P.V.P SIDDHARTHA INSTITUTE OF TECHNOLOGY			
BRANCH : Computer Science and Engineering REGULATION : PVP20			
Course: B. Tech	SUBJECT: Fundamentals of Digital Logic Design		
Subject Code: 20CS3301/20IT3301		Year and Semester: II Year / I Sem	
QUESTION BANK			

<u>UNIT I</u>

Q. NO	QUESTION	со	LEVEL
1(A)	Explain the Characteristics of Digital System.		L2
1(B)	Explain the difference between analog and digital systems.	1	L2
2(A)	Convert the following numbers i)(163.789)10 to Octal number ii)(11001101.0101)2 to base-8 and base-4 iii)(4567)10 to base2 iv) (4D.56)16 to Binary	1	L2
2(B)	Subtract (111001) ₂ from (101011) ₂ using 1's complement?	1	L2
3	Convert the following numbers i) $(615)_{10} = ()_{16}$ ii)) $(214)_{10} = ()_8$ iii) $(0.8125)_{10} = ()_2$ iv) $(658.825)_{10} = ()_8$ v) $(54)_{10} = ()_2$	1	L2
4(A)	i) Perform (28)+(-15) in binary using signed binary numbers ii) Perform (-50)-(-10) in binary using the signed-2's complement	1	L2
4(B)	Convert the decimal number 3452 in i)BCD ii)Excess-3	1	L2
5(A)	Convert the following numbers i) (250.5)10 = ()2 ii)) (673.23)10 = ()8 iii)(101110.01)2=()8	1	L2
5(B)	Convert the following number (AB33) ₁₆ to Binary and Gray code	1	L2
6(A)	Perform the following (7129) 10 + (7711) 10 using BCD arithmetic	1	L2
6(B)	Explain the use of complements? Perform the subtraction using 9's complement for the given Base-9 numbers (565)-(666).	1	L2
7	Explain the Binary Codes with examples	1	L2
8(A)	Perform the BCD Addition for the given Numbers i) 984 and 599 ii) 429 and 476	1	L2
8(B)	Perform the BCD Subtraction using 10's Complement for the given Numbers i) 852 and 253 ii) 325 and 222	1	L2
9(A)	Convert the Hexa decimal number to Octal and vice versa with an example.	1	L2
9(B)	Explain the Excess-3 code? Convert given Excess-3 code (01011100) to Binary Code.	1	L2
10(A)	Convert the given numbers Gray Code to Binary Code i) 1011 ii) 110101 iii) 10110	1	L2
10(B)	Perform the BCD Subtraction using 9's Complement i) (35) ₁₀ and 48 ₍₁₀₎	1	L2
10(C)	Explain the Self-Complement Code? Solve (356) ₁₀ are Self-Complement.	1	L2

UNIT II

Q. NO	QUESTION	со	LEVEL
1	Simplify the Boolean expressions to minimum number of literals i) (A + B)(A + C')(B' + C') ii) AB + (AC)' + AB'C (AB + C) iii) (A+B)' (A'+B')'	2	L3
2(A)	Obtain the Complement of Boolean Expression i) A+B+A'B'C ii) AB + A (B +C) + B'(B+D)	2	L3
2(B)	Design the circuit diagram for the following Boolean function F= ABC'+ DE+ AB'D' using NAND gates.	2	L3
3	Obtain the a) SOP b) POS expression for the function given below $F(A,B,C,D) = \Sigma m(0,1,2,5,8,9,10)$	2	L3
4	Explain Postulates and theorems of Boolean Algebra.	2	L2
5(A)	Construct truth table of the function: i) $F = xy + xy' + y'z$ ii) $F = bc + a'c'$	2	L3
5(B)	Simplify the following Boolean expressions to a minimum number of literals and draw the logic diagrams (i) xy+ xy' (ii) (x + y) (x + y') (iii) xyz + x'y+ xyz'	2	L3
6	State and Explain the DeMorgan's Theorem and Consensus Theorem with examples.	2	L3
7	Minimize the SOP and POS forms of the following Boolean function using K-map and draw the corresponding logic diagrams: $F(A,B,C) = \sum m(0,2,8,9,10,15) + d(1,3,6,7)$	2	L3
8(A)	Draw a logic circuit for $(A + B)(C + D)C$	2	L3
8(B)	Find the output in the Digital Logic Circuit.	2	L3
9	Minimize the following expressions using K-map: a) $f(w,x,y,z) = \sum m(4,5,7,12,14,15) + d(3,8,10)$ b) $F(A,B,C,D) = \sum m(1,3,7,11,15) + \sum d(0,2,5)$	2	L3
10	Simplify the Boolean expression using K-map and implement using NAND gates : $F(A,B,C,D) = \Sigma m(0,2,3,8,10,11,12,14)$	2	L3

UNIT III

Q. NO.	QUESTION	со	LEVEL
1	a) Identify the steps involved in design procedure of combinational circuitsb) Difference between Decoder and Encoderc) Define Priority Encoder with example.	3	L3
2	What is decoder? Construct a 4X16 decoder with two 3X8 decoders.	3	L3
3	Design and draw a Full Subtractor using two Half Subtractor.	3	L3
4	Design a 4 bit parallel adder using Full adder.	3	L3
5	Design an 8-bit BCD adder using 4-bit binary adder.	3	L3
6	Implement the full adder using two 4X1 multiplexers.	3	L3
7(A)	Implement the 8X1 multiplexer for the following Boolean function $F(A,B,C.D) = \Sigma m \ (0,1,2,5,7,8,9,14,15)$	3	L3
7(B)	Explain multiplexer and its applications.	1	L2
8(A)	Obtain the functions for the combinational circuit in sum-of-minterms to form Decoders. F1= X'Y'Z' + XZ F2 = XY'Z' + X'Y F3= X'Y'Z' + XY	3	L3
8(B)	Implement 4 line to 16 line decoder for the following Boolean function. F1= Σ m (0, 1, 4, 7, 12, 14, 15) F2= Σ m (1, 3, 6, 9, 12) F3= Σ m (2, 3, 7, 8, 10) F4= Σ m (1, 3, 5)	3	L3
9	Construct 4X1 multiplexer using logic gates.	3	L3
10	Obtain the function $f(A,B,C,D) = \Sigma(1,2,3,4,6,7,8,10,12,14,15)$ and design a i) 8X1 MUX ii) 4X1 MUX	3	L3

UNIT IV

Q. NO.	QUESTION	со	LEVEL
1(A)	Compare combinational and sequential circuits.	4	L4
1(B)	Distinguish between the Latch and Flip.	4	L4
2	Construct SR Latch and D Latch with Truth Table and Logic Diagram.	3	L3
3	Explain the following with Truth Table ,characteristic equation and Excitation table i) J-K flip-flop ii) S- R flip-flop iii) D flip-flop	1	L2
4	Construct the D and T flip flop with logic diagrams and function table.	3	L3
5	Compare SR Flip Flop and JK Flip Flop.	4	L4
6	Design the conversion logic to convert JK Flip-Flop into T- Flip-Flop. (3	L3
7	Design the conversion logic to convert SR Flip-Flop into JK Flip-Flop.	3	L3
8	Explain the Master-Slave J-K flip-flop?	1	L2
9	Derive the characteristic equation of JK flip-flop from Excitation table.	3	L3
10	A sequential circuit consists of a full-adder circuit connected to a D flip-flop, as shown in given figure .Design the state table and state diagram of the sequential circuit.	3	L3

UNIT V

Q. NO.	QUESTION	со	LEVEL
1	Design a BCD ripple counter using JK flip-flop.	3	L3
2	Compare ripple counter and synchronous counter.	4	L4
3	Design a 4-bit ripple counter and draw the timing diagram of that counter.	3	L3
4	Design a four-bit binary synchronous counter with D flip-flop.	3	L3
5	List the application of shift register? Explain in detail.	4	L4
6	Design the 4- bit register with parallel load.	3	L3
7	Construct the circuit diagram for Four - bit universal shift register.	3	L3
8	Explain truth table and circuit diagram of serial adder.	2	L2
9	Implement the logic circuit diagram for Four - bit Binary Ripple Counter.	3	L3
10	Design Up Down Binary Counter with Logic Diagram.	3	L3

Course Coordinators-CSE

Course Coordinators-IT

1. Dr G Lalitha Kumari

1.Dr. K. Pavan Kumar

2. Dr B Lakshmi Ramani

3. Mr P Anil Kumar

Module Coordinators-CSE

Mrs A Madhuri

Module Coordinators-IT

Dr A Haritha

Prof. & Head, Dept. of CSE (Dr. A. Jaya Lakshmi)

Prof. & Head, Dept. of IT (Dr B.V. Subba Rao)