Binary Heaps

Introduction

In most sorting algorithms the elements to be sorted are assumed fixed and entirely known before
the sorting takes place. However, quite often the elements to be sorted are not known beforehand,
and may present themselves in a dynamic manner. In this lecture we look at the binary heap, which
is a data structure that is capable of dynamically sorting elements as they become available.

To define a binary heap, we first define the notion of a complete binary tree. Given a binary tree,
assign to each of its nodes an index ¢. To start, assign the root an index ¢+ = 1. Now suppose a node
has been assigned an index i. Then assign its left child (if it exists) the index 2, and assign its right
child (if it exists) the value 2i + 1. Then we say that the tree is complete iff the set of assigned
indices is a contiguous set; meaning that, if 7 and k are assigned indices, with ¢ < k, then so is 7,
for every i < j < k.

Example 1. Give examples of both complete and incomplete binary trees.

A min heap (respectively, max heap) is a complete binary tree T whose nodes store comparable
elements of some type, such as integers, real numbers, etc.. Moreover, if n € T, and ¢ € T is a child
of n, then the element stored at n is less than (respectively, greater than) or equal to the element
stored at c¢. Another name for a min heap is that of priority queue. Note also that, by the property
of being complete, a heap may also be viewed as a contiguous array of elements. This observation
can be used to implement heaps using an array structure.

Two complete trees, one of which is a min heap:

13) 13
g 13|
e ATAL
/* i
— P 22 s
@1} (6) _ Y Yi5)
Nl X ! - 211 160
4, R iy ;
i \\ i ~, S
& B a5 a = TR
A,) L (68) (6] (31 (19 G
P - S "‘-II ¢ p—y LN L
. —\-I ’ e -:.-.
& @ @ & o G)

Operations on Min Heaps

e insert(): insert an element into the heap.
e pop(): pop the least element from the heap.

e build_heap: build a heap from a list of elements.

advanced heaps.

More advanced operations include merge(), which merges two heaps. This operation requires more

Example 2. Insert the following nodes into an initally empty min heap: 12,5,15,9,13,7,15,10,3,20,4.

Psuedocode for inserting into a Heap of Integers

void insert(Heap heap, int x)

{
int array[] = heap.array;
//percolate up
int hole = heap.load; //number of elements in heap
for(; hole > 1 && x < arrayl[hole/2]; hole /= 2)
array[hole] = arraylhole/2];
array[hole] = x;
heap.load++;
}

Theorem 1. The insertion of n elements into an initally empty heap will take O(nlogn) steps in
the worst-case.

Proof. In the worst case, the i th element will require at most O([log(i)]) percolation steps up the
tree. Thus, the running time

T(n) < Zc- [og(i)] = O(nlogn).

Example 3. For the heap constructed in Example 2, successively pop the minimum element from
the heap until it is empty.

Psuedocode for Popping a Heap of Integers

int pop(Heap heap)

{
int array[] = heap.array;
int x = array[1]; //x is the element to be returned
array[1] = arraylheap.load--];
percolate_down(heap,1);
return Xx;

}

//Percolate the element located at array[index] down the tree
void percolate_down(Heap heap, int index)

{
int array[] = heap.array;
int load = heap.load;
int orphan = array[index];
int child_index;
for(; (child_index=2*index) <= load; index = child_index)
{
if(child_index != load && arrayl[child_index+1] < array[child_index])
child_index++;
if (array[child_index] < orphan)
array[index] = array[child_index];
else
break;
}
array[index] = orphan; //found a home for orphaned integer
}

Psuedocode for Building a Heap of Integers

Heap build_heap(int array[], int load)
{
Heap heap = new_Heap(array, load);
int 1i;

for(i= load/2; i>0; i--)
percolate_down(heap, i);

return heap;

Example 4. Repeat Example 1, but now use build heap().

Lemma 1. For a perfect binary tree of height A, the sum of the heights of the nodes is

M1 —(h+1).

Proof. At depth 4, there are 2! nodes, and the height of each of those nodes is h — i. Hence, letting
S denote the sum of the heights of all nodes,

Multiplying both sides by 2 yields
h
25 = 2 (h—1).
=0
Now subtracting the first equation from the second yields
S=2"4 2" g p2—h=2" 42 4241 (R + 1) =

M 1 —(h+1).

Theorem 2. The build heap() operation takes O(n) steps.

Proof of Theorem 2. The number of steps needed for build heap() is proportional to the total
number of times that elements must be swapped down the binary heap. This number is in turn
bounded by the sum of the heights of the nodes which, by Lemma 1, is bounded by

ohtl _ 9.

Finally, given that h = |logn|, we see that the bound on the number of steps is in fact linear in n.

Heap Sort

HeapSort is a sorting algorithm that sorts an array in place. It accomplishes this by building a max
heap from the given array of elements. It then successively calls the pop () operation and places the
returned elements one-by-one starting from the end of the array, to the beginning of the array.

Example 5. Perform HeapSort using the data from Example 1.

Exercises.

10.
11.
12.

13.

. Where in a min heap of integers might the largest element reside (assuming all elements are

distinct)? Explain.

. Insert integers 5,3,17,10,85,2,19,6,22,4 one-by-one into an initially-empty min heap. Re-draw

the heap each time an insertion causes one or more swaps.

Repeat the previous problem, but now use the build heap algorithm. Redraw the heap each
time a call to percolate _down causes one or more swaps.

For the binary heap of Exercise 1, show the result of performing four consecutive pop operations.
Re-draw the heap after each pop.

Use induction to prove that 1 +2 +4 4 --- + 2" = 2"*1 _ 1 Conclude that 2"*! — 1 is the
maximum number of elements that can be stored in a binary heap having height h.

Provide the minimum and maximum number of elements that can be stored in a binary heap
that has height h. Show work and explain.

Is the array with values 23, 17, 14, 6, 13, 20, 10, 11, 5, 7, 12 a max-heap? If not, convert it to
one using the buildheap algorithm.

Prove that a binary heap with n nodes has exactly [n/2] leaves.

Give an example which shows that the buildheap algorithm does not work if one begins perco-
lating down with the first internal node, rather than the last internal node.

Prove that a binary heap with n elements has height |logn].
Show that there are at most [n/2""1] nodes of height h in any n-element heap.

Suppose that instead of binary heaps, we wanted to work with ternary heaps. Suggest an
appropriate indexing scheme so that a complete tree will yield a contiguous sequence. Hint:
Let the root have an index of 0. Demonstrate your indexing scheme for a complete ternary tree
of size 12.

Prove that the worst-case running time of HeapSort is O(nlogn).

10

Exercise Hints and Answers.

-~ W

10.
11.

12.

13.

. Any leaf.

Final Heap: 2,4,3,6,5,17,19,10,22,85
Final Heap: 2,3,5,6,4,17,19,10,22,85
Final Heap: 6,10,17,19,22,85,19

Inductive assumption: 142 +4 + --- 4+ 2" = 2"+ _ 1 for some h > 0. Show that 1 +2 +4 +
.._+2h+1 :2h+2_1‘

14244442 = (14244 4+ 42" 2" =
ghtl _ 1 4y ohtl 9. ghtl _ | _oh+2 _
where the third to last equality uses the inductive assumption.
Minimum: 2", maximum: 2+ — 1.
No. After using build heap, final heap: 23,17,20,11,13,14,10,6,5,7,12.

If a binary heap has n nodes, then the last internal node has index |n/2] (why?). Hence there
are n — |n/2| = [n/2] leaves.

Use the array a = 4,2,3,5,6,1,7
Use the results of Exercise 6.

Call the original heap Hy. By Exercise 8, Hy has [n/2'] leaves (i.e. nodes with height h = 0).
So it is true for h = 0. If these leaves are removed from Hj, then the resulting tree, call it Hy,
is itself a heap, and whose leaves are the nodes that have height 1 in the orginal tree. Then
H, has |n/2] nodes, and so it has [(|n/2])/2] < [n/2?] leaves. So the result is true for h = 1.
Now remove these leaves from H; to produce yet another heap Hy whose leaves are the nodes
of the original tree that have height h = 2. Argue that H, as no more than n/2? nodes, and
again apply Exercise 8. In general, prove that the k th heap, Hy, has no more than n/2* nodes,
and that these nodes correspond with the nodes of height k in Hy. Then apply Exercise 8.

Let the root have index 0. Then the children of a node with index ¢, will be 3i + 1, 3¢ + 2, and
31+ 3.

Assuming an array of distinct integers, the worst case is O(nlogn) since the ¢ th pop forces the
last element in the heap to percolate down to a leaf that has a worst-case depth of [log(n —1)].
Hence, the running time has worst case

ZUog(n —1i)| = Q(nlogn)

by applying the Integral Theorem to the series > logi.
i=1

11

