n/2 elements each.

Conquer: Sort the two subsequences recursively using merge sort.

Combine: Merge the two sorted subsequences to produce the sorted answer.

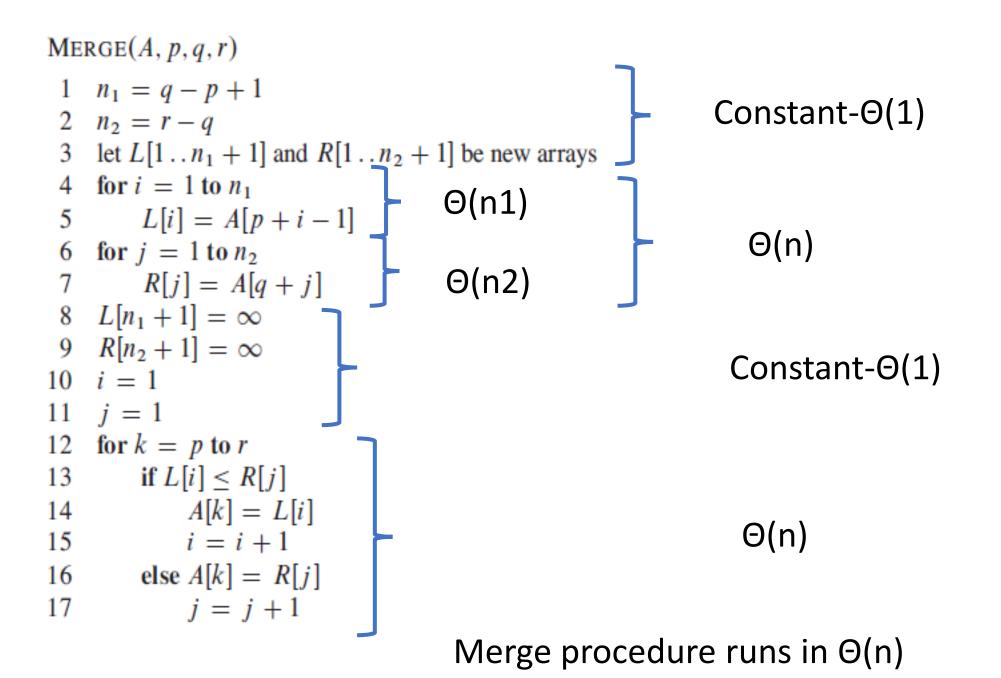
MERGE-SORT(A, p, r)

1 if
$$p < r$$

2 $q = \lfloor (p+r)/2 \rfloor$
3 MERGE-SORT (A, p, q)
4 MERGE-SORT $(A, q+1, r)$

5 MERGE(A, p, q, r)

$$\begin{aligned} &\text{MERGE}(A, p, q, r) \\ &1 \quad n_1 = q - p + 1 \\ &2 \quad n_2 = r - q \\ &3 \quad \text{let } L[1 \dots n_1 + 1] \text{ and } R[1 \dots n_2 + 1] \text{ be new arrays} \\ &4 \quad \text{for } i = 1 \text{ to } n_1 \\ &5 \quad L[i] = A[p + i - 1] \\ &6 \quad \text{for } j = 1 \text{ to } n_2 \\ &7 \quad R[j] = A[q + j] \\ &8 \quad L[n_1 + 1] = \infty \\ &9 \quad R[n_2 + 1] = \infty \\ &9 \quad R[n_2 + 1] = \infty \\ &10 \quad i = 1 \\ &11 \quad j = 1 \\ &12 \quad \text{for } k = p \text{ to } r \\ &13 \quad \text{ if } L[i] \leq R[j] \\ &14 \quad A[k] = L[i] \\ &15 \quad i = i + 1 \\ &16 \quad \text{else } A[k] = R[j] \\ &17 \quad j = j + 1 \end{aligned}$$



Recurrence Relation

$$T(n) = \begin{cases} \Theta(1) & \text{if } n \le c ,\\ aT(n/b) + D(n) + C(n) & \text{otherwise} . \end{cases}$$

Divide: compute the middle of the subarray, which takes constant time. Thus $D(n) = \Theta(1)$.

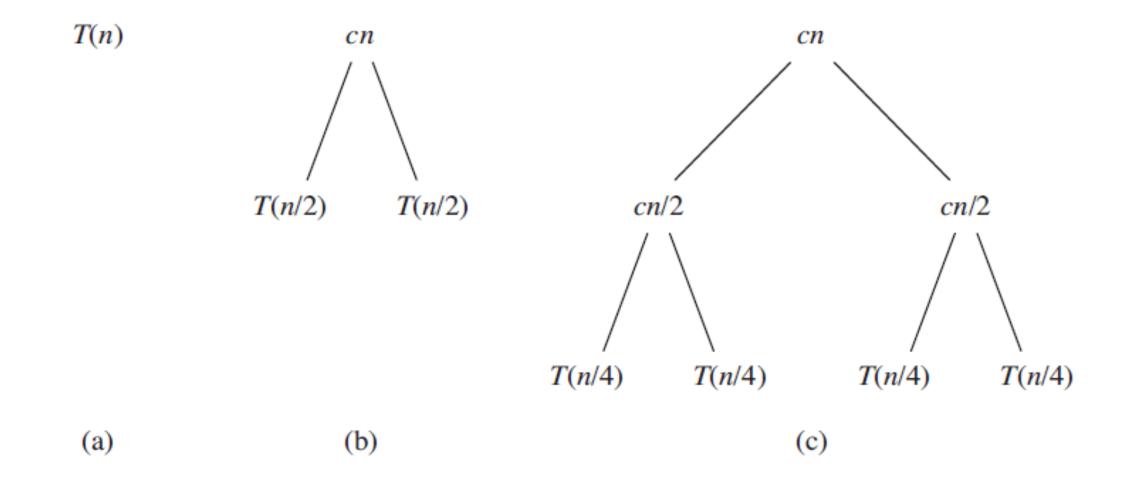
Conquer: Recursively solve the two subproblems of size n/2, which contains 2T(n/2) to the running time.

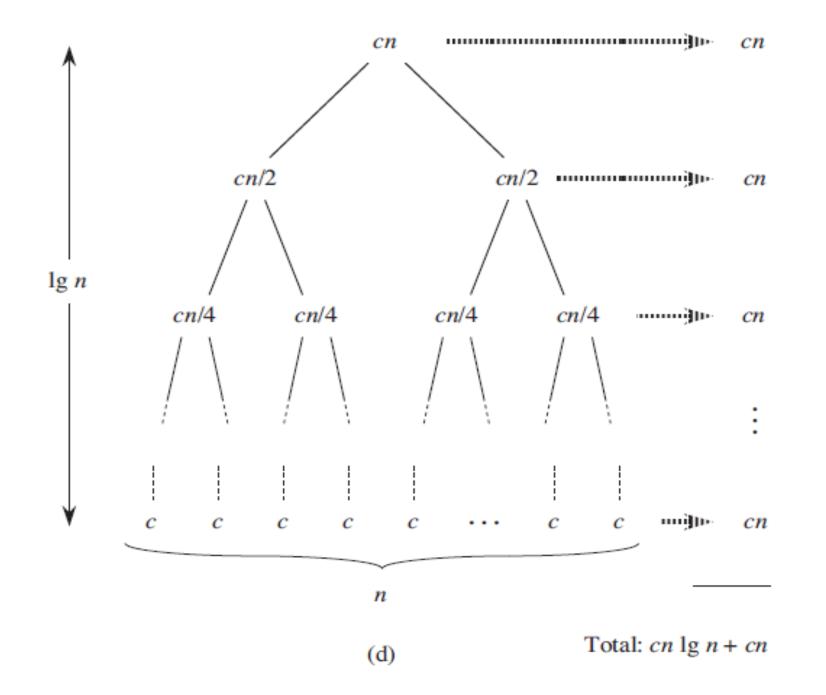
Combine: Merge procedure on an n-element subarray takes time $\Theta(n)$ and so $C(n) = \Theta(n)$

$$T(n) = \begin{cases} c & \text{if } n = 1, \\ 2T(n/2) + cn & \text{if } n > 1, \end{cases}$$

Solve the recursion relation

Recursion tree





Quick sort

Divide: Partition (rearrange) the array A[p..r] into two (possibly empty) subarrays A[p..q-1] and A[q+1..r] such that each element of A[p..q-1] is less than or equal to A[q], which is, in turn, less than or equal to each element of A[q+1..r]. Compute the index q as part of this partitioning procedure.

Conquer: Sort the two subarrays A[p..q-1] and A[q+1..r] by recursive calls to quicksort.

Combine: Because the subarrays are already sorted, no work is needed to combine them: the entire array A[p..r] is now sorted.

QUICKSORT(A, p, r)

1 if
$$p < r$$

2 $q = PARTITION(A, p, r)$
2 OUNCERCOPT(A = a 1)

3 QUICKSORT
$$(A, p, q - 1)$$

4 QUICKSORT(A, q + 1, r)

PARTITION(A, p, r)

$$1 \quad x = A[r]$$

$$2 \quad i = p - 1$$

$$3 \quad \text{for } j = p \text{ to } r - 1$$

$$4 \quad \text{if } A[j] \leq x$$

$$5 \quad i = i + 1$$

$$6 \quad \text{exchange } A[i] \text{ with } A[j]$$

$$7 \quad \text{exchange } A[i + 1] \text{ with } A[r]$$

$$8 \quad \text{return } i + 1$$

Quick sort Algorithm

QUICKSORT(A, p, r)

1 if p < r

2
$$q = PARTITION(A, p, r)$$

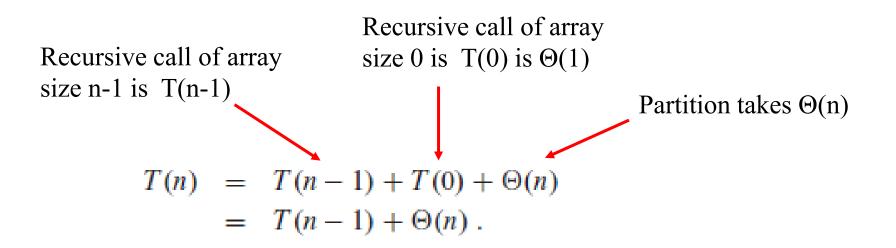
3 QUICKSORT
$$(A, p, q-1)$$

4 QUICKSORT(A, q + 1, r)

HOARE-PARTITION (A, p, r) $1 \ x = A[p]$ $2 \quad i = p - 1$ j = r + 14 while TRUE 5 repeat 6 j = j - 1until $A[j] \leq x$ 7 8 repeat 9 i = i + 1until $A[i] \ge x$ 10 11 if i < jexchange A[i] with A[j]12 13 else return j

Performance Analysis

• The worst-case behavior for quicksort occurs when the partitioning routine produces one subproblem with n -1 elements and one with 0 elements.



The running time is $\Theta(n^2)$

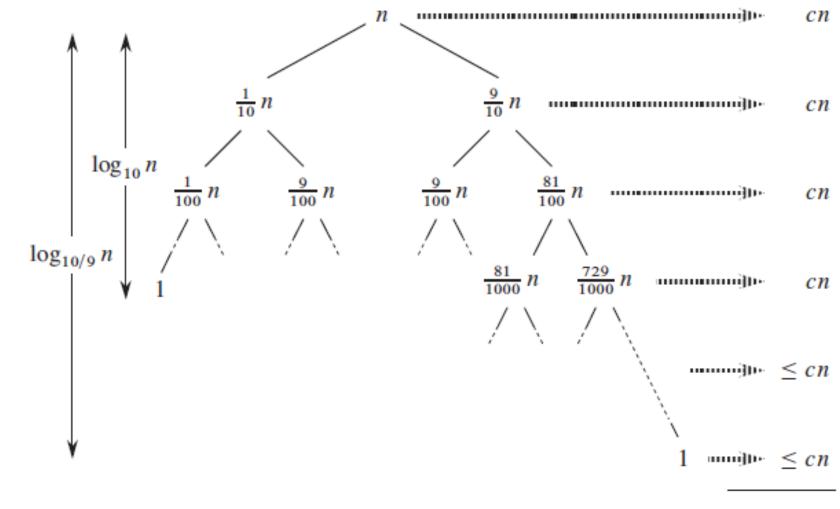
Best-case partitioning

• PARTITION produces two subproblems, each of size no more than n/2, since one is of size $\lfloor n/2 \rfloor$ and one of size $\lceil n/2 \rceil - 1$.

 $T(n) = 2T(n/2) + \Theta(n) ,$

The running time is $\Theta(n \log n)$

Balanced partitioning



 $O(n \lg n)$

Finding the Maximum and Minimum

1. Algorithm StraigthMaxMin (a, n, max, min) // set max to the maximum and min to the minimum of A[1:n] 2. max := min:= a[1];for i: 2 to n do 3. if (a[i] > max then max:=a[i]; 4. if a[i] < min then min:=a[i]; 5.

StraightMaxMin requires 2*(n -1) element comparisons in the best, average , and worst case.

1. Algorithm MaxMin (a, i, j, Max, Min) // i and j are the lower and upper bounds of an array 'a'. Max and ain contains the maximum // and minimum elements of an array 'a' if (i = = j) then max:=min:= a[i]; // Small(P) 2. { else if (i == j -1) then $\frac{}{}$ another case of Small(P) 3. if (a[i] < a[j]) then **4**. 5. max: = a[j]; min:=a[i]; else 6. max: = a[i] ; min:=a[j]; } 7. else { // If P is not small divide P into subproblems .Find where to split the set Mid:= floor((i+j)/2) 8. // solve the subproblems MaxMin(i ,mid,max,min); 9. MaxMin(mid+1, j ,max1,min1); 10. // Combine the solutions if (max<max1) then max:=max1; 11. if (min>min1) then min:=min1; 12.

Maximum

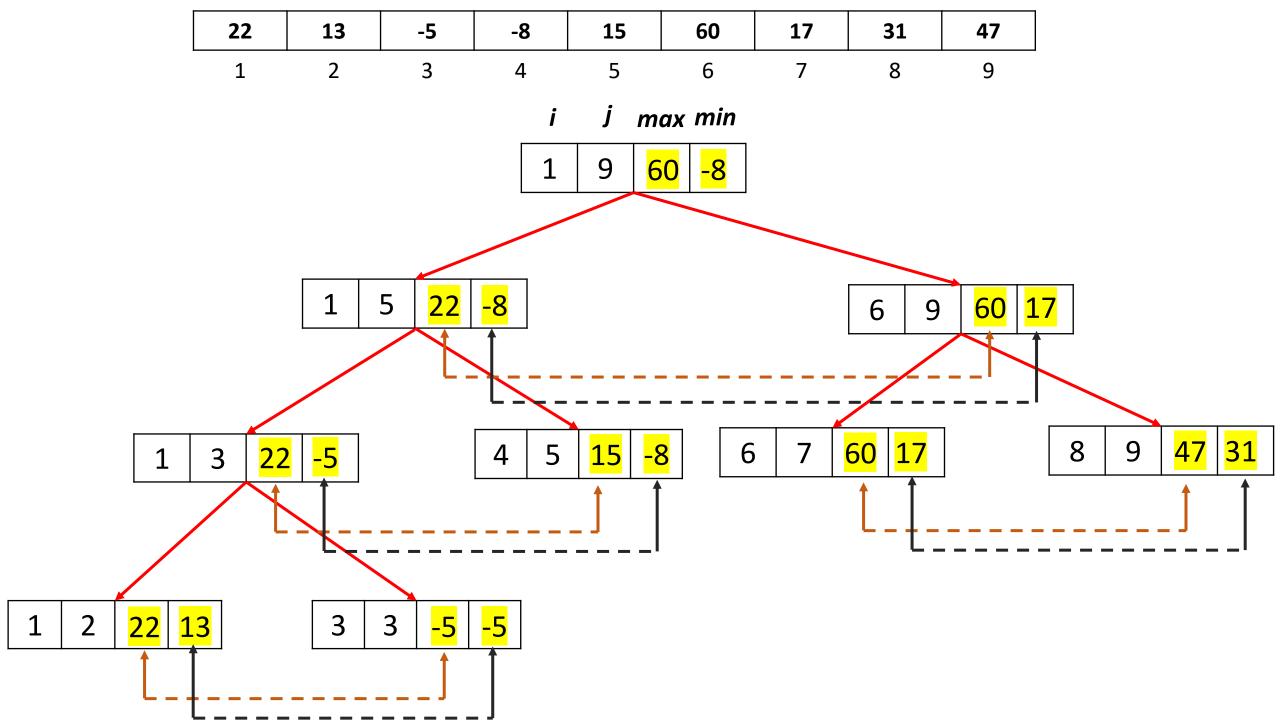
Minimum

Divide-and

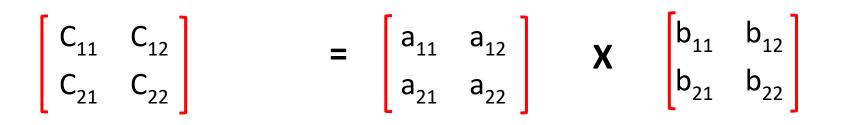
Conquer

and

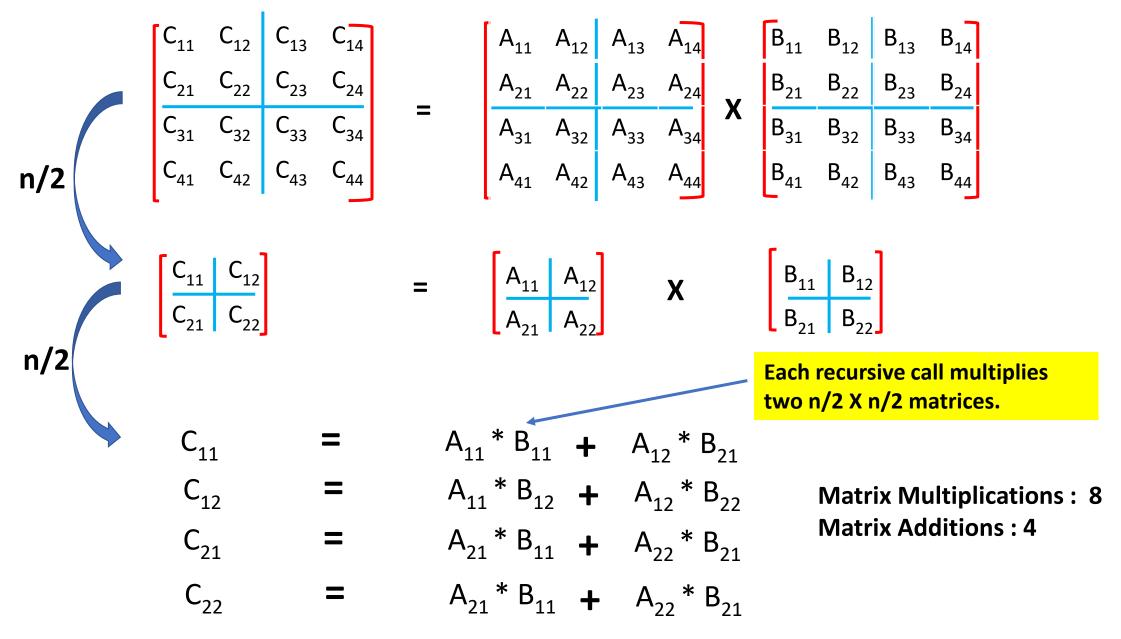
using



Matrix Multiplication



 C_{11} = $a_{11} * b_{11} + a_{12} * b_{21}$ C_{12} = $a_{11} * b_{12} + a_{12} * b_{22}$ C_{21} = $a_{21} * b_{11} + a_{22} * b_{21}$ C_{22} = $a_{21} * b_{11} + a_{22} * b_{21}$



Matrix Multiplication Algorithm

SQUARE-MATRIX-MULTIPLY-RECURSIVE (A, B)

- $1 \quad n = A.rows$
- 2 let C be a new $n \times n$ matrix
- 3 if *n* == 1
- 4 $c_{11} = a_{11} \cdot b_{11}$
- 5 else partition A, B, and C
- 6 $C_{11} = \text{SQUARE-MATRIX-MULTIPLY-RECURSIVE}(A_{11}, B_{11})$ + SQUARE-MATRIX-MULTIPLY-RECURSIVE (A_{12}, B_{21})
- 7 $C_{12} =$ SQUARE-MATRIX-MULTIPLY-RECURSIVE (A_{11}, B_{12}) + SQUARE-MATRIX-MULTIPLY-RECURSIVE (A_{12}, B_{22})
- 8 $C_{21} =$ SQUARE-MATRIX-MULTIPLY-RECURSIVE (A_{21}, B_{11})
 - + SQUARE-MATRIX-MULTIPLY-RECURSIVE (A_{22}, B_{21})
- 9 $C_{22} = \text{SQUARE-MATRIX-MULTIPLY-RECURSIVE}(A_{21}, B_{12})$ + SQUARE-MATRIX-MULTIPLY-RECURSIVE (A_{22}, B_{22})

10 return C

$$T(n) = \begin{cases} \Theta(1) & \text{if } n = 1, \\ 8T(n/2) + \Theta(n^2) & \text{if } n > 1. \end{cases}$$

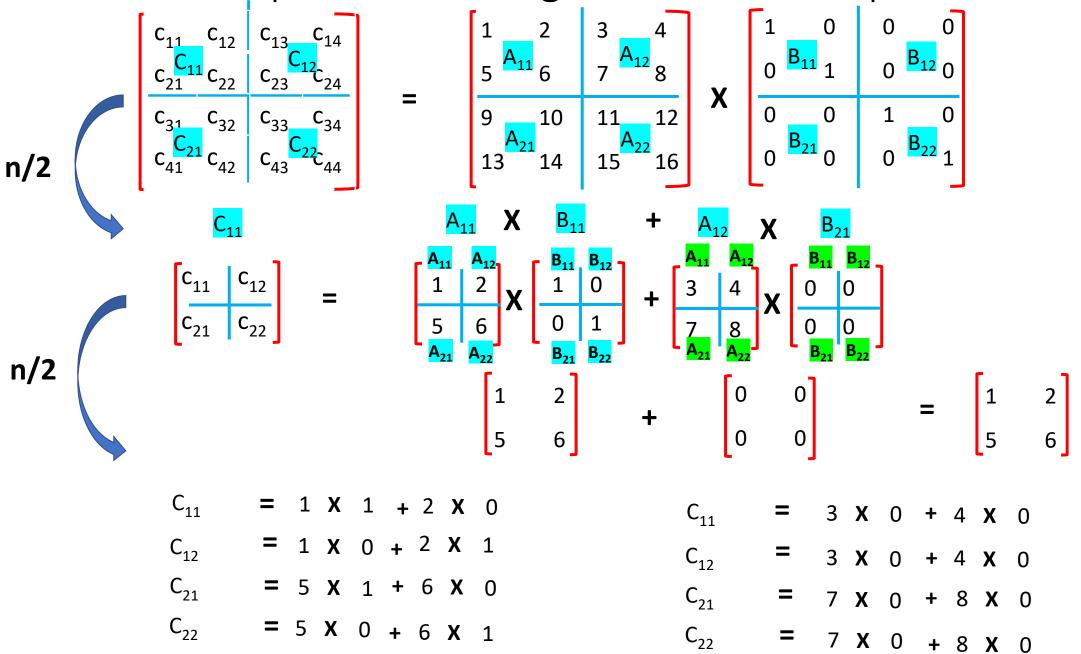
Recurrence relation

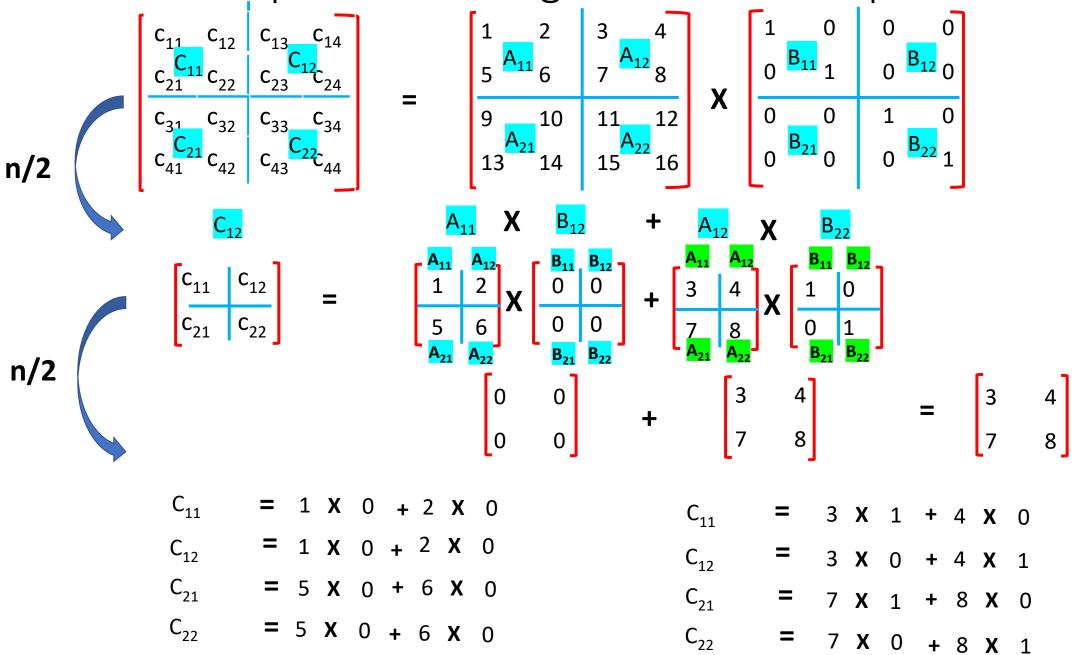
$$T(n) = \begin{cases} \Theta(1) & \text{if } n = 1, \\ 8T(n/2) + \Theta(n^2) & \text{if } n > 1. \end{cases}$$

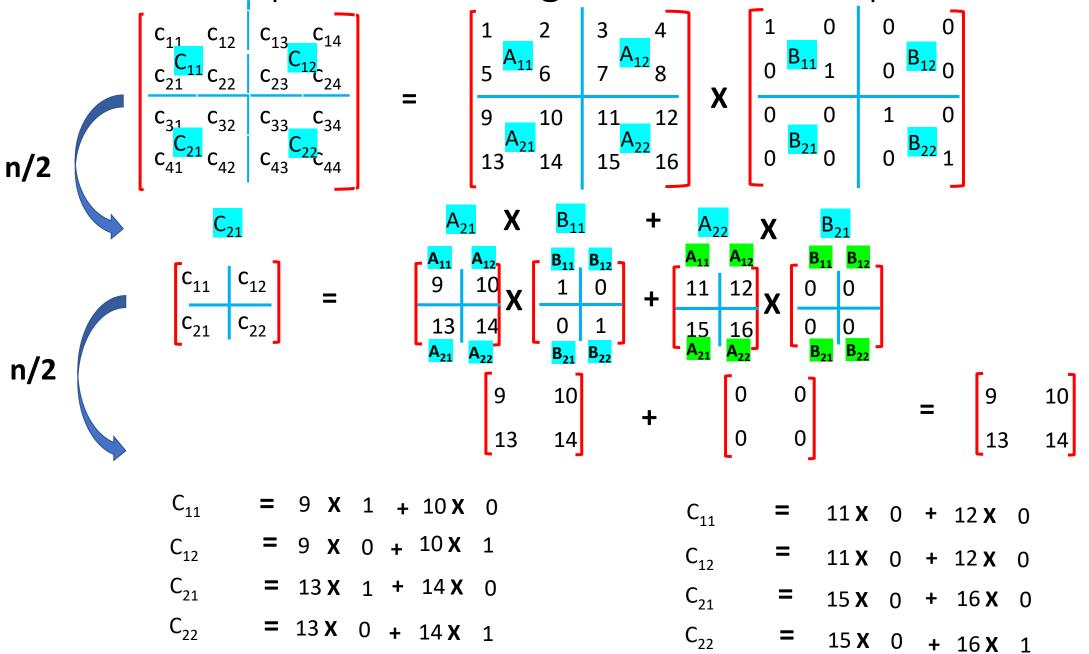
If n=1 only one scalar multiplication

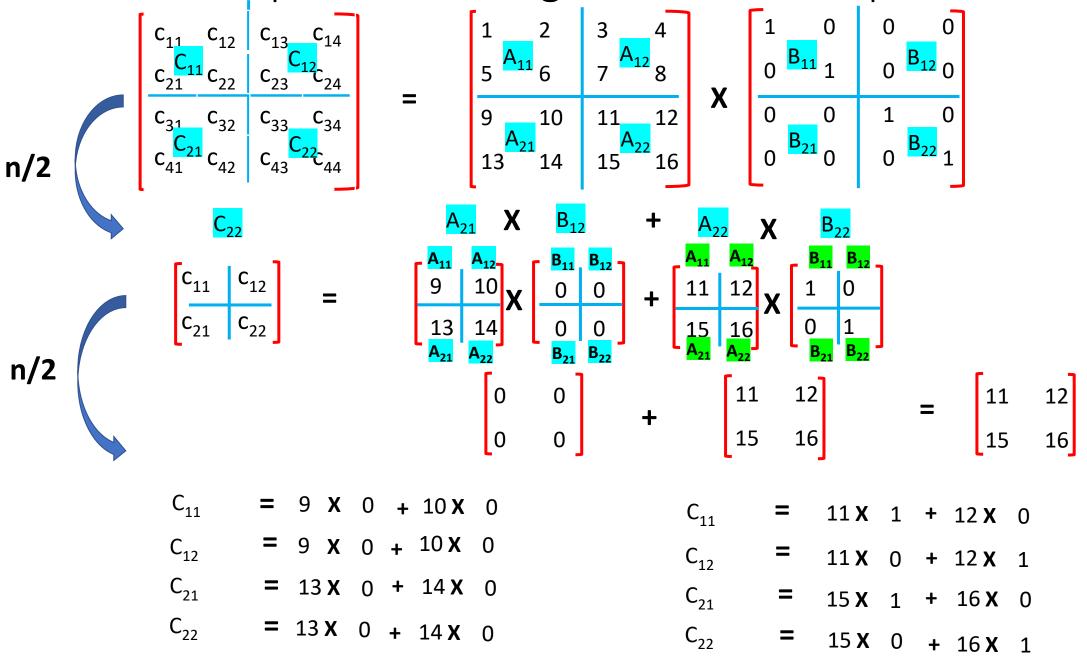
lf n>1

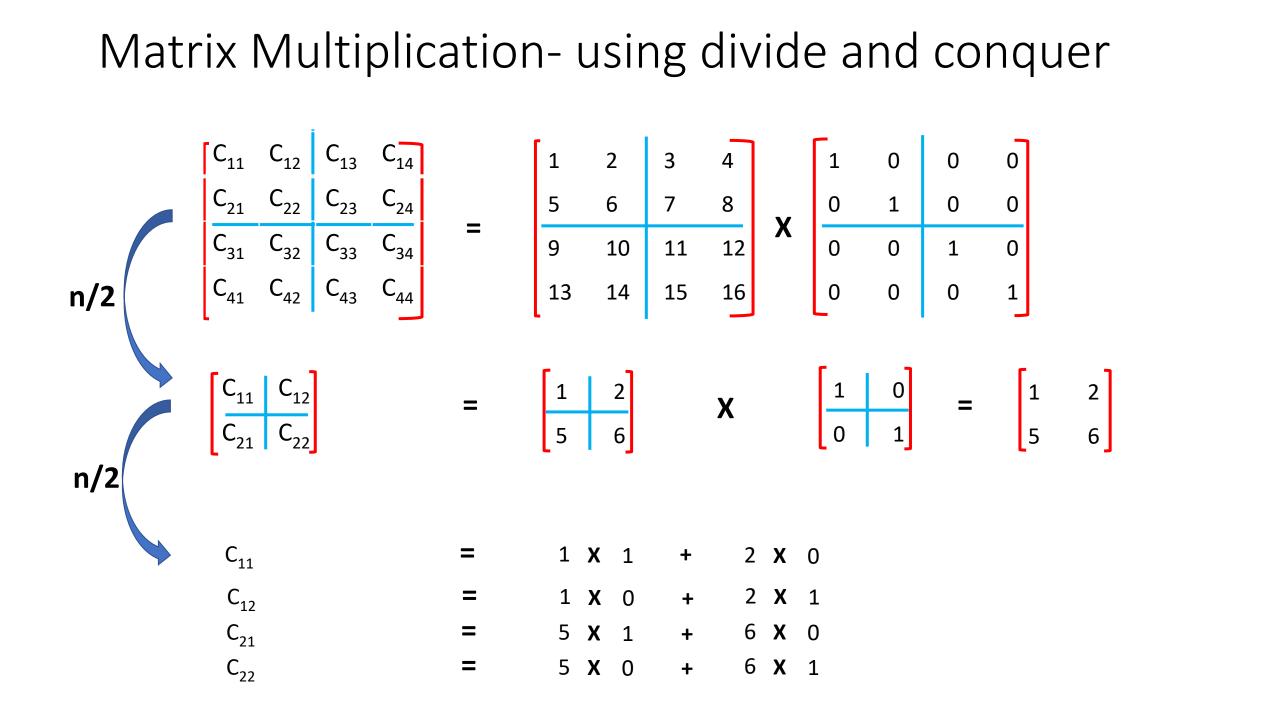
8 matrix multiplications of size $n/2 \ge n/2$. Each recursive call takes T(n/2) running time. So, 8 calls need 8 T(n/2) 4 matrix additions of size $n/2 \ge n/2$. Addition of two matrices of size $n/2 \ge n/2$ takes $n^2/4$. So, 4 additions take n^2











Performance Analysis

 $T(n) = 8 * T(n/2) + cn^2$

...

- $= 8 * [8 * T(n/4) + cn^2/4] + cn^2$
- = $2^6 * [8 * T(n/8) + cn^2/8] + 2cn^2 + 2cn^2 + Cn^2 + Cn^2$
- $= 2^9 * T(n/8) + 4cn^2 + 2cn^2 + cn^2$
- = $(2^3)^k * T(n/2^k) + (2^k 1) cn^2$
- $= (8)^{k} * T(n/2^{k}) + (2^{k} 1) cn^{2}$

Let $2^{k} = n$ then $k = \log_{2} n$

- = $(8)^{\log_2 n} * T(n/n) + (n 1) cn^2$
- $= (2^3)^{\log_2 n} * T(n/n) + (n 1) cn^2$
- $= (2)^{\log_2 n^3} + (n 1) cn^2$

 $= n^3 + (n - 1) cn^2$

 $= \Theta(n^3)$

Strassen's Matrix Multiplication

- The key to Strassen's method is to perform seven recursive multiplications instead of performing eight recursive multiplications of $n/2 \times n/2$.
- The cost of eliminating one matrix multiplication will create several new additions of $n/2 \ge n/2$ matrices, but still only a constant number .

$$T(n) = \begin{cases} \Theta(1) & \text{if } n = 1 ,\\ 7T(n/2) + \Theta(n^2) & \text{if } n > 1 . \end{cases}$$

Strassen's matrix multiplication method

- 1. Divide the input matrices A and B and output matrix C into $n/2 \times n/2$ submatrices. This step takes $\Theta(1)$ time by index calculation, just as in SQUARE-MATRIX-MULTIPLY-RECURSIVE.
- Create 10 matrices S₁, S₂,..., S₁₀, each of which is n/2 × n/2 and is the sum or difference of two matrices created in step 1. We can create all 10 matrices in Θ(n²) time.
- 3. Using the submatrices created in step 1 and the 10 matrices created in step 2, recursively compute seven matrix products P_1, P_2, \ldots, P_7 . Each matrix P_i is $n/2 \times n/2$.
- 4. Compute the desired submatrices $C_{11}, C_{12}, C_{21}, C_{22}$ of the result matrix C by adding and subtracting various combinations of the P_i matrices. We can compute all four submatrices in $\Theta(n^2)$ time.

<u>Step 2</u>

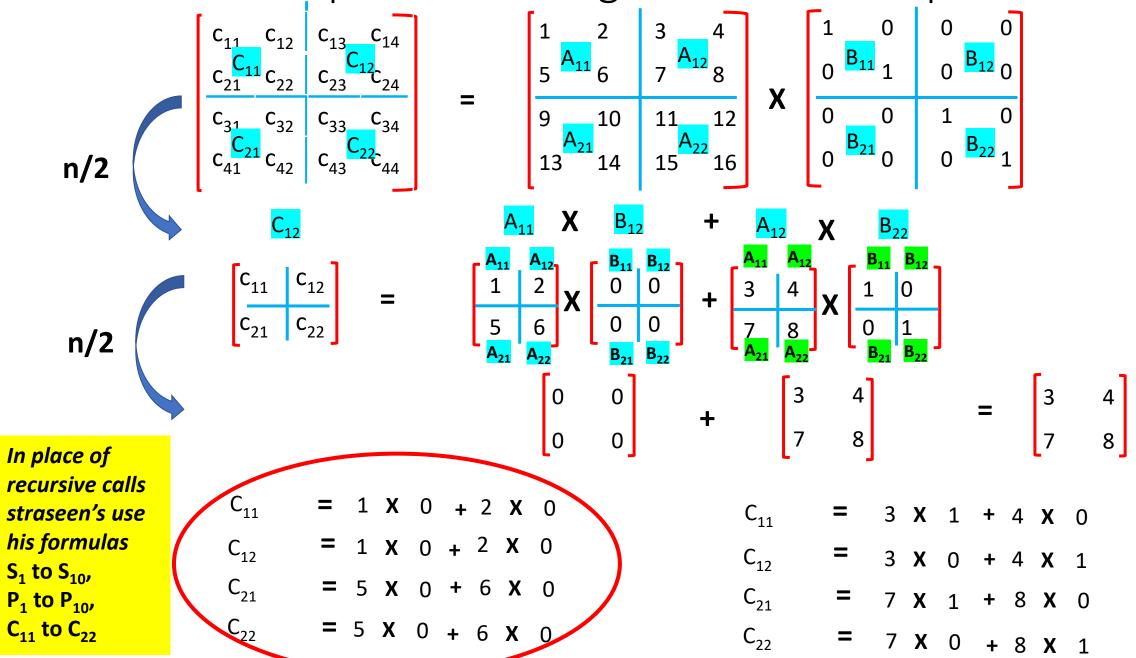
<u>Step 3</u>

S_1		$B_{12} - B_{22}$,
S_2	=	$A_{11} + A_{12}$,
S_3	=	$A_{21} + A_{22}$,
S_4	=	$B_{21} - B_{11} \; , \qquad$
S_5	=	$A_{11} + A_{22} \; , \qquad$
S_6	=	$B_{11} + B_{22}$,
S_7	=	$A_{12} - A_{22} \; , \qquad$
S_8	=	$B_{21} + B_{22}$,
S_9	=	$A_{11} - A_{21} \; , \qquad$
S_{10}	=	$B_{11} + B_{12}$.

P_1	=	$A_{11} \cdot S_1$	=	$A_{11} \cdot B_{12} - A_{11} \cdot B_{22} ,$
P_2	=	$S_2 \cdot B_{22}$	=	$A_{11} \cdot B_{22} + A_{12} \cdot B_{22} ,$
P_3	=	$S_3 \cdot B_{11}$	=	$A_{21} \cdot B_{11} + A_{22} \cdot B_{11} ,$
P_4	=	$A_{22}\cdot S_4$	=	$A_{22} \cdot B_{21} - A_{22} \cdot B_{11} ,$
P_5	=	$S_5 \cdot S_6$	=	$A_{11} \cdot B_{11} + A_{11} \cdot B_{22} + A_{22} \cdot B_{11} + A_{22} \cdot B_{22} ,$
P_6	=	$S_7 \cdot S_8$	=	$A_{12} \cdot B_{21} + A_{12} \cdot B_{22} - A_{22} \cdot B_{21} - A_{22} \cdot B_{22} ,$
P_7	=	$S_9 \cdot S_{10}$	=	$A_{11} \cdot B_{11} + A_{11} \cdot B_{12} - A_{21} \cdot B_{11} - A_{21} \cdot B_{12} \ .$

<u>Step 4</u>

 $C_{11} = P_5 + P_4 - P_2 + P_6$ $C_{12} = P_1 + P_2$ $C_{21} = P_3 + P_4$ $C_{22} = P_5 + P_1 - P_3 - P_7$



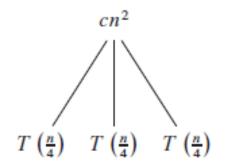
Performance Analysis of straseen's Matrix multiplication

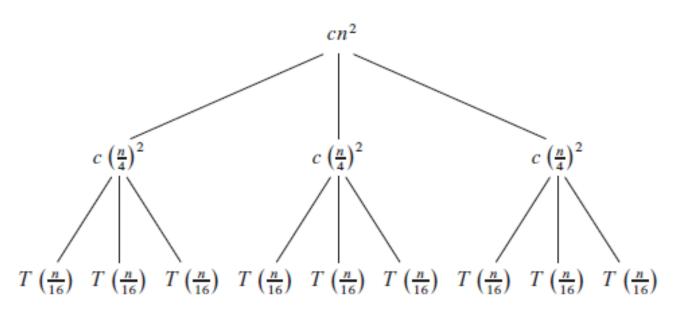
- $T(n) = 7 * T(n/2) + cn^2$
 - $= 7 * [7 * T(n/4) + cn^2/4] + cn^2$

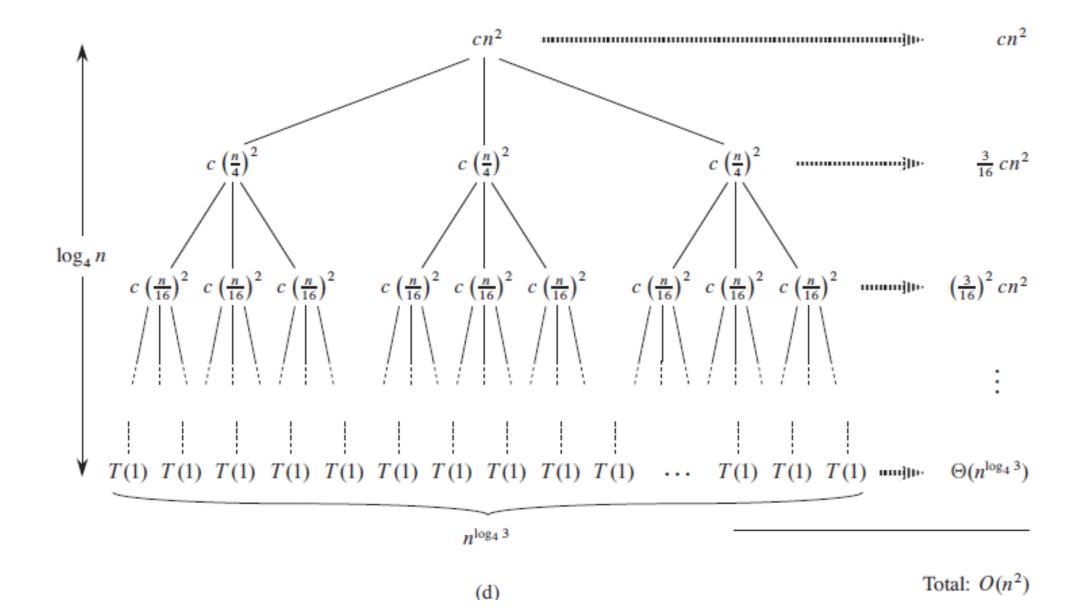
= $7^2 * [7 * T(n/8) + cn^2/16] + 7cn^2/4 + cn^2$

Solving the Recurrence Relation using recursion tree

 $T(n) = 3T(n/4) + cn^2,$







Master's Theorem

Let $a \ge 1$ and b > 1 be constants, let f(n) be a function, and let T(n) be defined on the nonnegative integers by the recurrence

T(n) = aT(n/b) + f(n) ,

where we interpret n/b to mean either $\lfloor n/b \rfloor$ or $\lceil n/b \rceil$. Then T(n) has the following asymptotic bounds:

1. If
$$f(n) = O(n^{\log_b a - \epsilon})$$
 for some constant $\epsilon > 0$, then $T(n) = \Theta(n^{\log_b a})$.

2. If
$$f(n) = \Theta(n^{\log_b a})$$
, then $T(n) = \Theta(n^{\log_b a} \lg n)$.

3. If f(n) = Ω(n^{log_b a+ϵ}) for some constant ϵ > 0, and if af(n/b) ≤ cf(n) for some constant c < 1 and all sufficiently large n, then T(n) = Θ(f(n)).