UNIT-1
1.1 Alphabet:
An alphabet is a finite, nonempty set of symbols. It is denoted by ∑.

Example:  

∑= {0, 1} is binary alphabet consisting of the symbols 0 and 1.

∑= {a, b, c ...z} is lowercase English alphabet.  

1.1.1Powers of an Alphabet
If Σ is an alphabet, we can express the set of all strings of a certain length from that alphabet by using the exponential notation. It is denoted by Σ k - the set of strings of length k.

Example: 
Σ0 = {ε}, regardless of what alphabet Σ is. ε is the only string of length 0.
If Σ = {0, 1} then,

Σ1 = {0, 1} 

Σ2 = {00, 01, 10, 11} 

Σ3 = {000, 001, 010, 011, 100, 101, 110, 111}
The set of all strings over an alphabet Σ is denoted by Σ*. Σ* = Σ0 ∪ Σ1 ∪ Σ2 ∪ . . . 
For example, {0, 1}* = {ε, 0, 1, 00, 01, 10, 11, 000, .....} 

The symbol ∗ is called Kleene star and is named after the mathematician and logician Stephen Cole Kleene.
The symbol + is called Positive closure i.e.  Σ+ = Σ1 ∪ Σ2 ∪ . . . 
	Σ∗ = Σ+ ∪ { ε }




1.2 String: 
A string (or word) is a finite sequence of symbols chosen from some alphabet. 
The letters u, v, w, x, y and z are used to denote string.

Example:

If Σ ={a, b, c} then abcb is a string formed from that alphabet.
· The length of a string w, denoted |w|, is the number of symbols composing the string.
 Example:

 The string abcb has length 4.

· The empty string denoted by ε, is the string consisting of zero symbols.

Thus |ε| =0.

1.2.1Operations on strings:
· Concatenation of strings
The concatenation of two strings is the string formed by writing the first, followed by the second, with no intervening space. Concatenation of strings is denoted by ◦.
That is, if w and x are strings, then wx is the concatenation of these two strings.  
Example:

The concatenation of dog and house is doghouse. 
Let x=0100101 and y= 1111 then x ◦ y=01001011111
· String Reversal
Reversing a string means writing the string backwards.

It is denoted by wR
Example:

Reverse of the string abcd is dcba.

If w= wR , then that string is called palindrome.

· Substring

                 A substring is a part of a string.
Example:
If  abcd is string then possible substrings are ε,a,b,c,d,ab,bc,cd,abc,bcd
are proper substrings for the given string 

A prefix of a string is any number of leading symbols of that string.

A suffix of a string is any number of trailing symbols. 

Example:

String abc has prefixes ε, a, ab, and abc; its suffixes are ε, c, bc, and abc. 

A prefix or suffix of a string, other than the string itself, is called a proper prefix or suffix.

1.3 Language:
 A (formal) language is a set of strings of symbols from some one alphabet.It is denoted by L. We denote this language by ∑*. 

· The empty set, Ø, and the set consisting of the empty string {ε} are languages.
Example:

 If ∑= {a}, then ∑* = {ε, a, aa, aaa, ...}. 

 If ∑ = {0, 1}, then ∑* = {ε, 0, 1, 00, 01, 10, 11, 000,...}.
1.4Operations on languages:
· Union

If L1 and L2 are two languages over an alphabet ∑.Then the union of L1 and L2 is denoted by L1 U L2.

Example:

L1={0,01,011} and  L2={001},then L1 U L2={0,01,011,001}

· Intersection

If L1 and L2 are two languages over an alphabet ∑.Then the intersection of L1 and L2 is denoted by L1 ∩ L2.

Example:

      L1= {0, 01,011} and L2= {01}, then L1 ∩ L2= {01}

· Complementation

L is a language over an alphabet ∑, then the complement of L denoted by L¯ ,is the language consisting of those strings that are not in L over the alphabet.
Example:

  If ∑={a,b} and L={a,b,aa} then L¯= ∑* - L={ ε,a,b,aa,bb,ab.........}-{a,b,aa}={ε,bb,ab,ba.........}

· Concatenation

Concatenation of two languages L1 and L2 is the language L1 o L2 ,each element of which is a string formed by combining one string of L1 with another string of L2.

Example:
             
L1={bc,bcc,cc}andL2={cc,ccc},thenL1oL2={bccc,bcccc,bcccccc,cccc,ccccc}

· Reversal

If L is language, then LR    is obtained by reversing the corresponding string in L. This operation is similar to the reversal of a string.

	LR   ={wR  | w  ∈ L}


Example:

    If L= {0, 011, 0111}, then LR   = {0, 110, 1110}

· Kleene Closure
The Kleene closure (or just closure) of L, denoted L*, is the set
	           ∞

L * =    U   Li
          i=0




and the positive closure of L, denoted L+ , is the set
	           ∞

L + =    U   Li
          i=1




That is, L* denotes words constructed by concatenating any number of words from L.
 L+ is the same, but the case of zero words, whose "concatenation" is defined to be ε, is excluded. Note that L+ contains ε if and only if L does. 
Example:
Let L1 = {10, 1} 

Then L * = L0 U L1 U L2.................. = {ε, 1, 10, 11, 111, 1111 ,..........}
               L + = L1 U L2 U L3...................= {1, 10, 11, 111, 1111...........}
1.5 Finite Automaton:

· A finite automaton (FA) consists of a finite set of states and a set of transitions from state to state that occur on input symbols chosen from an alphabet ∑. 
· For each input symbol there is exactly one transition out of each state (possibly back to the state itself). 
· One state, usually denoted q0 is the initial state, in which the automaton starts. Some states are designated as final or accepting states.


Formally, a finite automaton is denoted by a 5-tuple (Q, ∑, δ, qo, F), where

· Q is a finite set of states.

· ∑ is a finite input alphabet.

· δ is the transition function mapping Q x ∑  to Q i.e., δ (q,a) is a state for each 
   state q and input symbol a.
· qo ∈ Q is the initial state.
· F ⊆ Q is the set of final states. It is assumed here that there may be

· more than one final state.

Transition Diagram

· A transition diagram is a directed graph associated with an FA in which the vertices of the graph correspond to the states of the FA. 
· If there is a transition from state q to state p on input a, then there is an arc labelled a from state q to state p in the transition diagram. 

State is denoted by 

Transition is denoted by 

Initial state is denoted by 

Final state is denoted by 
Transition Table

A tabular representation in which rows correspond to states, columns correspond to inputs and entries correspond to next states.
1.7Acceptance of  String by a Finite Automaton:
The FA accepts a string x if the sequence of transitions corresponding to the symbols of x leads from the start state to an accepting state and the entire string has to be consumed, i.e., a string x is accepted by a finite automaton M = (Q, ∑, δ, qo, F) 
	if δ (q0, x) =q for some q  ∈  F. 




This is basically the acceptability of a string by the final state. 

Note: A final state is also called an accepting state.
Transition function δ  and for any two input strings x and y, 

	δ (q, xy) = δ (δ (q, x), y)




Example:
Consider the finite state machine whose transition function δ is given in the form of a transition table. Here Q = {q0, q1, q2, q3},∑={0,1}, F={q0}.Give the entire sequence of states for the input string 110101.
	Transition Table

State
	Input

	
	0
	1

	
	q2
	q1

	q1
	q3
	q0


	q2
	q0
	q3

	q3
	q1
	q2



δ (q0, 110101) = δ(q1,10101)


= δ(q0,0101)


= δ(q2,101)


= δ(q3,01)


= δ(q2,1)


=q0
q0 is final state, therefore given string is accepted by  finite automata.
1.8 Deterministic finite automaton:
Formally, a deterministic finite automaton can be represented by a 5-tuple 

M= (Q, ∑, δ, qo, F).

 where

· Q is a finite set of states.

· ∑ is a finite input alphabet.

· δ is the transition function mapping Q x ∑  to Q i.e., δ (q,a) is a state for each state q and input symbol a.
· qo ∈ Q is the initial state.
· F ⊆ Q is the set of final states. It is assumed here that there may be

more than one final state.

Steps to design a DFA

1. Understand the language for which the DFA has to be designed and write the language for the set of strings starting with minimum string that are accepted by FA.

2. Draw transition diagram for the minimum length string.

3. Obtain the possible transitions to be made for each state on each input symbol.

4. Draw the transition table.

5. Test DFA with few strings that are accepted and few strings that are rejected by the given language.

6. Represent DFA with tuples.

Examples
1. Design DFA that accepts all strings which starts with ‘1’ over the alphabet {0,1}

Step 1: Understand the language for which the DFA has to be designed and write the language for the set of strings starting with minimum string that is accepted by FA.


L = {1, 10, 11, 100, 110, 101, 111, .........................................}


Step 2: Draw transition diagram for the minimum length string.

















1

Step 3: Obtain the possible transitions to be made for each state on each input symbol.







1

          0,1






  0




  0,1



Step 4: Draw the transition table.

	State
	Input

	
	0
	1

	q 0
	q2
	q1

	q1
	q1
	q1

	q2
	q2
	q2


Step 5: Test DFA with few strings that are accepted and few strings that are rejected by the given language.

Case i) Let w=1001 ∈ L
δ(q0,1001) = δ(q1,010) 


       = δ(q1,10) = δ(q1,0) = q1

q1 is final state and the entire string has been consumed i.e., given string is accepted by DFA.

Case ii) Let w=0001 ∉ L
δ(q0,0001) = δ(q2,001) 

      
        = δ(q2,10)


     
        = δ(q2,0)

      
        = q2

q2 is not final state and the entire string has been consumed i.e., given string is rejected by DFA.


Step 6: Represent DFA with tuples.
DFA, M= (Q, ∑, δ, qo, F)

where Q = {q0, q1, q2}




∑ = { 0,1 }




δ: δ(q0,0)=q2

 

   δ(q0,1)=q1



    δ(q1,0)=q1



    δ(q1,1)=q1



    δ(q2,0)=q2
    δ(q2,1)=q2
 
q0 – initial state




F – final state = { q1}
2. Design DFA that accepts all strings which contains ‘00’ as substring over the alphabet {0,1}

Step 1: Understand the language for which the DFA has to be designed and write the language for the set of strings starting with minimum string that is accepted by FA.

L={00,100,000,001,1100,1000,0100,1001,0001,11000,11100,................}


Step 2: Draw transition diagram for the minimum length string.















0

 0

Step 3 : Obtain the possible transitions to be made for each state on each input symbol.


            1




       0, 1
        0

       0
1

    

Step 4: Draw the transition table.

	State
	Input

	
	0
	1

	q0
	q1
	q0

	q1
	q2
	q0

	q2
	q2
	q2


Step 5: Test DFA with few strings that are accepted and few strings that are rejected by the given language.

Case i) Let w = 1001 ∈ L

δ(q0,1001) = δ(q0,001) 


       
       = δ(q1,01)



       = δ(q2,1)


                  = q2


It is final state and the entire string has been consumed i.e., given string is accepted by DFA.

Case ii) Let w=1011 ∉ L

δ(q0,1011) = δ(q0,011) 


       

       = δ(q1,11)



     

       = δ(q0,1)


        

       = q0





It is not final state and the entire string has been consumed i.e., given string is rejected by DFA.


Step 6: Represent DFA with tuples.
DFA, M= (Q, ∑, δ, qo, F)

where Q = {q0, q1, q2}




∑ = { 0,1 }




δ: δ(q0,0)=q1

 

   δ(q0,1)=q0



    δ(q1,0)=q2



    δ(q1,1)=q0



    δ(q2,0)=q2
    δ(q2,1)=q2
 
q0 – initial state




F – final state = { q2 }
1.9 Nondeterministic finite automaton (NDFA/NFA):

         A nondeterministic finite automaton is a 5-tuple (Q, ∑, δ, qo, F), where
· Q is a finite nonempty set of states; 
· ∑  is a finite nonempty set of inputs; 
· δ  is the transition function mapping from Q x ∑ into 2Q which is the power set of Q, the set of all subsets of Q; 
· qo ∈ Q is the initial state; and 
· F ⊆ Q is the set of final states
Steps to design a NFA

1. Understand the language for which the NFA has to be designed and write the language for the set of strings starting with minimum string that is accepted by FA.
2. Draw transition diagram for the minimum length string.

3. Obtain the possible transitions to be made for each state on each input symbol.

4. Draw the transition table.

5. Test NFA with few strings that are accepted and few strings that are rejected by the given language.

6. Represent NFA with tuples.

Examples: 
1. Design NFA that accepts all strings which contains ‘00’ as substring over the alphabet {0,1}


Step 1:  Understand the language for which the NFA has to be designed and write the language for the set of strings starting with minimum string that is accepted by FA

L={00,100,000,001,0100,1100,1000,1001,0001,11000,11100,.............}

Step 2: Draw transition diagram for the minimum length string.





  0

     0
Step 3: Obtain the possible transitions to be made for each state on each input symbol.              0, 1            

                                           




      0, 1






      0


0

Step 4: Draw the transition table.

	State
	Input

	
	0
	1

	q0
	{q0,q1}
	q0

	q1
	q2
	-

	q2
	q2
	q2


Step 5: Test NFA with few strings that are accepted and few strings that are rejected by the given language.

Case i) Let w=0100 ∈ L

δ(q0,0100) = δ({q0,q1},100) 


       = δ (q0, 00)


       = δ ({q0, q1},0)

                = {q0, q1, q2}
q2 is final state and the entire string has been consumed i.e., given string is accepted by NFA.

Case ii) Let w=1011 ∉ L

δ(q0,1011) = δ(q0,011) 

       

       = δ({q0,q1},11)


                          = δ(q0,1)

                                    = q0


It is not final state and the entire string has been consumed i.e., given string is rejected by NFA.


Step 6: Represent NFA with tuples.
NFA, M= (Q, ∑, δ, qo, F)

where Q = {q0, q1, q2}




∑ = { 0,1 }




δ: δ(q0,0)={q0,q1}


 

   δ(q0,1) = q0



    δ(q1,0) = q2



    δ(q1,1) =  Ø



    δ(q2,0) = q2
    δ(q2,1) = q2
 
q0 – initial state




F – final state = { q2 }
2. Design NFA that accepts strings which contains either two consecutive 0’s or two consecutive 1’s.

Step 1: Understand the language for which the NFA has to be designed and write the language for the set of strings starting with minimum string that is accepted by FA.

L={00,11,100,001,110,011,111,000,0100,1011,..............}


Step 2: Draw transition diagram for the minimum length string.

[image: image1.png]



Step 3: Obtain the possible transitions to be made for each state on each   input symbol.
[image: image2.emf]
Step 4: Draw the transition table.
	State
	Input

	
	0
	1

	q0
	{q0,q3}
	{q0,q1}

	q1
	-
	q2

	
	q2
	q2

	q3
	q4
	-

	
	q4
	q4


Step 5: Test NFA with few strings that are accepted and few strings that are rejected by the given language.

Case i) Let the input, w = 01001 ∈ L
δ(q0,0) = {q0,q3}

δ(q0,01) = δ(δ(q0,0),1) = δ({q0,q3},1) = δ(q0,1) ∪ δ(q3,1) = {q0,q1}
Similarly, we compute

δ(q0,010) = {q0,q3},

δ(q0,0100) = {q0,q3,q4}
and

δ(q0,01001) = {q0,q1,q4}





       final state
After the entire string is consumed, the FA is in state q4.As q4 is the final state, the string is a accepted by FA
[image: image3.emf]
Case ii) Let w = 010 ∉ L

δ(q0,010) = δ ({q0,q3},10)


     = δ({q0,q1},0)


    = {q0,q3}
There is no path to the final state after the entire string is consumed. So the string is rejected by FA.

Step 6: Represent NFA with  tuples.
NFA, M= (Q, ∑, δ, qo, F)

where Q = {q0, q1, q2, q3,q4}




∑ = { 0,1 }




δ: δ(q0,0)={q0,q3}


 

   δ(q0,1)= {q0,q1}




    δ(q1,0)= Ø



    δ(q1,1)=q2



    δ(q2,0)=q2
    δ(q2,1)=q2
    
    δ(q3,0)=q4
                δ(q3,1)= Ø
    δ(q4,0)=q4
    δ(q4,1)=q4



q0 – initial state




F – final state = { q2,q4 }
1.10 Language recognizers:

         A language recognizer is a device that accepts valid strings produced in a given language. Finite state automata are formalized types of language recognizers.
The language accepted by Finite Automata M designated L(M) is the set {x | δ(q0,x) is in F}.

1.11 Applications of FA:

· Used in Lexical analysis phase of a compiler to recognize tokens.

· Used in text editors for string matching.
· Software for designing and  checking the behavior of digital circuits.

1.12 Limitations of FA:
· FA’s will have finite amount of memory.
· The class of languages recognized by FA s is strictly the regular set. There are certain languages which are non regular i.e. cannot be recognized by any FA.
1.13 Differences between NFA and DFA:

	S.No
	NFA
	DFA

	1
	A nondeterministic finite automaton is a 5-tuple 
M= (Q, ∑, δ, qo, F), where 
δ: Q x ∑ into 2Q.
	A deterministic finite automaton can be represented by a 5-tuple

M= (Q, ∑, δ, qo, F), where 
δ: Q x ∑ to Q.


	2
	NFA is the one in which there exists many paths for a specific input from current state to next state.
	DFA is a FA in which there is only one path for a specific input from current state to next state.

	3
	NFA is easier to construct.
	DFA is more difficult to construct.

	4
	NFA requires less space.
	DFA requires more space.

	5
	Time required for executing an input string is more.
	Time required for executing an input string is less.


1.14 NFA with ε transitions:
An   ε -NFA is a tuple (Q, Σ, δ, qo, F) 

where

· Q is a set of states,

· Σ is the alphabet, 

· δ is the transition function that maps each pair consisting of a state and a symbol in Σ ∪ { ε } to a subset of Q, 

· q0 is the initial state,

·  F ⊂ Q is the set of final (or accepting) states.

String acceptance by ε –NFA

                 [image: image4.png]






      Fig:1

Transition Table:

	Q/∑
	a
	b
	ε

	q0
	-
	-
	{q1,q2}

	q1
	q3
	-
	-

	q2
	-
	q4
	-

	
	q1
	-
	-

	
	-
	q2
	-


Example:

Check whether the string ‘bbb’ is accepted or not for the above automaton.

                          ε              b            b
            b


q0            q2            q4 
     q2            q4 

                          ε      q1
As q4 is the final state, the given string is accepted by the given ε –NFA.

ε –NFA to NFA Conversion:

Step 1: Find the ε-closure for all states in the given ε-NFA.


[image: image5.png]5(g, €) = -CLOSURE(q)




ε-closure (q) denotes the set of all states p such that there is a path from q to p labelled ε.

Step 2: Find the extended transition function for all states on all input symbols for the given ε-NFA.

	δ' (q,a)= ε-closure(δ (δ'(q, ε),a))




Step 3: Draw the transition table or diagram from the extended transition function (NFA)

Step 4: F is the set of final states of NFA, whose ε -closure contains the final state of ε -NFA.

Step 5: To check the equivalence of ε -NFA and NFA, the string accepted by ε -NFA should be accepted by NFA.

Example:

1. Convert NFA with ε-moves into an equivalent NFA without ε-moves.

          [image: image6.png]0 1 2
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Step 1: Find the ε-closure for all states in the given ε-NFA.

    ε -CLOSURE (q0) = {q0, q1, q2}

    ε -CLOSURE (q1) = {q1, q2}

    ε -CLOSURE (q2) = {q2}

Step 2: Find the extended transition function for all states on all input symbols for the given ε-NFA.

         δ' (q0,0) = ε-closure(δ (δ'(q0, ε),0))

                      = ε-closure(δ {q0, q1, q2},0)

                      = ε-closure(δ(q0, 0) U δ (q1,0) Uδ (q2,0))

                       = ε-closure(q0 U Ø U Ø)


                      = {q0, q1, q2}

         δ' (q0,1) = ε-closure(δ (δ'(q0, ε),1))

                     = ε-closure(δ {q0,q1, q2},1)

                     = ε-closure(δ (q0,1) U δ(q1,1) U δ(q2,1))

                      = ε-closure(Ø U q1 U Ø)


                     ={q1,q2}


       δ' (q0,2) = ε-closure(δ (δ'(q0, ε),2))

                   = ε-closure(δ { q0,q1, q2},2)

                   = ε-closure(δ (q0,2) U δ (q1,2) Uδ (q2,2))

                    = ε-closure(q2 U Ø)


                   ={q2}

      δ' (q1,0) = ε-closure(δ (δ'(q1, ε),0))

                  = ε-closure(δ {q1, q2},0)

                  = ε-closure(δ (q1,0) Uδ (q2,0))

                   = ε-closure(Ø)


                  ={ Ø }

      δ' (q1,1) = ε-closure(δ (δ'(q1, ε),1))

                  = ε-closure(δ {q1, q2},1)

                  = ε-closure(δ (q1,1) Uδ (q2,1))

                   = ε-closure(q1)


                  ={q1, q2 }

     δ (q1,2) = ε-closure(δ (δ'(q1, ε),2))

                = ε-closure(δ {q1, q2},2)

                = ε-closure(δ (q1,2) Uδ (q2,2))

                = ε-closure(q2)


                ={q2}

      δ (q2,0) = ε-closure(δ (δ'(q2, ε),0))

                 = ε-closure(δ (q2,2))

                 = ε-closure(Ø)

                 ={ Ø}

     δ (q2,1)  = ε-closure(δ (δ'(q2, ε),1))

                  = ε-closure(δ (q2,1))

                 = ε-closure(Ø)

                 ={ Ø }

     δ (q2,2) = ε-closure(δ (δ'(q2, ε),2))

                 = ε-closure(δ (q2,2))

                 = ε-closure(q2)

                 ={ q2}

Step 3: Draw the transition table or diagram from the extended transition function (NFA)

	State
	Inputs

	
	0
	1
	2

	q0
	{q0, q1, q2}
	{q1, q2}
	q2

	q1
	Ø
	{q1, q2}
	q2

	*q2
	Ø
	Ø
	q2


Step 4: F is the set of final states of NFA, whose ε -closure contains the final state of ε -NFA.

	State
	Inputs

	
	0
	1
	2

	
	{q0, q1, q2}
	{q1, q2}
	q2

	
	Ø
	{q1, q2}
	q2

	
	Ø
	Ø
	q2


Step 5: To check the equivalence of ε -NFA and NFA, the string accepted by ε -NFA should be accepted by NFA.

String acceptance by ε-NFA:

Let w=001

       
     0          0
           ε
   1
     ε

q0         q0          q0        q1         q1         q2
As q2 is the final state, the string is accepted by the given ε-NFA.

String acceptance by NFA:

If w=001



0             0                1

q0              q0             q0                  q1


                      0           0
     q1        1      q2
                   0          q1   0    q2


                            q2
As q1 and q2 are final states, the string is accepted by the NFA.

NFA to DFA Conversion:

Step 1: First take the starting state of NFA as the starting state of DFA.

Step 2: Apply the inputs on initial state and represent the corresponding states in the transition   table.

Step 3: For each newly generated state, apply the inputs and represent the corresponding states in the transition   table.

Step 4: Repeat step 3 until no more new states are generated.

Step 5: The states which contain any of the final states of the NFA are the final states of the equivalent DFA.

Step 6: Represent the transition diagram from the constructed table.

Step7: To check the equivalence of NFA and DFA, the string accepted by NFA should be accepted by DFA.

Step 8: Write the tuple representation for the obtained DFA.

Note:  If the NFA has n states, the resulting DFA may have up to 2n states, an exponentially larger number, which sometimes makes the construction impractical for large NFAs.
Example:

1. Construct DFA equivalent to the NFA M=({q0,q1},{0,1}, δ,q0,{q1}) 

    where   δ(q0,0) = {q0,q1}          δ(q0,1) = {q1}        δ(q1,0) = Ø          δ(q1,1) = {q0,q1}

Step 1: First take the starting state of NFA as the starting state of DFA

	Q/∑
	0
	1

	[q0]
	
	


Step 2: Apply the inputs on initial state and represent the corresponding states in the transition   table.

	Q/∑
	0
	1

	[q0]
	[q0,q1]
	[q1]


Step 3: For each newly generated state, apply the inputs and represent the corresponding states in the transition   table.

	Q/∑
	0
	1

	[q0]
	[q0,q1]
	[q1]

	[q0,q1]
	[q0,q1]
	[q0,q1]

	[q1]
	Ø
	[q0,q1]


Step 4: Stop the procedure as there are no more new states being generated.

Step 5: The states which contain any of the final states of the NFA are the final states of the equivalent DFA.

q1 is the final state in NFA. q1 is included in the state [q0,q1] and [q1]. So [q0,q1] and [q1] are the final states of the DFA.

	Q/∑
	0
	1

	[q0]
	[q0,q1]
	[q1]

	
	[q0,q1]
	[q0,q1]

	
	Ø
	[q0,q1]


Step 6: Represent the transition diagram from the constructed table.

                                   [image: image7.png]



Step 7: To check the equivalence of NFA and DFA, the string accepted by NFA  should be accepted by DFA.


Let w=1110 be the string accepted by NFA.

Acceptability by NFA:






1
q1
0
Ø




1
q1


0
q0
q0
1
q1


1
q0





1
q0


0
q1





1
q1


0
Ø

Acceptability by DFA:






      1
        1                  1               0

δ([q0],1110) = δ([q1],110)           [q0]       [q1]        [q0,q1]       [q0,q1]       [q0,q1]

                    = δ([q0,q1],10)

                    = δ([q0,q1],0)

                    = [q0,q1] ϵ F

Step 8: Write the tuple representation from the obtained DFA.


DFA M' = (Q,∑, δ,q0,F)


where Q = {[q0], [q0,q1], [q1] }



∑ = {0, 1}



δ - transition function



[q0] - initial state



F = {[q0], [q0,q1]}
Moore Machine

A Moore machine is a six tuple (Q, ∑, ∆, δ, q0, λ)

where 

·  Q is a set of states,

· Σ is the alphabet, 

· δ is the transition function that maps each pair consisting of a state and a symbol in Σ to Q  i.e. .Q X  Σ -> Q    

· q0 is the initial state,

· ∆ is output alphabet

· λ is a mapping from Q to ∆ giving the output associated with each state

Note: For a Moore machine if the input string is of length n, the output string is of length n + 1. The first output is λ (qo) for all output strings.
Mealy Machine
A Mealy machine is a six tuple (Q, ∑, ∆, δ, q0, λ)

where

· Q is a set of states,

· Σ is the alphabet, 

· δ is the transition function that maps each pair consisting of a state and a symbol in Σ to Q i.e. .Q X  Σ -> Q    

· ∆ is output alphabet

· q0 is the initial state,

· λ maps Q x ∑ to ∆  i.e., λ(q,a) gives the output associated with the transition from state q on input a
Note: In the case of a Mealy machine if the input string is of length n , the output string is also of the same length n.

Example:

· The given transition diagram is moore machine because each state is associated with output.

· In the below diagram q0 is representing 0 output, q1 is is representing 1 output and q2 is representing 2 output.

λ (q0) =0        λ (q1)=1       λ (q2)=2

[image: image8.png]



w=011 the output is 0010

q0
0
q0        1         q1           1          q0    Transitions

0

 0

  1

      0    Outputs

Example:

· The given transition diagram is mealy machine because output depends on present state and present input. 

· In the below diagram 

λ (q0,0 )= 0

λ (q1,0 )= 2

λ (q2,0 )=  0

λ (q0,1)=  1

λ (q1,1)= 0

λ (q2,1 )=   2
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w=011 the output is 010

q0
0
q0        1          q1           1          q0    Transitions



 
 0

  1

0      Outputs

Example:

1. Design Moore machine to determine the residue mod 3 for each binary string treated as a binary integer.
[image: image10.png]



Moore machine calculating residue mod 3

Moore Table

	Present State
	Next State
	Output

	
	0
	1
	

	q 0
	q0
	q1
	0

	q1
	q2
	q0
	1

	q2
	q1
	q2
	2


Tuple Representation:

Q={q0,q1,q2}       

∆={0,1,2}    ∑={0,1}
q0={q0}




λ :λ (q0)=0


δ: 
δ(q0,0) = q0


δ(q0,1) = q1
    λ (q1)=1



δ(q1,0) = q2


δ(q1,1) = q0

   λ (q2)=2



δ(q2,0) = q1


δ(q2,1 )= q2
Example:

1. Design Mealy machine to determine the residue mod 3 for each binary string treated as a binary integer.
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Mealy Table:

	Present State
	Next State
	Next State

	
	0
	Output
	1
	Output

	q 0
	q0
	0
	q1
	1

	q1
	q2
	2
	q0
	0

	q2
	q1
	1
	q2
	2


Tuple Representation:

Q={q0,q1,q2}       

∆={0,1,2}       ∑={0,1}

q0={q0}




λ: λ (q0,0)=0


δ: 
δ(q0,0) = q0


δ(q0,1) = q1
    λ (q0,1)=1



δ(q1,0) = q2


δ(q1,1) = q0

   λ (q1,0)=2



δ(q2,0) = q1


δ(q2,1 )= q2

   λ (q1,1)=0

   λ (q2,0)=1

   λ (q2,1)=2
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