
Creating, Viewing and Editing Text Files from the command output or

in a text editor.

Objectives:

1. Save command output or errors to a file with shell redirection,

and process command output through multiple command-line

programs with pipes.

2. Create and edit text files using the vim editor.

3. Use shell variables to help run commands, and edit Bash startup

scripts to set shell and environment variables to modify the

behavior of the shell and programs run from the shell.

REDIRECTING OUTPUT TO A FILE OR PROGRAM

1. STANDARD INPUT, STANDARD OUTPUT AND STANDARD ERROR

A running program, or process, needs to read input from somewhere and write output to

somewhere. A command run from the shell prompt normally reads its input from the keyboard

and sends its output to its terminal window.

A process uses numbered channels called file descriptors to get input and send output.

All processes start with at least three file descriptors. Standard input (channel 0) reads input

from the keyboard. Standard output (channel 1) sends normal output to the terminal. Standard

error (channel 2) sends error messages to the terminal. If a program opens separate

connections to other files, it may use higher-numbered file descriptors.

Process I/O Channels (File Descriptors)

Channels (File Descriptors)

NUMBER CHANNEL
NAME

DESCRIPTION DEFAULT
CONNECTION

USAGE

0 stdin Standard Input Keyboard Read only

1 stdout Standard

Output

Terminal Write only

2 stderr Standard Error Terminal Write only

3+ Filename Other Files None Read and/or write

2. REDIRECTING OUTPUT TO A FILE

I/O redirection changes how the process gets its input and output. Instead of getting

input from the keyboard, or sending output and errors to the terminal, the process reads from

or writes to files.

Redirection lets you save messages to a file that are normally sent to the terminal

window. Alternatively, you can use redirection to discard output or errors, so they are not

displayed on the terminal or saved.

Redirecting stdout suppresses process output from appearing on the terminal. As seen

in

the following table, redirecting only stdout does not suppress stderr error messages from

displaying on the terminal. If the file does not exist, it will be created. If the file does exist and

the redirection is not one that appends to the file, the file's contents will be overwritten.

If you want to discard messages, the special file /dev/null quietly discards channel

output redirected to it and is always an empty file.

Output Redirection Operators

Examples for Output Redirection

1) $date > file1

Save a time stamp in file1

2) $tail –n 10 file1 > file2

Copy the last 10 lines from file1 to file2

3) $cat file1 file2 file3 file4 > file5

Concatenate four files into one

4) $echo “new line of information” >> file1

Append output to an existing file

5) $find /etc –name passwd 2> file4

Redirects errors to a file while viewing normal command output on the terminal

6) $find /etc –name passwd > /tmp/output 2> /tmp/errors

Save process output and error messages to separate files

7) $find /etc –name passwd &> /tmp/save-both

Store output and generated errors to an existing file

8) $find /etc –name passwd >> /tmp/save-both 2>&1

Append output and generated errors to an existing file

3. CONSTRUCTING PIPELINES

 A pipeline is a sequence of one or more commands separated by the pipe character (). A

pipe connects the standard output of the first command to the standard input of the next

command.

Process I/O Mapping

 Pipelines allow output of a process to be manipulated and formatted by other processes

before it is output to the terminal. One useful mental image is to imagine that data is “flowing”

through the pipeline from one process to another, being altered slightly by each command in

the pipeline through which it flows.

Pipeline Examples

1) $ls -l /usr/bin | more -10

The output of ls command to more command to display 10 lines on the terminal

2) $ls | wc -10

The output of the ls command is piped to wc –l , which counts the number of lines received

from ls and prints that to the terminal

3) $ls -t | head -n 10 > /tmp/ten-last-changed –files

In this pipeline, head will output the first 10 lines of output from ls -t, with the final result

redirected to a file.

Pipelines, Redirection, and the tee Command

 When redirection is combined with a pipeline, the shell sets up the entire pipeline first,

then it redirects input/output. If output redirection is used in the middle of a pipeline, the

output will go to the file and not to the next command in the pipeline.

 In this example, the output of the ls command goes to the file, and less displays nothings

on the terminal

 $ls > /tmp/saved-output | less

 The tee command overcomes this limitation. In a pipeline, tee copies its standard input to

its standard output and also redirects its standard output to the files named as arguments to

the command.

Process I/O Mapping with tee

Pipeline Examples Using with the tee Command

 This example redirects the output of the ls command to the file and passes it to less to be

displayed on the terminal one scree at a time.

$ls -l | tee /tmp/saved-output | less

 If tee is used at the end of a pipeline, then the final output of a command can be saved and

output to the terminal at the same time.

$ls -t | head -n 10 | tee /tmp/ten-last-changed-files

EDITING TEXT FILES FROM THE SHELL PROMPT

1. EDITING FILES WITH VIM

A key design principle of Linux is that information and configuration settings

are commonly stored in text-based files. These files can be structured in various

ways, as lists of settings, in INI-like formats, as structured XML or YAML, and so

on. However, the advantage of text files is that they can be viewed and edited

using any simple text editor.

Vim is an improved version of the vi editor distributed with Linux and UNIX

systems. Vim is highly configurable and efficient for practiced users, including

such features as split screen editing, color formatting, and highlighting for editing

text.

Why Learn Vim?
You should know how to use at least one text editor that can be used from

a text-only shell prompt. If you do, you can edit text-based configuration files

from a terminal window, or from remote logins through ssh or the Web Console.

Then you do not need access to a graphical desktop in order to edit files on a

server, and in fact that server might not need to run a graphical desktop

environment at all.

But then, why learn Vim instead of other possible options? The key reason

is that Vim is almost always installed on a server, if any text editor is present. This

is because vi was specified by the POSIX standard that Linux and many other

UNIX-like operating systems comply with in large part.

In addition, Vim is often used as the vi implementation on other common

operating systems or distributions. For example, macOS currently includes a

lightweight installation of Vim by default. So Vim skills learned for Linux might

also help you get things done elsewhere.

Starting Vim
Vim may be installed in Red Hat Enterprise Linux in two different ways. This

can affect the features and Vim commands available to you.

Your server might only have the vim-minimal package installed. This is a

very lightweight installation that includes only the core feature set and the basic

vi command. In this case, you can open a file for editing with vi filename, and all

the core features discussed in this section will be available to you.

Alternatively, your server might have the vim-enhanced package installed.

This provides a much more comprehensive set of features, an on-line help

system, and a tutorial program. In order to start Vim in this enhanced mode, you

use the vim command.

[user@localhost ~] vim filename

Vim Operating Modes
An unusual characteristic of Vim is that it has several modes of operation, including

command mode, extended command mode, edit mode, and visual mode. Depending on the

mode, you may be issuing commands, editing text, or working with blocks of text. As a new Vim

user, you should always be aware of your current mode as keystrokes have different effects in

different modes.

Moving between Vim modes

When you first open Vim, it starts in command mode, which is used for navigation, cut

and paste, and other text manipulation. Enter each of the other modes with single character

keystrokes to access specific editing functionality:

 An i keystroke enters insert mode, where all text typed becomes file content. Pressing

Esc returns to command mode.

 A v keystroke enters visual mode, where multiple characters may be selected for text

manipulation. Use Shift+V for multiline and Ctrl+V for block selection. The same

keystroke used to enter visual mode (v, Shift+V or Ctrl+V) is used to exit.

 The : keystroke begins extended command mode for tasks such as writing the file (to

save it), and quitting the Vim editor.

The Minimum, Basic Vim Workflow
The i key puts Vim into insert mode. All text entered after this is treated as file contents

until you exit insert mode. The Esc key exits insert mode and returns Vim to command mode.

The u key will undo the most recent edit. Press the x key to delete a single character. The :w

command writes (saves) the file and remains in command mode for more editing. The :wq

command writes (saves) the file and quits Vim. The :q! command quits Vim, discarding all file

changes since the last write. The Vim user must learn these commands to accomplish any

editing task.

Rearranging Existing Text
In Vim, copy and paste is known as yank and put, using command characters Y and P.

Begin by positioning the cursor on the first character to be selected, and then enter visual

mode. Use the arrow keys to expand the visual selection. When ready, press y to yank the

selection into memory. Position the cursor at the new location, and then press p to put the

selection at the cursor.

Visual Mode in Vim
Visual mode is a great way to highlight and manipulate text. There are three keystrokes:

 Character mode: v

 Line mode: Shift+V

 Block mode: Ctrl+V

Character mode highlights sentences in a block of text. The word VISUAL will appear at the

bottom of the screen. Press v to enter visual character mode. Shift+V enters line mode. VISUAL

LINE will appear at the bottom of the screen.

Visual block mode is perfect for manipulating data files. From the cursor, press the Ctrl+V to

enter visual block. VISUAL BLOCK will appear at the bottom of the screen. Use the arrow keys

to highlight the section to change.

Practice Tasks

1. Open vimtutor

2. In the vimtutor window, perform Lesson 1.1

3. In the vimtutor window, perform Lesson 1.2

4. In the vimtutor window, perform Lesson 1.3

Vim has fast, efficient keystrokes to delete an exact amount of words, lines, sentences, and

paragraphs. However, any editing job can be accomplished using x for single character

deletion.

5. In the vimtutor window, perform Lesson 1.4

For most editing tasks, the first key pressed is i

6. In the vimtutor window, perform Lesson 1.5

In the lecture, only the i (insert) command was taught as the keystroke to enter edit mode.

This vimtutor lesson demonstrates other available keystrokes to change the cursor placement when

insert mode is entered. In insert mode, all typed text is file content.

7. In the vimtutor window, perform Lesson 1.6

Type :wq to save the file and quit the editor.

