LESSON PLAN (PVPSIT/ACD /01)

Academic Year : 2023-24

Year/Semester/Section : II B.Tech I SEM/S1, S2 and S3

Branch : Computer Science and Engineering (CSE)

Subject Code & Name : 20CS3301 – Fundamentals of Digital Logic Design
Name of Faculty : Ms. P. Dedeepya /Ms. Y. Manasa/ Mr. P. Anil Kumar

COs	Course Outcomes	Cognitive Level
CO1	Understand the basic concepts of Digital Circuits.	L2
CO2	Apply minimization techniques to simplify Boolean Expressions.	L3
CO3	Apply the principles of digital electronics to Design Combinational and Sequential Circuits.	L3
CO4	Analyze the functionality of Combinational Circuits and Sequential Circuits.	L4

Unit No.	Topic of syllabus to be covered	Learning out comes	Lecture/ Tutorial (L/T)	Teaching Mode (BB/LCD)	Total No. of Cumulative Hours	Expected date of Topic to be covered	Review/ Remarks (By HOD)
I	Digital Systems and Binary Numbers: Digital Systems	Introduction about course outcomes. Understand about Digital System and Analog System.(CO1-L2)	L	BB/LCD	1		
I	Binary Numbers ,Number Base Conversions	Understand about Binary Number System. (CO1-L2), Understand about conversion of one number system to other numbers system-Binary, Decimal conversions. (CO1-L2)	L	BB/LCD	3		
I	Octal and Hexadecimal Numbers	Understand about octal and Hexa decimal number system conversions.(CO1-L2)	L	BB/LCD	4		

I	Complements of Numbers	Understand about Subtraction with Complements-1's,2's, 9's and 10's complements subtraction.(CO1-L2)	L	BB/LCD	5	
I	Signed Binary Numbers	Understand about Signed Binary Numbers-Arithmetic Addition Arithmetic Subtraction.(CO1-L2)	L	BB/LCD	6	
I	Binary codes	Understand about Binary codes-Binary-Coded Decimal Code, BCD Addition, Subtraction.(CO1-L2)	L	BB/LCD	7	
I	Binary codes	Understand aboutExcess-3 Code and Gray Code.(CO1-L2)	L	BB/LCD	8	
I	Binary Logic	Understand about Binary Logic- Definition of Binary Logic, Logic Gates- Basic Gates and Truth Tables. (CO1-L2)	L	BB/LCD	9	
I	Quiz on UNIT-I				10	
II	Boolean Algebra: Introduction, Basic Definitions, Axiomatic definition of Boolean Algebra	Discuss about Boolean Algebra- Introduction, Basic Definitions, Axiomatic definition of Boolean Algebra - Two-Valued Boolean Algebra. (CO2-L2)	L	BB/LCD	11	
II	Basic theorems and properties of Boolean Algebra	Discuss about Basic theorems and properties of Boolean Algebra –Duality, Basic Theorems. (CO2-L2)	L	BB/LCD	12	
II	Boolean functions	Discuss about Boolean functions - Algebraic Manipulation, Complement of a Function. (CO2-L2)	L	BB/LCD	13	
II	Canonical and Standard Forms	Apply the following concepts: Canonical and Standard Forms Minterms and Maxterms, Sum of Minterms (SOP) to simplify the Boolean function. (CO2-L3)	L	BB/LCD	14	
II	Canonical and Standard Forms	Apply the following concepts Product	L	BB/LCD	15	

		of Maxterms (POS) to simplify the				
		Boolean function.(CO2-L3)				
	Canonical and Standard Forms	Discuss about Conversion between	L			
II		Canonical Forms, Standard Forms.(CO2-		BB/LCD	16	
		L3)				
	Gate-Level Minimization:	Demonstrate on Introduction of Map	_			
II	Introduction, Map Method	Method:-Two-Variable K-Map, Three-	L	L BB/LCD	17	
	,	Variable K-Map. (CO2-L3)				
		Apply the Karnaugh map or K-map of				
II		Two-Variable K-Map or Three-Variable K-Map Method to minimize the Boolean	L	BB/LCD		
	Map Method	function. (CO2-L3)			18	
	Four Variable K-Map	Apply the Karnaugh map or K-map-of				
II		Four Variable K-Map Method to	L	BB/LCD		
		minimize the Boolean function.				
II	Product of Sums	Simplify the product of sums using K-	L	BB/LCD	19	
	Simplification	Map Method. (CO2-L3) Using Don't Care Conditions to simplify				
II	Don't Care Conditions	the Boolean output expression of a digital	L	BB/LCD	20	
	Bon v cure conditions	circuit.(CO2-L3)	2	DD/ECD	20	
	NAND and NOR implementation	NAND and NOR gates in the design of				
		digital circuits, rules and procedures have				
		been developed for the conversion from	т	DD/I CD	21	
II		Boolean functions given in terms of AND, OR, and NOT into equivalent	L	L BB/LCD	BB/LCD 21	
		NAND and NOR logic diagrams.				
		(CO2-L3)				
	Flip Class				22	
	Combinational Logic:	Demonstrate on Combinational Logic:				
III	Introduction, Combinational	Introduction,Combinational	L	BB/LCD	23	
	Circuit, Analysis Procedure	Circuit, Analysis Procedure. (CO3-L2)				
***		Explain about the Design Procedure of		22.42	2.1	
III	Design Procedure	Combinational Circuit Code	L	BB/LCD	24	
		Conversion Example.(CO3-L2)				
III	Binary adder – subtractor	Design a combinational circuit using	L	BB/LCD	25	

		Binary Adders –Half Adder, Full Adder. (CO3-L3)				
III	Binary adder – subtractor	Design a combinational circuit using Binary Subtractor- Half Subtractor, Full Subtractor. (CO3-L3)	L	BB/LCD	26	
III	Decimal Adder	Construct a BCD adder–subtractor circuit using the BCD adder. (CO3-L3)	L	BB/LCD	27	
III	BCD to Seven Segment Display	Using a truth table and Karnaugh maps, design the BCD-to-seven-segment decoder using a minimum number of gates. (CO3-L3)	L	BB/LCD	28	
III	Encoders, Decoder	Design a combinational circuit using Encoders- Decoder.(CO3-L3)	L	BB/LCD	29	
III	Priority Encoder	Design a Combinational Circuit using Priority Encoder.(CO3-L3)	L	BB/LCD	30	
III	Multiplexers, Demultiplexers	Implement a Boolean functions, adders and subtractor using Multiplexers, Demultiplexers. (CO3-L3)	L	BB/LCD	31	
III	Examples on Encoders, Decoder, Multiplexers, Demultiplexers	Practicing more problems on Encoders, Decoder, Multiplexers, and Demultiplexers. (CO3-L3)	L	BB/LCD	32	
IV	Synchronous Sequential Logic: Introduction	Understand about the Sequential circuits and distinguish the sequential logic from combinational logic. (CO3-L2)	L	BB/LCD	33	
IV	Storage Elements :Latches, Flip-Flops	Construct a SR Latch, D Latch using logical gates. (CO3-L3)	L	BB/LCD	34	
IV	SR Flip Flop	Design a sequential circuit using SR Flip Flop. (CO3-L3)	L	BB/LCD	35	
IV	JK Flip Flop	Design a sequential circuit using JK Flip Flop. (CO3-L3)	L	BB/LCD		
IV	D Flip Flop, T Flip Flop	Design a sequential circuit using D Flip Flop, T Flip Flop. (CO3-L3)	L	BB/LCD	36	
IV	Flip Flop Conversions	Design a Sequential Circuit to covert the Flip Flops(CO3-L3)	L	BB/LCD	37	

IV	Characteristic Tables, Characteristic Equations, Excitation Table	Explain the differences among a truth table, a state table, a characteristic table, and an excitation table.(CO3-L3)	L	BB/LCD	38	
v	Registers: Register with Parallel Load	Understand aboutRegisters -Register with Parallel Load. (CO4-L2)	L	BB/LCD	39	
v	Shift Registers	Compare Combinational and Sequential Circuits, discuss about shift registers. (CO4-L4)	L	BB/LCD	40	
V	Shift Registers- Serial Transfer, Serial Addition, Universal Shift Register	Understand the concepts of Shift Registers- Serial Transfer, Serial Addition, and Universal Shift Register. (CO4-L2)	L	BB/LCD	41	
V	Ripple Counters- Binary Ripple Counter	Design binary ripple counter using flip-flops. (CO4-L3)	L	BB/LCD		
V	Ripple Counters- BCD Ripple Counter	Construct a BCD ripple counter using other counters. (CO4-L3)	L	BB/LCD	42	
V	Synchronous Counters- Binary Counter, Up–Down Binary Counter	Design - Binary Counter, Up–Down Binary Counter using flip-flops. (CO4-L3)	L	BB/LCD	43	
V	Synchronous Counters- BCD Counter, Binary Counter with Parallel Load	Design - BCD Counter, Binary Counter with Parallel Load using flip-flops. (CO4-L3)	L	BB/LCD	44	
V	Other Counters- Ring counter, Johnson counter.	Design Ring counter, Johnson counter using Flip Flops. (CO4-L3)	L	BB/LCD	45	

Legend: Teaching Mode

BB: Black Board / LCD: Power Point Presentation

Signature of the Faculty

1. Ms. P. Dedeepya

2. Ms. Y. Manasa

3. Mr.P.Anil Kumar

Signature of the HOD