

Managing Files from the Command Line: Copy, move, create, delete

and organize files while working from the Bash shell

Objectives:

1. Describe how Linux organizes files, and the purposes of various

directories in the filesystem hierarchy.

2. Specify the location of files relative to the current working

directory and by absolute location, determine and change your

working directory, and list the contents of directories.

3. Create, copy, move, and remove files and directories.

4. Make multiple file names reference the same file using hard links

and symbolic (or "soft") links.

5. Efficiently run commands affecting many files by using pattern

matching features of the Bash shell.

1. The File-System Hierarchy

All files on a Linux system are stored on file systems, which are organized into a single

inverted tree of directories, known as a file-system hierarchy. This tree is inverted because the

root of the tree is said to be at the top of the hierarchy, and the branches of directories and

subdirectories stretch below the root.

 The /directory is the root directory at the top of the file-system hierarchy. The / character

is also used as a directory separator in filenames.

 The /boot directory is used for storing files needed to boot the system.

 /usr Installed software, shared libraries, include files, and read-only program data.

Important subdirectories include:

 /usr/bin: User commands.

 /usr/sbin: System administration commands.

 /usr/local: Locally customized software.

 /etc: Configuration files specific to this system

 /var: Variable data specific to this system that should persist between boots. Files that

dynamically change, such as databases, cache directories, log files, printer-spooled

documents, and website content may be found under /var

 /run: Runtime data for processes started since the last boot. This includes process ID files

and lock files, among other things.

 /home: Home directories are where regular users store their personal data and

configuration files.

 /root: Home directory for the administrative superuser, root

 /tmp: A world-writable space for temporary files. Files which have not been accessed,

changed, or modified for 10 days are deleted from this directory automatically.

Another temporary directory exists, /var/tmp, in which files that have not been

accessed, changed, or modified in more than 30 days are deleted automatically.

 /boot: Files need in order to start the boot process.

 /dev: Contains special device files that are used by the system to access hardware.

2. Specifying Files by Name

 The path of a files or directory specifies its unique file system location. Following a file

path traverses one or more named subdirectories, delimited by a forward slash (/), until

the destination is reached.

 Directories, also called folders, contain other files and other subdirectories. They can be

referenced in the same manner as files.

Absolute Paths

 An absolute path is a fully qualified name, specifying the files exact location in the file

system hierarchy. It begins at the root (/) directory and specifies each subdirectory that

must be traversed to reach the specific file.

 Every file in a file system has a unique absolute path name, recognized with a simple rule:

A path name with a forward slash (/) as the first character is an absolute path name. For

example, the absolute path name for the system message log file is /var/log/

The Current Working Directory and Relative Paths

 When a user logs in and opens a command window, the initial location is normally the

user's home directory. System processes also have an initial directory.

 Users and processes navigate to other directories as needed; the terms working directory

or current working directory refer to their current location.

 Like an absolute path, a relative path identifies a unique file, specifying only the path

necessary to reach the file from the working directory.

 Recognizing relative path names follows a simple rule: A path name with anything other

than a forward slash as the first character is a relative path name.

 A user in the /var directory could refer to the message log file relatively as log/messages.

 Linux file systems, including, but not limited to, ext4, XFS, GFS2, and GlusterFS, are case-

sensitive.

 Creating FileCase.txt and filecase.txt in the same directory results in two unique files.

Navigating Paths

pwd

 The pwd command displays the full path name of the current working directory for that

shell. This can help you determine the syntax to reach files using relative path names. The

ls command lists directory contents for the specified directory or, if no directory is given,

for the current working directory.

[pllab@localhost ~]$ pwd

/home/pllab

[pllab@localhost ~]$ ls

Desktop Documents Downloads Music Pictures Public Templates

 Videos

cd

 The cd command change’s your shell’s current working directory. If you didn’t specify any

arguments to the command, it will change to your home directory.

 [pllab@localhost ~]$ Cd Videos

[pllab@localhost Videos ~]$ pwd

/home/user/Videos

[pllab@localhost Videos ~]$ cd /home/user/Documents

[pllab@localhost Documents ~]$ pwd

/home/user/Documents

[pllab@localhost Documents ~]$ cd

[pllab@localhost ~]$ pwd

/home/user

[pllab@localhost ~]$

 If you see in the preceding example, the default shell prompt also displays the last

component of the absolute path to the current working directory.

 For example, for /home/user/Videos, only Videos, only Videos display. The prompt

displays the tilde character (~) when your current working directory is your home

directory.

 The cd command has many options.

o The command cd - changes to the previous directory; where the user has

previously to the current directory.

 [pllab@localhost ~]$ cd Videos

[pllab@localhost Videos]$ pwd

/home/pllab/Videos

[pllab@localhost Videos]$ cd /home/pllab/Documents

[pllab@localhost Documents]$ pwd

/home/pllab/Documents

o The command cd .. uses the .. hidden directory to move up one level to the

parent directory, without needed to know the exact parent name.

[pllab@localhost Documents]$ cd -

[pllab@localhost Videos]$ pwd

/home/pllab/Videos

[pllab@localhost Videos]$ cd -

[pllab@localhost Documents]$ pwd

/home/pllab/Documents

[pllab@localhost Documents]$ cd -

[pllab@localhost Videos]$ pwd

/home/pllab/Videos

[pllab@localhost Videos]$ cd

[pllab@localhost ~]$

o The command cd . specifies the current directory on commands in which the

current location is either the source or destination argument, avoiding the need

to type out the directory’s absolute path name

[pllab@localhost Videos]$ pwd

/home/pllab/Videos

[pllab@localhost Videos]$ cd .

[pllab@localhost Videos]$ pwd

/home/pllab/Videos

[pllab@localhost Videos]$ cd ..

[pllab@localhost ~]$ pwd

/home/pllab

[pllab@localhost ~]$ cd ..

[pllab@localhost home]$ pwd

/home

[pllab@localhost home]$ cd ..

[pllab@localhost /]$ pwd

/

[pllab@localhost /]$ cd

[pllab@localhost ~]$ pwd

/home/pllab

[pllab@localhost ~]$

touch

 The touch command normally updates a file’s timestamp to the current date and time

without otherwise modifying it. This is useful for creating empty files, which can be used

for practice, because “touching” a file name that does not exist causes the file to be

created.

ls

 The ls command has multiple options for displaying attributes on files. The most

common and useful are –l (long format), -a (all files, including hidden files), and –R

(recursive, to include the contents of all subdirectories.

3.Managing Files Using Command-Line Tools

Command-Line File Management

 To manage files, you need to be able to create, remove, copy, and move them. You also

need to organize them logically into directories, which you also need to be able to create,

remove, copy, and move.

Command File Management Commands

Activity Command Syntax

Create a directory mkdir directory

Copy a file cp file new-file

Copy a directory and its contents cp –r directory new-directory

Move or rename a file or directory mv file new-file

Remove a file rm file

Remove a directory containing files rm –r directory

Remove an empty directory rmdir directory

Creating Directories

 The mkdir command creates one or more directories or subdirectories. It takes as

arguments a list of paths to the directories you want to create.

 The mkdir command will fail with an error if the directory already exists, or if you are trying

to create a subdirectory in a directory that does not exist.

 The -p (parent) option creates missing parent directories for the requested destination. Use

the mkdir -p command with caution, because spelling mistakes can create unintended

directories without generating error messages.

 In the following example, pretend that you are trying to create a directory in the Videos

directory named Watched, but you accidentally left off the letter "s" in Videos in your

mkdir command.

[pllab@localhost ~]$ mkdir Video/Watched

mkdir: cannot create directory `Video/Watched': No such file or directory

 The mkdir command failed because Videos was misspelled and the directory Video does

not

exist. If you had used the mkdir command with the -p option, the directory Video would be

created, which was not what you had intended, and the subdirectory Watched would be

created in that incorrect directory.

[pllab@localhost ~]$ mkdir Videos/Watched

[pllab@localhost ~]$ ls -R Videos

Videos/:

blockbuster1.ogg blockbuster2.ogg Watched

Videos/Watched:

 In the following example, files and directories are organized beneath the /home/user/

Documents directory. Use the mkdir command and a space-delimited list of the directory

names to create multiple directories.

[pllab@localhost ~]$ cd Documents

[pllab@localhost Documents]$ mkdir ProjectX ProjectY

[pllab@localhost Documents]$ ls

ProjectX ProjectY

 Use the mkdir -p command and space-delimited relative paths for each of the subdirectory

names to create multiple parent directories with subdirectories.

[pllab@localhost Documents]$ mkdir -p Thesis/Chapter1 Thesis/Chapter2

Thesis/Chapter3

[pllab@localhost Documents]$ cd

[pllab@localhost ~]$ ls -R Videos Documents

Copying Files

 The cp command copies a file, creating a new file either in the current directory or in a

specified directory. It can also copy multiple files to a directory.

[pllab@localhost ~]$ cd Videos

[pllab@localhost Videos]$ cp blockbuster1.ogg blockbuster3.ogg

[pllab@localhost Videos]$ ls -l

total 0

-rw-rw-r--. 1 user user 0 Feb 8 16:23 blockbuster1.ogg

-rw-rw-r--. 1 user user 0 Feb 8 16:24 blockbuster2.ogg

-rw-rw-r--. 1 user user 0 Feb 8 16:34 blockbuster3.ogg

drwxrwxr-x. 2 user user 4096 Feb 8 16:05 Watched

[pllab@localhost Videos]$

 When copying multiple files with one command, the last argument must be a directory.

Copied files retain their original names in the new directory. If a file with the same name

exists in the target directory, the existing file is overwritten. By default, the cp does not

copy directories; it ignores them.

 In the following example, two directories are listed, Thesis and ProjectX. Only the last

argument, ProjectX is valid as a destination. The Thesis directory is ignored.

[pllab@localhost Videos]$ cd ../Documents

[pllab@localhost Documents]$ cp thesis_chapter1.odf thesis_chapter2.odf Thesis

ProjectX

cp: omitting directory `Thesis'

[pllab@localhost Documents]$ ls Thesis ProjectX

ProjectX:

thesis_chapter1.odf thesis_chapter2.odf

Thesis:

Chapter1 Chapter2 Chapter3

 In the first cp command, the Thesis directory failed to copy, but the thesis_chapter1.odf

and thesis_chapter2.odf files succeeded. If you want to copy a file to the current working

directory, you can use the special directory:

[pllab@localhost ~]$ cp /etc/hostname .

[pllab@localhost ~]$ cat hostname

host.example.com

[pllab@localhost ~]$

 Use the copy command with the -r (recursive) option, to copy the Thesis directory and its

contents to the ProjectX directory.

[pllab@localhost Documents]$ cp -r Thesis ProjectX

[pllab@localhost Documents]$ ls -R ProjectX

ProjectX:

Thesis thesis_chapter1.odf thesis_chapter2.odf

ProjectX/Thesis:

Chapter1 Chapter2 Chapter3

ProjectX/Thesis/Chapter1:

ProjectX/Thesis/Chapter2:

thesis_chapter2.odf

ProjectX/Thesis/Chapter3:

Moving Files

 The mv command moves files from one location to another. If you think of the absolute

path to a file as its full name, moving a file is effectively the same as renaming a file. File

contents remain unchanged.

 Use the mv command to rename a file.

[pllab@localhost Videos]$ cd ../Documents

[pllab@localhost Documents]$ ls -l thesis*

-rw-rw-r--. 1 user user 0 Feb 6 21:16 thesis_chapter1.odf

-rw-rw-r--. 1 user user 0 Feb 6 21:16 thesis_chapter2.odf

[pllab@localhost Documents]$ mv thesis_chapter2.odf thesis_chapter2_reviewed.odf

[pllab@localhost Documents]$ ls -l thesis*

-rw-rw-r--. 1 user user 0 Feb 6 21:16 thesis_chapter1.odf

-rw-rw-r--. 1 user user 0 Feb 6 21:16 thesis_chapter2_reviewed.odf

 Use the mv command to move a file to a different directory.

[pllab@localhost Documents]$ ls Thesis/Chapter1

[pllab@localhost Documents]$

[pllab@localhost Documents]$ mv thesis_chapter1.odf Thesis/Chapter1

[pllab@localhost Documents]$ ls Thesis/Chapter1

thesis_chapter1.odf

[pllab@localhost Documents]$ ls -l thesis*

-rw-rw-r--. 1 user user 0 Feb 6 21:16 thesis_chapter2_reviewed.odf

Removing Files and Directories

 The rm command removes files. By default, rm will not remove directories that contain

files, unless you add the -r or --recursive option

 Use the rm command to remove a single file from your working directory.

[pllab@localhost Documents]$ ls -l thesis*

-rw-rw-r--. 1 user user 0 Feb 6 21:16 thesis_chapter2_reviewed.odf

[pllab@localhosrt Documents]$ rm thesis_chapter2_reviewed.odf

[pllab@localhost Documents]$ ls -l thesis*

ls: cannot access 'thesis*': No such file or directory

 If you attempt to use the rm command to remove a directory without using the -r option,

the command will fail.

[pllab@localhost Documents]$ rm Thesis/Chapter1

rm: cannot remove `Thesis/Chapter1': Is a directory

 Use the rm -r command to remove a subdirectory and its contents.

[pllab@localhost Documents]$ ls -R Thesis

Thesis/:

Chapter1 Chapter2 Chapter3

Thesis/Chapter1:

thesis_chapter1.odf

 Use the rm -r command to remove a subdirectory and its contents.

[pllab@localhost Documents]$ ls -R Thesis

Thesis/:

Chapter1 Chapter2 Chapter3

Thesis/Chapter1:

thesis_chapter1.odf

Thesis/Chapter2:

thesis_chapter2.odf

Thesis/Chapter3:

[pllab@localhost Documents]$ rm -r Thesis/Chapter1

[pllab@localhost Documents]$ ls -l Thesis

total 8

drwxrwxr-x. 2 user user 4096 Feb 11 12:47 Chapter2

drwxrwxr-x. 2 user user 4096 Feb 11 12:48 Chapter3

 The rm -r command traverses each subdirectory first, individually removing their files

before removing each directory. You can use the rm -ri command to interactively prompt

for confirmation before deleting. This is essentially the opposite of using the -f option,

which forces the removal without prompting the user for confirmation.

[pllab@localhost Documents]$ rm -ri Thesis

rm: descend into directory `Thesis'? y

rm: descend into directory `Thesis/Chapter2'? y

rm: remove regular empty file `Thesis/Chapter2/thesis_chapter2.odf'? y

rm: remove directory `Thesis/Chapter2'? y

rm: remove directory `Thesis/Chapter3'? y

rm: remove directory `Thesis'? y

4.Making Links Between Files

Managing Links Between Files

 It is possible to create multiple names that point to the same file. There are two ways to do

this: by creating a hard link to a file, or by creating a soft link to the file. Each has its

advantages and disadvantages.

Creating Hard Links

 Every file starts with a single hard link, from its initial name to the data on the file system.

When you create a new hard link to a file, you create another name that points to that

same data. The new hard link acts exactly like the original file name. Once created, you

cannot tell the difference between the new hard link and the original name of the file.

 We can find out if a file has multiple hard links with the ls –l command. One of the things it

reports is each file’s link count, the number of hard links the file has.

[pllab@localhost ~]$ pwd

/home/pllab

[pllab@localhost ~]$ ls –l newfile.txt

-rw-r—r--. 1 pllab pllab 0 Nov 07 11:11 newfile.txt

 In the preceding example, the link count of newfile.txt is 1. It has exactly one absolute

path, which is /home/pllab/newfile.txt

 We can use the ln command to create a new hard link that points to an existing file. The

following example creates a hard link that points to an existing file. The command needs at

least two arguments, a path ot the existing file, and the path to the hard link that you want

to create.

 The following example creates a hard link named newfile-link2.txt for the existing file

newfile.txt in the /tmp directory

[pllab@localhost ~] ln newfile.txt /tmp/newfile-hlink2.txt

[pllab@localhost ~] ls –l newfile.txt /tmp/newfile-hlink2.txt

-rw-rw-r--. 2 pllab pllab 12 Nov 07 11:11 newfile.txt

-rw-rw-r--. 2 pllab pllab 12 Nov 07 11:11 /tmp/newfile-hlink2.txt

 If we want to find out whether two files are hard links of each other, one way is to use the

–i option with the ls command to list the files inode number. If the files are on the same

file system and their inode numbers are the same, the files are hard links pointing to the

same data.

[pllab@localhost ~]$ ls -il newfile.txt /tmp/newfile-hlink2.txt

8924107 -rw-rw-r--. 2 user user 12 Mar 11 19:19 newfile.txt

8924107 -rw-rw-r--. 2 user user 12 Mar 11 19:19 /tmp/newfile-hlink2.txt

 Even if the original file gets deleted, the contents of the file are still available as long as at

least one hard link exists. Data is only deleted from the storage when the last hard link is

deleted.

[pllab@localhost ~]$ rm -f newfile.txt

[pllab@localhost ~]$ ls -l /tmp/newfile-hlink2.txt

-rw-rw-r--. 1 user user 12 Mar 11 19:19 /tmp/newfile-hlink2.txt

[pllab@localhost ~]$ cat /tmp/newfile-hlink2.txt

Hello World

Limitations of Hard Links

 Firstly, hard links can only be used with regular files. You cannot use ln to create a hard link

to a directory or special file.

 Secondly, hard links can only be used if both files are on the same file system. The file-

system

hierarchy can be made up of multiple storage devices. Depending on the configuration of

your system, when you change into a new directory, that directory and its contents may be

stored on a different file system.

 You can use the df command to list the directories that are on different file systems. For

example, you might see output like the following:

[pllab@localhost ~]$ df

Filesystem 1K-blocks Used Available Use% Mounted on

devtmpfs 886788 0 886788 0% /dev

tmpfs 902108 0 902108 0% /dev/shm

tmpfs 902108 8696 893412 1% /run

tmpfs 902108 0 902108 0% /sys/fs/cgroup

/dev/mapper/rhel_rhel8--root 10258432 1630460 8627972 16% /

/dev/sda1 1038336 167128 871208 17% /boot

tmpfs 180420 0 180420 0%

/run/user/1000

[pllab@localhost ~]$

 Files in two different "Mounted on" directories and their subdirectories are on different file

systems. (The most specific match wins.) So, the system in this example, you can create a

hard link between /var/tmp/link1 and /home/user/file because they are both

subdirectories

of / but not any other directory on the list. But you cannot create a hard link between

/boot/

test/badlink and /home/user/file because the first file is in a subdirectory of /boot (on

the "Mounted on" list) and the second file is not.

Creating Soft Links

 The ln -s command creates a soft link, which is also called a "symbolic link." A soft link is

not a regular file, but a special type of file that points to an existing file or directory.

 Soft links have some advantages over hard links:

o They can link two files on different file systems.

o They can point to a directory or special file, not just a regular file.

 In the following example, the ln -s command is used to create a new soft link for the

existing file /home/pllab/newfile-link2.txt that will be named /tmp/newfile-symlink.txt.

[pllab@localhost ~]$ ln -s /home/user/newfile-link2.txt /tmp/newfile-symlink.txt

[pllab@localhost ~]$ ls -l newfile-link2.txt /tmp/newfile-symlink.txt

-rw-rw-r--. 1 user user 12 Mar 11 19:19 newfile-link2.txt

lrwxrwxrwx. 1 user user 11 Mar 11 20:59 /tmp/newfile-symlink.txt -> /home/user/

newfile-link2.txt

[pllab@locahost ~]$ cat /tmp/newfile-symlink.txt

Soft Hello World

 In the preceding example, the first character of the long listing for /tmp/newfile-

symlink.txt

is l instead of -. This indicates that the file is a soft link and not a regular file. (A d would

indicate that the file is a directory.)

 When the original regular file gets deleted, the soft link will still point to the file but the

target is gone. A soft link pointing to a missing file is called a "dangling soft link."

[pllab@localhost ~]$ rm -f newfile-link2.txt

[pllab@localhost ~]$ ls -l /tmp/newfile-symlink.txt

lrwxrwxrwx. 1 user user 11 Mar 11 20:59 /tmp/newfile-symlink.txt -> /home/user/

newfile-link2.txt

[pllab@localhost ~]$ cat /tmp/newfile-symlink.txt

cat: /tmp/newfile-symlink.txt: No such file or directory

 A soft link can point to a directory. The soft link then acts like a directory. Changing to the

soft link with cd will make the current working directory the linked directory. Some tools

may keep track of the fact that you followed a soft link to get there. For example, by

default cd will update your current working directory using the name of the soft link rather

than the name of the actual directory.

 In the following example, a soft link named /home/user/configfiles is created that points to

the /etc directory.

[pllab@localhost ~]$ ln -s /etc /home/user/configfiles

[pllab@localhost ~]$ cd /home/user/configfiles

[pllab@localhost configfiles]$ pwd

/home/user/configfiles

Tasks 2:

1. Create a hard link named /home/pllab/source.backup for an existing file,

/home/pllab/files/source.file.

I. View the link count for the file, /home/pllab/files/source.file

II. Create a hard link named /home/pllab/source.backup for an existing file,

/home/pllab/files/source.file.

III. Verify the link count for the original /home/pllab/files/source.file and the new linked

file, /home/pllab/backups/source.backup. The link count should be 2 for both the

files.

2. Create a soft link named /home/pllab/tempdir that points to the /tmp directory.

I. Create a soft link named /home/pllab/tempdir that points to the /tmp directory.

II. Use the ls –l command to verify the newly created soft link.

Matching File Names with Shell Expansions

 The Bash shell has multiple ways of expanding a command line including pattern matching,

home directory expansion, string expansion, and variable substitution.

 Perhaps the most powerful of these is the path name-matching capability, historically

called globbing. The Bash globbing feature, sometimes called “wildcards”, makes managing

large numbers of files easier. Using metacharacters that “expand” to match file and path

names being sought, commands perform on a focused set of files at once.

Pattern Matching

 Globbing is a shell command-parsing operation that expands a wildcard pattern into a list

of

matching path names. Command-line metacharacters are replaced by the match list prior

to

command execution. Patterns that do not return matches display the original pattern

request as literal text.

 The following are common metacharacters and pattern classes.

PATTERN Matches

* Any string of zero or more characters

? Any single character

[abc…] Any one character in the enclosed class

[!abc...] Any one character not in the enclosed class

[^abc…] Any one character not in the enclosed class

[[:alpha:]] Any alphabetic character

[[:upper:]] Any uppercase character

[[:lower:]] Any lowercase character

[[:alnum:]] Any alphabetic character or digit.

[[:punct:]] Any printable character not a space or alphanumberic

[[:digit:]] Any single digit from 0 to 9

[[:space:]] Any single white space character.

Tilde Expansion

 The tilde character (~), matches the current user’s home directory.

 If it starts a string of characters other than a slash (/), the shell will interpret up to that

slash as a user name, if one matches, and replace the string with the absolute path to that

user’s home directory. If no user name matches, then an actual tilde followed by the string

of characters will be used instead.

[pllab@localhost glob]$echo ~root

/root

[pllab@localhost glob]$ echo ~user

/home/pllab

[pllab@localhost glob]$ echo ~/glob

able alfa baker bravo cast charlie delta dog easy echo

[pllab@localhost glob]$ echo ~/glob

/home/pllab/glob

[pllab@localhost glob]$

Brace Expansion

 Brace expansion is used to generate discretionary strings of characters. Braces contain a

comma separated list of strings, or a sequence expression. The result includes the text

preceding or following the brace definition. Brace expansions may be nested, one inside

another. Also double dot syntax (..) expands to a sequence such that {m..p} will expand to m

n o p.

[pllab@localhost glob]$ echo {Sunday,Monday,Tuesday,Wednesday}.log

Sunday.log Monday.log Tuesday.log Wednesday.log

[pllab@localhost glob]$ echo file{1..3}.txt

file1.txt file2.txt file3.txt

[pllab@localhost glob]$ echo file{a..c}.txt

filea.txt fileb.txt filec.txt

[pllab@localhost glob]$ echo file{a,b}{1,2}.txt

filea1.txt filea2.txt fileb1.txt fileb2.txt

[pllab@localhost glob]$ echo file{a{1,2},b,c}.txt

filea1.txt filea2.txt fileb.txt filec.txt

 A practical use of brace expansion is to quickly create a number of files or directories.

[pllab@localhost glob]$ mkdir ../RHEL{6,7,8}

[pllab@localhost glob]$ ls ../RHEL*

RHEL6 RHEL7 RHEL8

[pllab@localhost glob]$

Variable Expansion

 A variable acts like a named container that can store a value in memory. Variables make it

easy to access and modify the stored data either from the command line or within a shell

script.

 You can assign data as a value to a variable using the following syntax:

[pllab@locahost ~]$ VARIABLENAME=value

 You can use variable expansion to convert the variable name to its value on the command

line. If a string starts with a dollar sign ($), then the shell will try to use the rest of that

string as a variable name and replace it with whatever value the variable has.

[pllab@locahost ~]$ USERNAME=operator

[pllab@locahost ~]$ echo $USERNAME

operator

 To help avoid mistakes due to other shell expansions, you can put the name of the variable

in curly braces, for example ${VARIABLENAME}.

[pllab@locahost ~]$ USERNAME=operator

[pllab@locahost ~]$ echo ${USERNAME}

operator

Command Substitution

 Command substitution allows the output of a command to replace the command itself on

the command line. Command substitution occurs when a command is enclosed in

parentheses, and preceded by a dollar sign ($). The $(command) form can nest multiple

command expansions inside each other.

[pllab@localhost glob]$ echo Today is $(date +%A).

Today is Wednesday.

[pllab@localhost glob]$ echo The time is $(date +%M) minutes past $(date +%l%p).

The time is 26 minutes past 11AM.

