
ACCESSING LINUX FILE SYSTEMS

Objectives

 Explain what a block device is, interpret the file names of storage

devices, and identify the storage device used by the file system for a

particular directory or file.

 Access file systems by attaching them to a directory in the file system

hierarchy.

 Identify file systems by attaching them to a directory in a file system

hierarchy.

 Search for files on mounted file systems using the find and locate

commands.

IDENTIFYING FILE SYSTEMS AND DEVICES

1. STORAGE MANAGEMENT CONCEPTS

Files on a Linux server are accessed through the file-system hierarchy, a single inverted

tree of directories. This file system hierarchy is assembled from file systems provided by the

storage devices available to your system. Each file system is a storage device that has been

formatted to store files.

In a sense, the Linux file-system hierarchy presents a collection of file systems on

separate storage devices as if it were one set of files on one giant storage device that you

can navigate. Much of the time, you do not need to know which storage device a particular

file is on, you just need to know the directory that file is in.

Sometimes, however, it can be important. You might need to determine how full a

storage device is and what directories in the file-system hierarchy are affected. There might

be errors in the logs from a storage device, and you need to know what file systems are at

risk. You could just want to create a hard link between two files, and you need to know if

they are on the same file system to determine if it is possible.

File Systems and Mount Points

To make the contents of a file system available in the file-system hierarchy, it must be

mounted on an empty directory. This directory is called a mount point. Once mounted, if

you use ls to list that directory, you will see the contents of the mounted file system, and

you can access and use those files normally. Many file systems are automatically mounted

as part of the boot process.

If you have only worked with Microsoft Windows drive letters, this is a fundamentally

different concept. It is somewhat similar to the NTFS mounted folders feature.

File Systems, Storage, and Blocked Devices

To Low-level access to storage devices in Linux is provided by a special type of file called a

block device. These block devices must be formatted with a file system before they can be

mounted.

Block device files are stored in the /dev directory, along with other device files. Device files

are created automatically by the operating system. In Red Hat Enterprise Linux, the first

SATA/PATA, SAS, SCSI, or USB hard drive detected is called /dev/sda, the second is

/dev/sdb, and so on. These names represent the entire hard drive.

Other types of storage will have other forms of naming.

Disk Partitions

Normally, you do not make the entire storage device into one file system. Storage devices

are typically divided up into smaller chunks called partitions.

Partitions allow you to compartmentalize a disk: the various partitions can be formatted

with different file systems or used for different purposes. For example, one partition can

contain user home directories while another can contain system data and logs. If a user fills

up the home directory partition with data, the system partition may still have space

available.

Partitions are block devices in their own right. On SATA-attached storage, the first partition

on the first disk is /dev/sda1. The third partition on the second disk is /dev/sdb3, and so on.

Paravirtualized storage devices have a similar naming system.

An NVMe-attached SSD device names its partitions differently. In that case, the first

partition on the first disk is /dev/nvme0p1. The third partition on the second disk is

/dev/nvme1p3, and so on. SD or MMC cards have a similar naming system.

A long listing of the /dev/sda1 device file on host reveals its special file type as b, which

stands for block device:

[student@localhost ~] ls -l /dev/sda1

brw-rw----. 1 root disk 8, 1 Dec 26 10:37 /dev/sda1

Logical Volumes

Another way of organizing disks and partitions is with logical volume management (LVM).

With LVM, one or more block devices can be aggregated into a storage pool called a volume

group. Disk space in the volume group is then parceled out to one or more logical volumes,

which are the functional equivalent of a partition residing on a physical disk.

The LVM system assigns names to volume groups and logical volumes upon creation. LVM

creates a directory in /dev that matches the group name and then creates a symbolic link

within that new directory with the same name as the logical volume. That logical volume file

is then available to be mounted. For example, if a volume group is called myvg and the

logical volume within it is called mylv, then the full path name to the logical volume device

file is /dev/myvg/mylv.

2. EXAMINING FILE SYSTEMS

To get an overview of local and remote file system devices and the amount of free space

available, run the df command. When the df command is run without arguments, it reports

total disk space, used disk space, free disk space, and the percentage of the total disk space

used on all mounted regular file systems. It reports on both local and remote file systems.

The following example displays the file systems and mount points on host.

[user@host ~]$ df

Filesystem 1K-blocks Used Available Use% Mounted on

devtmpfs 912584 0 912584 0% /dev

tmpfs 936516 0 936516 0% /dev/shm

tmpfs 936516 16812 919704 2% /run

tmpfs 936516 0 936516 0% /sys/fs/cgroup

/dev/vda3 8377344 1411332 6966012 17% /

/dev/vda1 1038336 169896 868440 17% /boot

tmpfs 187300 0 187300 0% /run/user/1000

The partitioning on the host system shows two physical file systems, which are mounted on

/ and /boot. This is common for virtual machines. The tmpfs and devtmpfs devices are file

systems in system memory. All files written into tmpfs or devtmpfs disappear after system

reboot.

To improve readability of the output sizes, there are two different human-readable options:

-h or -H. The difference between these two options is that -h reports in KiB (210), MiB (220

), or GiB (230), while the -H option reports in SI units: KB (103), MB (106), or GB (109).

Hard drive manufacturers usually use SI units when advertising their products.

Show a report on the file systems on the host system with all units converted to human-

readable format:

[user@host ~]$ df -h

Filesystem Size Used Avail Use% Mounted on

devtmpfs 892M 0 892M 0% /dev

tmpfs 915M 0 915M 0% /dev/shm

tmpfs 915M 17M 899M 2% /run

tmpfs 915M 0 915M 0% /sys/fs/cgroup

/dev/vda 3 8.0G 1.4G 6.7G 17% /

/dev/vda1 1014M 166M 849M 17% /boot

tmpfs 183M 0 183M 0% /run/user/1000

For more detailed information about space used by a certain directory tree, use the du

command. The du command has -h and -H options to convert the output to human-

readable format. The du command shows the size of all files in the current directory tree

recursively.

Show a disk usage report for the /usr/share directory on host:

[root@host ~]# du /usr/share

...output omitted...

176 /usr/share/smartmontools

184 /usr/share/nano

8 /usr/share/cmake/bash-completion

8 /usr/share/cmake

356676 /usr/share

Show a disk usage report in human-readable format for the /usr/share directory on host:

[root@host ~]# du -h /var/log

...output omitted...

176K /usr/share/smartmontools

184K /usr/share/nano

8.0K /usr/share/cmake/bash-completion

8.0K /usr/share/cmake

369M /usr/share

MOUNTING AND UNMOUNTING FILE SYSTEMS

1. MOUNTING FILE SYSTEMS MANUALLY

A file system residing on a removable storage device needs to be mounted in order to

access it. The mount command allows the root user to manually mount a file system. The

first argument of the mount command specifies the file system to mount. The second

argument specifies the directory to use as the mount point in the file-system hierarchy.

There are two common ways to specify the file system on a disk partition to the mount

command:

• With the name of the device file in /dev containing the file system.

• With the UUID written to the file system, a universally-unique identifier.

Mounting a device is relatively simple. You need to identify the device you want to mount,

make sure the mount point exists, and mount the device on the mount point.

Identifying the Block Device

A hot-pluggable storage device, whether a hard disk drive (HDD) or solid-state device (SSD)

in a server caddy, or a USB storage device, might be plugged into a different port each time

they are attached to a system.

Use the lsblk command to list the details of a specified block device or all the available

devices.

[root@host ~]# lsblk

NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT

vda 253:0 0 12G 0 disk

├─vda1 253:1 0 1G 0 part /boot

├─vda2 253:2 0 1G 0 part [SWAP]

└─vda3 253:3 0 11G 0 part /

vdb 253:16 0 64G 0 disk

└─vdb1 253:17 0 64G 0 part

If you know that you just added a 64 GB storage device with one partition, then you can

guess from the preceding output that /dev/vdb1 is the partition that you want to mount.

Mounting by Block Device Name

The following example mounts the file system in the /dev/vdb1 partition on the directory

/mnt/data.

[root@host ~]# mount /dev/vdb1 /mnt/data

To mount a file system, the destination directory must already exist. The /mnt directory

exists by default and is intended for use as a temporary mount point.

You can use /mnt directory, or better yet create a subdirectory of /mnt to use as a

temporary mount point, unless you have a good reason to mount it in a specific location in

the file-system hierarchy.

This approach works fine in the short run. However, the order in which the operating system

detects disks can change if devices are added to or removed from the system. This will

change the device name associated with that storage device. A better approach would be to

mount by some characteristic built into the file system.

Mounting by File-system UUID

One stable identifier that is associated with a file system is its UUID, a very long hexadecimal

number that acts as a universally-unique identifier. This UUID is part of the file system and

remains the same as long as the file system is not recreated.

The lsblk -fp command lists the full path of the device, along with the UUIDs and mount

points, as well as the type of file system in the partition. If the file system is not mounted,

the mount point will be blank.

[root@host ~]# lsblk –fp

NAME FSTYPE LABEL UUID MOUNTPOINT

/dev/vda

├─/dev/vda1 xfs 23ea8803-a396-494a-8e95-1538a53b821c /boot

├─/dev/vda2 swap cdf61ded-534c-4bd6-b458-cab18b1a72ea [SWAP]

└─/dev/vda3 xfs 44330f15-2f9d-4745-ae2e-20844f22762d /

/dev/vdb

└─/dev/vdb1 xfs 46f543fd-78c9-4526-a857-244811be2d88

Mount the file system by the UUID of the file system.

[root@host ~]# mount UUID="46f543fd-78c9-4526-a857-244811be2d88" /mnt/data

2. AUTOMATIC MOUNTING OF REMOVABLE STORAGE

If you are logged in and using the graphical desktop environment, it will automatically

mount any removable storage media when it is inserted.

The removable storage device is mounted at /run/media/USERNAME/LABEL where

USERNAME is the name of the user logged into the graphical environment and LABEL is an

identifier, often the name given to the file system when it was created if one is available.

Before removing the device, you should unmount it manually.

3. UNMOUNTING FILE SYSTEMS

The shutdown and reboot procedures unmount all file systems automatically. As part of

this process, any file system data cached in memory is flushed to the storage device thus

ensuring that the file system suffers no data corruption.

To unmount a file system, the umount command expects the mount point as an argument.

[root@host ~]# umount /mnt/data

Unmounting is not possible if the mounted file system is in use. For the umount command

to succeed, all processes needs to stop accessing data under the mount point.

In the example below, the umount fails because the file system is in use (the shell is using

/mnt/data as its current working directory), generating an error message.

[root@host ~]# cd /mnt/data

[root@host data]# umount /mnt/data

umount: /mnt/data: target is busy.

The lsof command lists all open files and the process accessing them in the provided

directory. It is useful to identify which processes currently prevent the file system from

successful unmounting.

[root@host data]# lsof /mnt/data

COMMAND PID USER FD TYPE DEVICE SIZE/OFF NODE NAME

bash 1593 root cwd DIR 253,17 6 128 /mnt/data

lsof 2532 root cwd DIR 253,17 19 128 /mnt/data

lsof 2533 root cwd DIR 253,17 19 128 /mnt/data

Once the processes are identified, an action can be taken, such as waiting for the process to

complete or sending a SIGTERM or SIGKILL signal to the process. In this case, it is sufficient

to change the current working directory to a directory outside the mount point.

[root@host data]# cd

[root@host ~]# umount /mnt/data

Tasks: Mounting and Unmounting File Systems

1. Use the ssh command to log in to localhost as the student user.

[student@localhost ~]$ ssh student@servera

[student@servera ~]$

2. Mount the /dev/sda2 partition by UUID at the newly created mount point

/mnt/newspace.

a. Use the su - command to switch to root, as the root user can only manually

mount a device.

[student@localhost ~]$ su -

 [root@servera ~]#

b. Create the /mnt/newspace directory.

[root@servera ~]# mkdir /mnt/newspace

c. Use the lsblk command with the -fp option to discover the UUID of the

device, /dev/sda2.

[root@localhost ~]# lsblk -fp /dev/sda2

NAME FSTYPE LABEL UUID MOUNTPOINT

/dev/sda2

└─/dev/sda2 xfs a04c511a-b805-4ec2-981f-42d190fc9a65

d. Mount the file system by using UUID on the /mnt/newspace directory.

Replace the UUID with that of the /dev/sda2 disk from the previous

command output.

[root@localhost ~]# mount UUID="a04c511a-b805-4ec2-981f-42d190fc9a65"

/mnt/newspace

e. Verify that the /dev/sda2 device is mounted on the /mnt/newspace

directory.

[root@servera ~]# lsblk -fp /dev/sda2

NAME FSTYPE LABEL UUID MOUNTPOINT

/dev/sda2

└─/dev/sda2 xfs a04c511a-b805-4ec2-981f-42d190fc9a65 /mnt/newspace

3. Change to the /mnt/newspace directory and create a new directory,

/mnt/newspace/newdir, with an empty file, /mnt/newspace/newdir/newfile.

a. Change to the /mnt/newspace directory.

[root@localhost ~]# cd /mnt/newspace

b. Create a new directory, /mnt/newspace/newdir.

[root@localhost newspace]# mkdir newdir

c. Create a new empty file, /mnt/newspace/newdir/newfile.

[root@localhost newspace]# touch newdir/newfile

4. Unmount the file system mounted on the /mnt/newspace directory.

a. Use the umount command to unmount /mnt/newspace while the current

directory on the shell is still /mnt/newspace. The umount command fails to

unmount the device.

[root@localhost newspace]# umount /mnt/newspace

umount: /mnt/newspace: target is busy.

b. Change the current directory on the shell to /root.

[root@servera newspace]# cd

[root@servera ~]#

c. Now, successfully unmount /mnt/newspace.

5. [root@localhost ~]# umount /mnt/newspace

Exit from a.

[root@ localhost ~]# exit

logout

[student@ localhost ~]$ exit

logout

Connection to localhost closed.

LOCATING FILES ON THE SYSTEM

1. SEARCHING FOR FILES

A system administrator needs tools to search for files matching certain criteria on the file

system.

 The locate command searches a pregenerated index for file names or file paths and

returns the results instantly.

 The find command searches for files in real time by crawling through the file-system

hierarchy.

2. LOCATING FILES BY NAME

The locate command finds files based on the name or path to the file. It is fast because it

looks up this information from the mlocate database. However, this database is not

updated in real time, and it must be frequently updated for results to be accurate. This also

means that locate will not find files that have been created since the last update of the

database.

The locate database is automatically updated every day. However, at any time the root

user can issue the updatedb command to force an immediate update.

[root@host ~]# updated

The locate command restricts results for unprivileged users. In order to see the resulting

file name, the user must have search permission on the directory in which the file resides.

Search for files with passwd in the name or path in directory trees readable by user on host.

[user@host ~]$ locate passwd

/etc/passwd

/etc/passwd-

/etc/pam.d/passwd

/etc/security/opasswd

/usr/bin/gpasswd

/usr/bin/grub2-mkpasswd-pbkdf2

/usr/bin/lppasswd

/usr/bin/passwd

...output omitted...

Results are returned even when the file name or path is only a partial match to the search

query.

[root@host ~]# locate image

/etc/selinux/targeted/contexts/virtual_image_context

/usr/bin/grub2-mkimage

/usr/lib/sysimage

/usr/lib/dracut/dracut.conf.d/02-generic-image.conf

/usr/lib/firewalld/services/ovirt-imageio.xml

/usr/lib/grub/i386-pc/lnxboot.image

...output omitted...

The -i option performs a case-insensitive search. With this option, all possible combinations

of upper and lowercase letters match the search.

[user@host ~]$ locate -i messages

...output omitted...

/usr/share/vim/vim80/lang/zh_TW/LC_MESSAGES

/usr/share/vim/vim80/lang/zh_TW/LC_MESSAGES/vim.mo

/usr/share/vim/vim80/lang/zh_TW.UTF-8/LC_MESSAGES

/usr/share/vim/vim80/lang/zh_TW.UTF-8/LC_MESSAGES/vim.mo

/usr/share/vim/vim80/syntax/messages.vim

/usr/share/vim/vim80/syntax/msmessages.vim

/var/log/messages

The -n option limits the number of returned search results by the locate command. The

following example limits the search results returned by locate to the first five matches:

[user@host ~]$ locate -n 5 snow.png

/usr/share/icons/HighContrast/16x16/status/weather-snow.png

/usr/share/icons/HighContrast/22x22/status/weather-snow.png

/usr/share/icons/HighContrast/24x24/status/weather-snow.png

/usr/share/icons/HighContrast/256x256/status/weather-snow.png

/usr/share/icons/HighContrast/32x32/status/weather-snow.png

3. SEARCHING FOR FILES IN REAL TIME

The find command locates files by performing a real-time search in the file-system

hierarchy. It is slower than locate, but more accurate. It can also search for files based on

criteria other than the file name, such as the permissions of the file, type of file, its size, or

its modification time.

The find command looks at files in the file system using the user account that executed the

search. The user invoking the find command must have read and execute permission on a

directory to examine its contents.

The first argument to the find command is the directory to search. If the directory

argument is omitted, find starts the search in the current directory and looks for matches in

any subdirectory.

To search for files by file name, use the -name FILENAME option. With this option, find

returns the path to files matching FILENAME exactly. For example, to search for files named

sshd_config starting from the / directory, run the following command:

[root@host ~]# find / -name sshd_config

/etc/ssh/sshd_config

Wildcards are available to search for a file name and return all results that are a partial

match. When using wildcards, it is important to quote the file name to look for to prevent

the terminal from interpreting the wildcard.

In the following example, search for files starting in the / directory that end in .txt:

[root@host ~]# find / -name '*.txt'

/etc/pki/nssdb/pkcs11.txt

/etc/brltty/brl-lt-all.txt

/etc/brltty/brl-mb-all.txt

/etc/brltty/brl-md-all.txt

/etc/brltty/brl-mn-all.txt

...output omitted...

To search for files in the /etc/ directory that contain the word, pass, anywhere in their

names on host, run the following command:

[root@host ~]# find /etc -name '*pass*'

/etc/security/opasswd

/etc/pam.d/passwd

/etc/pam.d/password-auth

/etc/passwd-

/etc/passwd

/etc/authselect/password-auth

To perform a case-insensitive search for a given file name, use the -iname option, followed

by the file name to search. To search files with case-insensitive text, messages, in their

names in the / directory on host, run the following command:

[root@host ~]# find / -iname '*messages*'

...output omitted...

/usr/share/vim/vim80/lang/zh_CN.UTF-8/LC_MESSAGES

/usr/share/vim/vim80/lang/zh_CN.cp936/LC_MESSAGES

/usr/share/vim/vim80/lang/zh_TW/LC_MESSAGES

/usr/share/vim/vim80/lang/zh_TW.UTF-8/LC_MESSAGES

/usr/share/vim/vim80/syntax/messages.vim

/usr/share/vim/vim80/syntax/msmessages.vim

Searching Files Based on Ownership or Permission

The find command can search for files based on their ownership or permissions. Useful

options when searching by owner are -user and -group, which search by name, and -uid

and -gid, which search by ID.

Search for files owned by user in the /home/user directory on host.

[user@host ~]$ find -user user

.

./.bash_logout

./.bash_profile

./.bashrc

./.bash_history

Search for files owned by the group user in the /home/user directory on host.

[user@host ~]$ find -group user

.

./.bash_logout

./.bash_profile

./.bashrc

./.bash_history

Search for files owned by user ID 1000 in the /home/user directory on host.

[user@host ~]$ find -uid 1000

.

./.bash_logout

./.bash_profile

./.bashrc./.bash_history

Search for files owned by group ID 1000 in the /home/user directory on host.

[user@host ~]$ find -gid 1000.

./.bash_logout

./.bash_profile

./.bashrc

./.bash_history

The -user, and -group options can be used together to search files where file owner and

group owner are different. The example below list files that are both owned by user root

and affiliated with group mail.

[root@host ~]# find / -user root -group mail

/var/spool/mail

...output omitted...

The -perm option is used to look for files with a particular set of permissions. Permissions

can be described as octal values, with some combination of 4, 2, and 1 for read, write, and

execute. Permissions can be preceded by a / or - sign.

A numeric permission proceeded by / matches files that have at least one bit of user,

group, or other for that permission set. A file with permissions r--r--r-- does not match

/222, but one with rw-r--r-- does. A - sign before a permission means that all three

instances of that bit must be on, so neither of the previous examples would match, but

something like rw-rw-rw-> would.

To use a more complex example, the following command matches any file for which the

user has read, write, and execute permissions, members of the group have read and write

permissions, and others have read-only access:

[root@host ~]# find /home -perm 764

To match files for which the user has at least write and execute permissions, and the group

has atleast write permissions, and others have at least read access:

[root@host ~]# find /home -perm -324

To match files for which the user has read permissions, or the group has at least read

permissions, or others have at least write access:

[root@host ~]# find /home -perm /442

When used with / or -, a value of 0 works like a wildcard, since it means a permission of at

least nothing.

To match any file in the /home/user directory for which others have at least read access on

host,

run:

[user@host ~]$ find -perm -004

Find all files in the /home/user directory where other has write permissions on host.

[user@host ~]$ find -perm -002

Searching Files Based on Size

The find command can look up files that match a size specified with the -size option,

followed by a numerical value and the unit. Use the following list as the units with the -size

option:

 k, for kilobyte

 M, for megabyte

 G, for gigabyte

The example below shows how to search for files with a size of 10 megabytes, rounded up.

[user@host ~]$ find -size 10M

To search the files with a size more than 10 gigabytes.

[user@host ~]$ find -size +10G

To list all files with a size less than 10 kilobytes.

[user@host ~]$ find -size -10k

Searching Files Based on Modification Time

The -mmin option, followed by the time in minutes, searches for all files that had their

content changed at n minutes ago in the past. The file's timestamp is always rounded down.

It also supports fractional values when used with ranges (+n and -n).

To find all files that had their file content changed 120 minutes ago on host, run:

[root@host ~]# find / -mmin 120

The + modifier in front of the amount of minutes looks for all files in the / that have been

modified more than n minutes ago. In this example, files that were modified more than 200

minutes ago are listed.

[root@host ~]# find / -mmin +200

The - modifier changes the search to look for all files in the / directory which have been

changed less than n minutes ago. In this example, files that were modified less than 150

minutes ago are listed.

[root@host ~]# find / -mmin -150

Searching Files Based on File Type

The -type option in the find command limits the search scope to a given file type. Use the

following list to pass the required flags to limit the scope of search:

• f, for regular file

• d, for directory

• l, for soft link

• b, for block device

Search for all directories in the /etc directory on host.

[root@host ~]# find /etc -type d

/etc

/etc/tmpfiles.d

/etc/systemd

/etc/systemd/system

/etc/systemd/system/getty.target.wants

...output omitted...

Search for all soft links on host.

[root@host ~]# find / -type l

Generate a list of all block devices in the /dev directory on host:

[root@host ~]# find /dev -type b

/dev/vda1

/dev/vda

The -links option followed by a number looks for all files that have a certain hard link count.

The number can be preceded by a + modifier to look for files with a count higher than the

given hard link count. If the number is preceded with a - modifier, the search is limited to all

files with a hard link count that is less than the given number.

Search for all regular files with more than one hard link on host:

[root@host ~]# find / -type f -links +1

Tasks: Locating Files on the System

1. Open an SSH session to localhost as student

 [pllab@localhost ~]$ ssh student@localhost

[student@localhost ~]$

2. Use the locate command to search files on localhost.

a. Even though the locate database is updated automatically every day, make

sure that the database is up-to-date by manually starting an update on

localhost. Use the sudo updatedb command to update the database used by

the locate command.

[student@localhost ~]$ sudo updatedb

 [student@localhost ~]$

b. Locate the logrotate.conf configuration file.

[student@localhost ~]$ locate logrotate.conf

/etc/logrotate.conf

/usr/share/man/man5/logrotate.conf.5.gz

c. Locate the networkmanager.conf configuration file, ignoring case.

[student@localhost ~]$ locate -i networkmanager.conf

/etc/NetworkManager/NetworkManager.conf

/etc/dbus-1/system.d/org.freedesktop.NetworkManager.conf

/usr/share/man/man5/NetworkManager.conf.5.gz

3. Use the find command to perform real-time searches on localhost according to the

following requirements:

• Search all files in the /var/lib directory that are owned by the chrony user.

• List all files in the /var directory that are owned by root and the group owner is

mail.

• List all files in the /usr/bin directory that has a file size greater than 50 KB.

• Search all files in the /home/student directory that have not been changed in the

last 120 minutes.

• List all the block device files in the /dev directory.

a. Use the find command to search all files in the /var/lib directory those are owned

by the chrony user. Use the sudo command as the files inside the /var/lib

directory are owned by root.

[student@localhost ~]$ sudo find /var/lib -user chrony

[sudo] password for student: student

/var/lib/chrony

/var/lib/chrony/drift

b. List all files in the /var directory that are owned by root and are affiliated with the

mail group.

[student@localhost ~]$ sudo find /var -user root -group mail

/var/spool/mail

c. List all files in the /usr/bin directory with a file size greater than 50 KB.

[student@localhost ~]$ find /usr/bin -size +50k

/usr/bin/iconv

/usr/bin/locale

/usr/bin/localedef

/usr/bin/cmp

...output omitted...

d. Find all files in the /home/student directory that have not been changed in the

last 120 minutes.

[student@localhost ~]$ find /home/student -mmin +120

/home/student/.bash_logout

/home/student/.bash_profile

/home/student/.bashrc

...output omitted...

e. List all block device files in the /dev directory.

[student@localhost ~]$ find /dev -type b

/dev/vdb

/dev/vda3

/dev/vda2

/dev/vda1

/dev/vda

