Advanced Data Structures Lab

Course Code	20CS3451	Year	II	Semester	II
Course Category	Professional Core Course Lab	Branch	CSE	Course Type	Practical
Credits	1.5	L-T-P	0-0-3	Prerequisites	Data Structures, Object Oriented Programming through C++
Continuous Internal Evaluation:	15	Semester End Evaluation:	35	Total Marks:	50

	Course Outcomes	
Upon suc	ccessful completion of the course, the student will be able to	
CO1	Apply Object oriented principles/ C++ constructs for solving problems.	L3
CO2	Implement programs as an individual on different IDEs/ online platforms.	L3
CO3	Develop an effective report based on various programs implemented.	L3
CO4	Apply technical knowledge for a given problem and express with an effective oral communication.	L3
CO5	Analyze outputs using given constraints/test cases.	L4

Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (3:Substantial, 2: Moderate, 1:Slight) PO1 PO2 PO3 PO4 PO5 PO6 **PO7 PO8 PO9** PO10 PO11 PO12 PSO1 PSO2 2 2 **CO1** 2 2 3 CO2 3 3 3 **CO3** 3 **CO4** 3 **CO5**

Expt. No.	CONTENTS	Mapped CO
1	a) Implement various Hashing Techniques.	CO1,CO2,CO3,
1	b) Develop a solution to the given problem using Hashing Techniques.	CO4,CO5
2	a) Implement Binary Heap and its operations.	C01,C02,C03,
	b) Develop a solution to the given problem using Binary Heaps.	CO4,CO5
3	a) Implement AVL Trees and its operations.	C01,C02,C03,
	b) Develop a solution to the given problem using AVL Trees.	CO4,CO5
_	a) Implement 2-3 Trees and its operations.	CO1,CO2,CO3,
5	b) Develop a solution to the given problem using 2-3 Trees.	CO4,CO5
6	a) Implement disjoint sets and its operations.	CO1,CO2,CO3,
	b) Develop a solution to the given problem by using Disjoint set.	CO4,CO5
7	Develop a solution to the given graph problem by choosing an effective	CO1,CO2,CO3,
	algorithm.	CO4,CO5
0	Develop a solution to search for a pattern string using String Search	C01,C02,C03,
8	Techniques.	CO4,CO5

	Learning Resources
	Text Books
1.	Data Structures and Algorithm Analysis in C++, Mark Allen Weiss, Fourth Edition, 2014,
	Pearson.

2. Introduction to Algorithms, Thomas H Cormen, Charles E. Leiserson, Ronald L. Rivest, Clifford Stein, Third Edition, 2009, The MIT Press.

References

- 1. Advanced Data Structures, Reema Thareja, S. Rama Sree, Oxford University Press, 2018.
- 2. Data Structures and Algorithms Made Easy by Narasimha Karumanchi, 2020, CareerMonk Publications.
- 3. Advanced Data Structures, Peter Brass, Cambridge University Press, 2008.

e-Resources and other Digital Material

- 1. https://www.youtube.com/watch?v=T0yzrZL1py0&list=PLUl4u3cNGP61hsJNdULdudlRL493b -XZf (MITOPENSOURCEWARE)
- 2. http://ocw.mit.edu/6-851S12
- 3. https://nptel.ac.in/courses/106/106/106106133/
- 4. https://www.mooc-list.com/search/node?keys=Advanced+Data+Structures