Code No: 20CS3301/20IT3301

PVP SIDDHARTHA INSTITUTE OF TECHNOLOGY

(Autonomous)

20CS3301/20IT3301-Fundamentals of Digital Logic Design (Common to CSE, IT)

Duration: 3 Hours Max. Marks: 70

Note:

- 1. This question paper contains 5 essay questions with an internal choice.
- 2. Each question carries 14 Marks.
- 3. All parts of Question paper must be answered in one place

 $5 \times 14 = 70 \text{ Marks}$

			Blooms Level	СО	Max. Marks				
UNIT-I									
1	(a)	Convert the following base conversions using Number System i. $(53.625)_{10}$ to $(?)_2$ ii. $(3\text{FD})_{16}$ to $(?)_2$ iii. $(A69.8)_{16}$ to $(?)_{10}$	L2	CO1	7M				
	(b)	Perform the decimal subtraction in 8-4-2-1 BCD using 9's complement. i) Subtract 79 from 26 ii) Subtract 748 from 983.	L2	CO1	7M				
	OR								
2	(a)	Show the Gray code for the following decimal numbers. i) 37 ₁₀ ii) 97 ₁₀ .	L2	CO1	7M				
	(b)	Explain the various logic gates and give the representation along with the truth tables.	L2	CO1	7M				
	•	UNIT-II	•	•					
3	(a)	Obtain the simplified expression in SOP form of $F(\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d}, \mathbf{e}) = \sum (1,2,4,7,12,14,15,24,27,29,30,31)$ using K-maps.	L3	CO2	7M				
	(b)	Simplify the following Boolean functions, using a four variable Karnaugh map method and implement the simplified function using NAND gates $F(A,B,C,D) = \sum 0.2.4.5.6.7.8.10.13.15$)	L3	CO2	7M				
OR									
4	(a)	Obtain the simplified expression in product of sums) using K-maps i) $F(A,B,C,D) = \pi(0,1,2,3,4,10,11)$ ii) $F(A,B,C,D) = \pi(1,3,5,7,13,15)$	L3	CO2	7M				
	(b)	With the use of K-Map method to simplify the following Boolean expression. $F(w, x, y, z) = \Sigma(2, 3, 5, 6, 11, 14, 15)$	L3	CO2	7M				

		UNIT-III						
5	(a)	Construct the truth table of 3 bit gray to binary code conversion. Show the realization using 4X1 MUX?	L3	CO3	7M			
	(b)	Design a full binary adder with the use of two half adders and a OR gate.	L3	CO3	7M			
OR								
6	(a)	Design an 8-bit BCD adder using 4-bit binary adder.	L3	CO3	7M			
0	(b)	Implement the full adder using two 4:1 multiplexers.	L3	CO3	7M			
UNIT-IV								
7	(a)	Design the conversion logic to convert SR Flip-Flop into JK Flip-Flop.	L3	CO3	7M			
	(b)	Compare combinational and sequential circuits.	L4	CO4	7M			
OR								
8	(a)	Construct the D and T flip flop with logic diagrams and function table.	L3	CO3	7M			
	(b)	Distinguish between the SR Flip Flop and JK Flip Flop.	L4	CO4	7M			
UNIT-V								
	(a)	Design a BCD ripple counter using JK flip-flop.	L3	CO3	7 M			
9	(b)	Design a three bit counter that counts up when a control variable $E = 0$ and counts down when $E = 1$.	L3	CO3	7M			
	OR							
10	(a)	Design a 4-bit ripple counter and draw the timing diagram of that counter.	L3	CO3	7M			
	(b)	Design a four-bit binary synchronous counter with D flip-flops	L3	CO3	7M			

Course Coordinators

Course Coordinators

1. Dr G Lalitha Kumari

1.Dr. K. Pavan Kumar

2. Dr B Lakshmi Ramani

3. Mr P Anil Kumar

Prof. & Head, Dept. of CSE

Prof. & Head, Dept. of IT

(Dr. A. Jaya Lakshmi)

(Dr B.V. Subba Rao)