

Bob Hughes
After a career spanning both industry and higher education, Bob Hughes is based at the School of

Computing, Mathematical and Information Sciences at the University of Brighton, UK. He is currently

chair and chief moderator for the ISEB Project Management Certifi cates. He is also the moderator for the

BCS Professional Examination Diploma in Project Management.

Mike Cotterell
Mike Cotterell was formerly a senior lecturer in Information Management at the University of Brighton,

UK.

Rajib Mall
Rajib Mall has been a faculty member of the Department of Computer Science and Engineering at the

Indian Institute of Technology Kharagpur, for the last one and a half decade. He has about seven years of

work experience in the software industry in India and abroad. Dr Mall has guided more than a dozen PhD

theses and has published more than 150 papers in refereed journals and conferences. His research interests

include various aspects of software engineering and software project management.

BOB HUGHES

Principal Lecturer
School of Computing, Engineering and Mathematics

University of Brighton, United Kingdom

MIKE COTTERELL

Formerly Senior Lecturer in Information Management
University of Brighton, United Kingdom

RAJIB MALL

Professor
Department of Computer Science and Engineering

Indian Institute of Technology Kharagpur
West Bengal, India

Tata McGraw Hill Education Private Limited
NEW DELHI

McGraw-Hill Offi ces
New Delhi New York St Louis San Francisco Auckland Bogotá Caracas

Kuala Lumpur Lisbon London Madrid Mexico City Milan Montreal
San Juan Santiago Singapore Sydney Tokyo Toronto

Software Project Management, 5e

Adapted in India by arrangement with The McGraw-Hill Companies, Inc., New York

Sales Territories: India, Nepal, Bangladesh, Sri Lanka and Bhutan

Copyright © 2011, 2009, by the McGraw-Hill Companies, Inc. All rights reserved. No part of this publication may be

reproduced or distributed in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise

or stored in a database or retrieval system without the prior written permission of The McGraw-Hill Companies,

Inc. including, but not limited to, in any network or other electronic storage or transmission, or broadcast for distance

learning.

This edition can be exported from India only by the publishers,

Tata McGraw Hill Education Private Limited

ISBN-13: 978-0-07-107274-8

ISBN-10: 0-07-107274-8

Vice President and Managing Director —McGraw-Hill Education, Asia Pacifi c Region: Ajay Shukla

Head—Higher Education Publishing and Marketing: Vibha Mahajan
Manager—Sponsoring: SEM & Tech Ed.: Shalini Jha
Assoc. Sponsoring Editor: Suman Sen
Development Editor: Surbhi Suman
Sr Copy Editor: Nimisha Kapoor
Sr Production Manager: Satinder S Baveja
Jr Production Manager: Anjali Razdan
Dy Marketing Manager—SEM & Tech Ed.: Biju Ganesan
Sr Product Specialist—SEM & Tech Ed.: John Mathews

General Manager—Production: Rajender P Ghansela
Asst General Manager—Production: B L Dogra

Information contained in this work has been obtained by Tata McGraw-Hill, from sources believed to be reliable.

However, neither Tata McGraw-Hill nor its authors guarantee the accuracy or completeness of any information

published herein, and neither Tata McGraw-Hill nor its authors shall be responsible for any errors, omissions, or

damages arising out of use of this information. This work is published with the understanding that Tata McGraw-Hill

and its authors are supplying information but are not attempting to render engineering or other professional services.

If such services are required, the assistance of an appropriate professional should be sought.

Typeset at The Composers, 260, C.A. Apt., Paschim Vihar, New Delhi 110 063 and printed at

A. P. Offset Pvt. Ltd., 25/487, Zulfe Bengal, Dilshad Garden, New Delhi-110 095

Cover Printer: A. P. Offset

DLZCRZCRRCXAL

Tata McGraw-Hill

Dedication
For Pavle Bataveljic 1945–2008

Preface to the Fifth Edition (SIE) xv
Preface to the Fifth Edition xix
Guided Tour xxii

1. Introduction to Software Project Management 1

2. Project Evaluation and Programme Management 21

3. An Overview of Project Planning 47

4. Selection of an Appropriate Project Approach 68

5. Software Effort Estimation 97

6. Activity Planning 126

7. Risk Management 155

8. Resource Allocation 183

9. Monitoring and Control 202

10. Managing Contracts 233

11. Managing People in Software Environments 249

12. Working in Teams 264

13. Software Quality 288

Appendix A Prince2—An Overview 324

Appendix B Project Management Tools 335

Appendix C Answer Pointers 338

Further Reading 378

Index 383

Preface to the Fifth Edition (SIE) xv
Preface to the Fifth Edition xix
Guided Tour xxii

1. Introduction to Software Project Management 1
 1.1 Introduction 1
 1.2 Why is Software Project Management Important? 1
 1.3 What is a Project? 2
 1.4 Software Projects versus Other Types of Project 4
 1.5 Contract Management and Technical Project Management 4
 1.6 Activities Covered by Software Project Management 4
 1.7 Plans, Methods and Methodologies 7
 1.8 Some Ways of Categorizing Software Projects 8
 1.9 Stakeholders 10
 1.10 Setting Objectives 10
 1.11 The Business Case 12
 1.12 Project Success and Failure 12
 1.13 What is Management? 14
 1.14 Management Control 16
 1.15 Traditional versus Modern Project Management Practices 17
 Conclusion 18
 Annex 1 Contents List for a Project Plan 19
 Further Exercises 19

2. Project Evaluation and Programme Management 21
 2.1 Introduction 21
 2.2 A Business Case 22

x Detailed Table of Contents

 2.3 Project Portfolio Management 24
 2.4 Evaluation of Individual Projects 25
 2.5 Cost–benefi t Evaluation Techniques 27
 2.6 Risk Evaluation 33
 2.7 Programme Management 36
 2.8 Managing the Allocation of Resources within Programmes 37
 2.9 Strategic Programme Management 38
 2.10 Creating a Programme 39
 2.11 Aids to Programme Management 41
 2.12 Some Reservations about Programme Management 42
 2.13 Benefi ts Management 43
 Conclusion 45
 Further Exercises 45

3. An Overview of Project Planning 47
 3.1 Introduction to Step Wise Project Planning 47
 3.2 Step 0: Select Project 49
 3.3 Step 1: Identify Project Scope and Objectives 51
 3.4 Step 2: Identify Project Infrastructure 53
 3.5 Step 3: Analyse Project Characteristics 55
 3.6 Step 4: Identify Project Products and Activities 56
 3.7 Step 5: Estimate Effort for Each Activity 61
 3.8 Step 6: Identify Activity Risks 63
 3.9 Step 7: Allocate Resources 64
 3.10 Step 8: Review/Publicize Plan 64
 3.11 Steps 9 and 10: Execute Plan/Lower Levels of Planning 66
 Conclusion 66
 Further Exercises 67

4. Selection of an Appropriate Project Approach 68
 4.1 Introduction 68
 4.2 Build or Buy? 70
 4.3 Choosing Methodologies and Technologies 71
 4.4 Software Processes and Process Models 75
 4.5 Choice of Process Models 75
 4.6 Structure versus Speed of Delivery 75
 4.7 The Waterfall Model 76
 4.8 The Spiral Model 78
 4.9 Software Prototyping 79
 4.10 Other Ways of Categorizing Prototypes 80
 4.11 Incremental Delivery 82
 4.12 Atern/Dynamic Systems Development Method 85
 4.13 Rapid Application Development 87
 4.14 Agile Methods 88
 4.15 Extreme Programming (XP) 89
 4.16 Scrum 92
 4.17 Managing Iterative Processes 93

Detailed Table of Contents xi

 4.18 Selecting the Most Appropriate Process Model 94
 Conclusion 95
 Further Exercises 95

5. Software Effort Estimation 97
 5.1 Introduction 97
 5.2 Where are Estimates Done? 99
 5.3 Problems with Over- and Under-Estimates 101
 5.4 The Basis for Software Estimating 102
 5.5 Software Effort Estimation Techniques 103
 5.6 Bottom-up Estimating 104
 5.7 The Top-down Approach and Parametric Models 105
 5.8 Expert Judgement 106
 5.9 Estimating by Analogy 107
 5.10 Albrecht Function Point Analysis 108
 5.11 Function Points Mark II 110
 5.12 COSMIC Full Function Points 112
 5.13 COCOMO II: A Parametric Productivity Model 113
 5.14 Cost Estimation 118
 5.15 Staffi ng Pattern 118
 5.16 Effect of Schedule Compression 119
 5.17 Capers Jones Estimating Rules of Thumb 120
 Conclusion 122
 Further Exercises 123

6. Activity Planning 126
 6.1 Introduction 126
 6.2 The Objectives of Activity Planning 127
 6.3 When to Plan 128
 6.4 Project Schedules 128
 6.5 Projects and Activities 129
 6.6 Sequencing and Scheduling Activities 134
 6.7 Network Planning Models 135
 6.8 Formulating a Network Model 135
 6.9 Adding the Time Dimension 139
 6.10 The Forward Pass 139
 6.11 The Backward Pass 142
 6.12 Identifying the Critical Path 143
 6.13 Activity Float 144
 6.14 Shortening the Project Duration 145
 6.15 Identifying Critical Activities 145
 6.16 Activity-on-Arrow Networks 146
 Conclusion 153
 Further Exercises 153

7. Risk Management 155
 7.1 Introduction 155

xii Detailed Table of Contents

 7.2 Risk 156
 7.3 Categories of Risk 157
 7.4 A Framework for Dealing with Risk 159
 7.5 Risk Identifi cation 159
 7.6 Risk Assessment 160
 7.7 Risk Planning 164
 7.8 Risk Management 165
 7.9 Evaluating Risks to the Schedule 167
 7.10 Applying the PERT Technique 167
 7.11 Monte Carlo Simulation 173
 7.12 Critical Chain Concepts 175
 Conclusion 180
 Further Exercises 180

8. Resource Allocation 183
 8.1 Introduction 183
 8.2 The Nature of Resources 184
 8.3 Identifying Resource Requirements 185
 8.4 Scheduling Resources 187
 8.5 Creating Critical Paths 191
 8.6 Counting the Cost 193
 8.7 Being Specifi c 193
 8.8 Publishing the Resource Schedule 194
 8.9 Cost Schedules 194
 8.10 The Scheduling Sequence 197
 Conclusion 199
 Further Exercises 199

9. Monitoring and Control 202
 9.1 Introduction 202
 9.2 Creating the Framework 202
 9.3 Collecting the Data 205
 9.4 Review 208
 9.5 Project Termination Review 211
 9.6 Visualizing Progress 212
 9.7 Cost Monitoring 215
 9.8 Earned Value Analysis 216
 9.9 Prioritizing Monitoring 221
 9.10 Getting the Project Back to Target 222
 9.11 Change Control 224
 9.12 Software Confi guration Management (SCM) 226
 Conclusion 231
 Further Exercises 232

10. Managing Contracts 233
 10.1 Introduction 233
 10.2 Types of Contract 234

Detailed Table of Contents xiii

 10.3 Stages in Contract Placement 239
 10.4 Typical Terms of a Contract 243
 10.5 Contract Management 246
 10.6 Acceptance 246
 Conclusion 247
 Further Exercises 247

11. Managing People in Software Environments 249
 11.1 Introduction 249
 11.2 Understanding Behaviour 251
 11.3 Organizational Behaviour: A Background 252
 11.4 Selecting the Right Person for the Job 253
 11.5 Instruction in the Best Methods 255
 11.6 Motivation 255
 11.7 The Oldham–Hackman Job Characteristics Model 258
 11.8 Stress 259
 11.9 Health and Safety 260
 11.10 Some Ethical and Professional Concerns 260
 Conclusion 262
 Further Exercises 263

12. Working in Teams 264
 12.1 Introduction 264
 12.2 Becoming a Team 265
 12.3 Decision Making 268
 12.4 Organization and Team Structures 273
 12.5 Coordination Dependencies 279
 12.6 Dispersed and Virtual Teams 280
 12.7 Communication Genres 282
 12.8 Communication Plans 284
 12.9 Leadership 284
 Conclusion 286
 Further Exercises 287

13. Software Quality 288
 13.1 Introduction 288
 13.2 The Place of Software Quality in Project Planning 289
 13.3 The Importance of Software Quality 290
 13.4 Defi ning Software Quality 290
 13.5 ISO 9126 292
 13.6 Product and Process Metrics 298
 13.7 Product versus Process Quality Management 298
 13.8 Quality Management Systems 300
 13.9 Process Capability Models 302
 13.10 Techniques to Help Enhance Software Quality 310
 13.11 Testing 314
 13.12 Software Reliability 320

xiv Detailed Table of Contents

 13.13 Quality Plans 321
 Conclusion 321
 Further Exercises 322

Appendix A Prince2—An Overview 324

Appendix B Project Management Tools 335

Appendix C Answer Pointers 338

Further Reading 378

Index 383

This edition was necessitated by the requests received from a large number of practising professionals and
teachers, and students of colleges across India, to incorporate a few important topics in the fi fth adapted
edition of the book, which they felt would help make the book a more comprehensive read. While incorpo-
rating the additional material, I have made conscious attempts to maintain the style of the previous edition
of the book.

The fi fth adapted edition is primarily intended to be a textbook for students pursuing BTech, MCA. The
contents have been developed considering the requirements of students pursuing an MBA and practising IT
professionals as well. This edition can also be used as a reference reading by anyone who has completed a
fi rst-level software engineering course.

New to this edition
This edition aims to facilitate an updated study of software project management with respect to contemporary
developments in the fi eld. A distinguishing feature of the book is the presence of numerous examples of
important principles through a running case study. Contents of the previous edition have been enhanced with
several new and important topics such as

 ● Outsourced Products

 ● Software Processes and Models

 ● Software Cost, Effort and Duration Estimation

 ● LOC Estimation

 ● Effect of Schedule Change (Putnam’s results)

 ● Software Project Termination

 ● Review Processes

 ● Software Project Management Tools

 ● Process Automation

 ● Cost Performance Index (CPI)

 ● Schedule Performance Index (SPI)

xvi Preface to the Fi h Edition (SIE)

Confi guration management systems, which is an important aspect of study for any software project manager
has been provided extended coverage. The discussions on topics such as software quality management,
software testing, and life cycle models, have been strengthened by adding more depth.

Almost every chapter has been supplemented with enhanced pedagogical features, including additional
solved examples, case studies, solved exercises (111), and further exercises (108).

Given that nowadays almost every software project manager uses some form of automated tools to effec-
tively collect information, make plans, and disseminate information to the team members, an appendix on
automated tools has been added to familiarize the readers with various aspects of automated tools.

Book Overview
Chapters 1 and 2 discuss some basic issues in software project management and highlight the two major
categories of activities that every project manager undertakes: project planning, and project monitoring
and control. Chapter 3 describes the basic steps that need to be carried out by a project manager during
project planning and the exact order in which these are to be undertaken. Since project management activ-
ities to a large extent depend on the specifi c development process model adopted, Chapter 4 discusses the
relevant aspects of popular development process models, including those suitable for modern agile processes.
Chapter 5 focuses on effort and duration estimation techniques. Chapter 6 elucidates how various project
activities can be planned based on effort and duration estimations, and also explains with the help of specifi c
examples how various types of charts are used for activity planning. Since the success of a project depends to
large extent on effective management of project risks, and especially the risk of schedule slippage, Chapter 7
discusses a risk management approach with special focus on management of risks of schedule slippage using
PERT charts and Monte Carlo simulation approach. Resource allocation issues are covered in Chapter 8.
Project monitoring and control issues, including the techniques for confi guration management are discussed
in Chapter 9. The issues of contract management, human resource management, team structure, and quality
management are discussed subsequently in Chapters 10 to 13.

Online Learning Centre
This book is supported by the following additional study resources for both instructors and students. These
are available at the online learning center, which can be accessed at http://www.mhhe.com/hughes/spm5.

For Instructors
 ● Power Point Presentations

 ● Tutorial Exercises

 ● Artwork

For Students
 ● Points to Remember

 ● Hints for Selected Questions

 ● Self-test Quizzes

 ● Sample Chapter for Reading

Preface to the Fi h Edition (SIE) xvii

Acknowledgements
I am thankful to the reviewers listed below who have contributed with valuable feedback on the manuscript.

Anurag Srivastava ABV Indian Institute of Information Technology and Management, Gwalior,
Madhya Pradesh

P K Singh ABV Indian Institute of Information Technology and Management, Gwalior,
Madhya Pradesh

Nirmal Kumar Gupta Birla Institute of Technology and Science, Pilani, Rajasthan

A K Misra Motilal Nehru National Institute of Technology, Allahabad, Uttar Pradesh

Maninder Singh Thapar University, Patiala, Punjab

Rahul Katarya Delhi Technical University, New Delhi

K S Patnaik Birla Institute of Technology, Mesra, Jharkhand

Partha Ghosh Government College of Engineering and Ceramic Technology, Kolkata

Rizwan Ahmed Anjuman College of Engineering and Technology, Nagpur, Maharashtra

Gajanan P Bherde K J Somaiya College of Engineering, Mumbai, Maharashtra

Madhu Kr S D National Institute of Technology, Calicut, Kerala

G Sasikumar Vellore Institue of Technology, Vellore, Tamil Nadu

A Meiappane Pondicherry Engineering College, Pondicherry

R G Sakthivelan Mahendra Engineering College, Salem, Tamil Nadu

V Shyamala Devi K S Rangasamy College of Technology, Tiruchengode, Tamil Nadu

M S Rajasree College of Engineering, Trivandrum, Kerala

Usha M MOP Vaishnav College for Women (Autonomous), Chennai, Tamil Nadu

Shyji Elias R V College of Engineering, Bangalore, Karnataka

P V Sudha Osmania University, Hyderabad, Andhra Pradesh

I am indebted to my wife Prabina and daughter Mithi for all their encouragement and their sacrifi ce in
allowing me time to complete this work.

I gratefully acknowledge the keen cooperation and helpful suggestions received from Surbhi Suman and
Nimisha Kapoor of Tata McGraw-Hill. It would not have been possible to complete this revision in the
targeted time without their efforts.

I welcome any feedback or suggestions on this edition. You can write to me at rajib@cse.iitkgp.ernet.in or
prof_r_mall@yahoo.com

Rajib Mall

Publisher’s Note
Remember to write to us. We look forward to receiving your feedback, comments and ideas to enhance
the quality of this book. You can reach us at tmh.csefeedback@gmail.com. Please mention the title and the
author’s name as the subject. In case you spot piracy of this book, please do let us know.

Preparing the fi fth edition of this book has reminded us that project management is not just a crucial element
in successful software and IT development, but is also a fascinating topic in its own right. It is a intriguing
mixture of the technical and the very human, of the rational and also the intuitive. Initially we offered this
topic as an ancillary discipline for software engineers and IT practitioners. We have, however, become
increasingly convinced that the discipline should have a more central role: that the question of how systems
are implemented is a vital one to be asked at the same time as that of what a system is to do.

Not many software books have lasted as long as this one. Clearly the principles of project management are
less transient than those of software design and implementation, which have gone through some very major
developments over recent years. However, project management has not been immune from change. One
development has been the growth in project management bodies of knowledge such as those of the Project
Management Institute (PMI) in the United States and the Association for Project Management (APM) in the
United Kingdom. There has also been the development of project management standards such as PRINCE2.
These developments are to be welcomed as externalizing and codifying good practice—indeed we have
included an appendix on PRINCE2. However, we have resisted becoming a ‘PMI’ book or a ‘PRINCE2’
book. Partly this is because we believe that software project management, while incorporating all the key
elements of generic project management, also has to deal with the peculiar problems associated with creating
software. These include the relative intangibility of software, its extreme mallebility, the intimate relationship
it has with the system within which it is embedded, and its sheer complexity. We also wanted to avoid
means—end inversion where there was a focus on the recall of specifi c terminology and procedural detail at
the expense of an understanding of underlying concepts and purpose.

One new development that has been taken on board has been the growing awareness that a project is rarely
an isolated activity but is almost always part of a broader programme of work aimed at meeting organiza-
tional and business objectives. There are also agile approaches, such as extreme programming, which have
been a timely reminder that software development is an intensely human activity. In contrast to this emphasis
on the highly productive, highly interactive co-located team, there is also a growth of dispersed or virtual
projects where all or part of the development team is in another country or even continent. We noted these

xx Preface to the Fi h Edition

developments in previous editions but have expanded their treatment in this one—this greater emphasis on
development team dynamics has led to the creation of a chapter devoted solely to these topics.

One major problem has been the confl ict between a desire to include all the topics that our reviewers would
like to see and the desire for a concise volume that avoids ‘bloating’. Sometimes there are topics and standards
which appear to be current and of which one feels people should be aware. On closer inspection, the material
for various reasons is less useful or relevant than one hoped. In this edition we have dropped an appendix on
the British standard BS6079. This is because the new version of this has become what is essentially a general
advisory guide on project management practice. As such it duplicates materials already covered in this book.
Some individual topics have also been dropped because it was felt that they really needed a deeper treatment
better conveyed by a more specialist publication than this one: the internal rate of return (IRR) in project
evaluation and the Hofstede analysis of national cultural characteristics are examples. In general, though, we
have erred on the side of caution in retaining topics.

It seems a long time since the fi rst, rather slim, edition published in 1995. As novice authors, Cotterell and
Hughes were very indebted to Dave Hatter and Martin Campbell Kelly who had a huge infl uence on the style
of the book. Dave Hatter in particular emphasized the need for each chapter to have clear learning objectives:
ideally the reader should fi nish the chapter feeling they had learnt a new skill. He also instilled the need to
explain things clearly—to feel confi dent in using simple words to explain things that might at fi rst appear
complicated. We are aware that we have not always lived up to these values—and have been taken to task by
our students and teachers from other institutions who have kindly acted as reviewers. Many of the changes
we have made in the new edition are as a result of this process.

Acknowledgements
During the course of preparing the four previous editions since 1995, we have received assistance from many
people. These people have included: Ken 1’Anson, Chris Claire, David Howe, Martin Cimpbell Kelly, Barbara
Kitchenham (for permission to use a project data set shown in Chapter 5), Paul Radford and Robyn Lawrie of
Charismatek Software Metrics in Melbourne, David Garmus and David Herron (the last four, all for material
in Chapter 10), David Purves, David Wynne, Dick Searles, John Pyman, Jim Watson, Mary Shepherd, Sunita
Chulani, David Wilson, David Farthing, Charlie Svahnberg, Henk Koppelaar and Ian McChesney.

We have made use of materials produced by Abdullah Al Shehab and David I. Shepherd in the chapter on
risk. David also offered some advice on the developments in earned value analysis. Our colleague Marian
Eastweed helped us out on some of the fi ner points of the Unifi ed System Development Method.

We would also like to thank the team at McGraw-Hill. The role previously taken by Karen Mosman was
taken over by Catriona Hoyle (née Watson) and Katy Hamilton who, among other good things, instilled the
necessary disciplines of timelines. We have already mentioned Dave Hatter who was our former editor at
International Thomson Press and then at McGraw-Hill and we hope he continues to enjoy retirement in the
groves and glades of Essex.

Our thanks also go to the following reviewers for their comments at various stages in the text’s development:

Christopher Procter, University of Salford

Damen Dalcher, Middlesex University

David Gustafos, Kansas State University

David Farthing, University of Glamorgan

Preface to the Fi h Edition xxi

Klaus Van den Berg, University of Twente

Miroslaw Staron, IT University of Goteborg

Every effort has been made to trace and acknowledge ownership of copyright and to clear permission for
material reproduced in this book. The publishers will be pleased to make suitable arrangements to clear
permission with any copyright holders whom it has not been possible to contact.

Guided Tour
Monitoring and Control 211

9.5 Project Termination Review
A manager decides when a project should be terminated. As soon as a decision regarding project termi-
nation is taken, it is a good practice to conduct a project review meeting. Project termination reviews are
important for successful, failed, as well as prematurely abandoned projects. The project termination review
meeting marks the offi cial closure of a project. Project termination reviews provide important opportunities
to learn from past mistakes as well as successes. By analyzing past mistakes the project teams can learn to do
better by improving their methods and practices. The project termination review summary report is not only
benefi cial to the terminated project, but it can also benefi t of other teams and therefore should be disseminated
across the organization. It is important to note that project termination need not necessarily mean project
failure or premature abandonment. A project may be terminated for a variety of reasons, including successful
completion of the endeavour. When it becomes evident that the project objectives cannot be satisfactorily
met, it often makes sense to reach a negotiated closure. On the other hand, an aborted project generally means
a loss for most stakeholders. According to a report, about 31% of projects are cancelled during the devel-
opment phase. Even a failed project should not be viewed negatively. It should be realized that wisdom is
required on the part of the project manager and the stakeholders to determine when it is desirable to terminate
a project otherwise it can only be a drag on the resources without achieving anything substantial.

Reasons for project termination
Here are a few reasons why a project gets terminated before the natural closing date:

 ● Project is completed successfully and handed over to the customer.

 ● Incomplete requirements

 ● Lack of resources

 ● Some key technologies used in the project have become obsolete during project execution.

 ● Economics of the project has changed, for example, because many competing products may have
become available in the market.

Project termination process
The important activities that are carried out as a part of the project termination review process are as
follows:

 ● Project Survey The objective of the project survey activity is to collect various types of information
pertaining to the project, without compromising the confi dentiality of the respondents. An electronic
survey is usually very effective. The information is collected through a set of carefully designed
questionnaire that can bring out the important process and management issues, which have a strong
bearing on the success or failure of the project.

 ● Collection of Objective Information A critical aspect of the postmortem review is to collect various
project metrics. Real data helps to focus discussions on most crucial issues during the postmortem
review. The different types of metrics that are collected include the cost, schedule, and quality
metrics.

 ● Debriefi ng Meeting A debriefi ng meeting is a preparatory meeting that helps to ensure the fi nal project
review meeting focuses on the most relevant aspects. In this meeting, only the senior members of the
team participate. The debriefi ng meeting helps to obtain some direct feedback about the project from
the senior members of the team.

228 So ware Project Management

of the software. Therefore, a version is a confi guration that existed at certain point in time. More technically,
versioning is a numbering scheme that helps us identify a specifi c confi guration at a certain point in time.
This is achieved by a confi guration management tool by tagging the fi les resenting the confi guration items
with the version name.

Revision A revision system is a numbering scheme that is used to identify the state of a confi guration item
at any time. Each time a work product is updated its state changes. Thus, we can think of a work product
going through a series of updates till it reaches a desired state. The successive states of a work product are its
successive revisions. Thus each time a confi guration item is updated, a new revision gets formed. It becomes
possible to refer to a specifi c state of a work product by using its revision number.

Baseline A baseline is a software confi guration that has been formally reviewed and agreed upon, and serves
as a basis for further development.

Variant Variants are versions that are intended to coexist. Different variants may be needed to run the
software on different operating systems or on different hardware platforms. For example, one variant of
a mathematical computation package might run on Unix-based machines, another on Microsoft Windows
machines. Variants may also be required to be created when the software is intended to be used with different
levels of sophistication of the functionalities (e.g., novice version, enterprise version, professional version,
etc.). Variants are often created during the operation phase during the development phase, and as and when
software products with overlapping functionalities are required. Even the initial delivery of software might
consist of several versions and more variants may be created later.

In the following, we fi rst discuss the necessity of confi guration management and subsequently we discuss the
confi guration management activities and tools.

Purpose of soft ware confi guration management
There are several reasons why proper confi guration management of the work products in a project is essential.
The following are some of the important problems that can occur if a proper confi guration management
system is not used.

 ● Problems Associated with Concurrent Access Possibly the most important reason for confi guration
management is to control the access to the different deliverable objects. Unless strict discipline is
enforced regarding update and storage of different work products, several problems can appear. Let us
assume that only a single copy of a program module is maintained, and several developers are working
on it. Two developers may simultaneously carry out changes to the different functions of the same work
product, and while saving overwrite each other.

 ● Undoing Changes It becomes easy to undo some part of a revision or even rollback development to a
certain version. Unless proper confi guration management system is in place, it becomes very diffi cult
to undo a change.

 ● System Accounting System accounting denotes keeping track of who made a particular change to a
confi guration item, what change was exactly made, and when the change was made. Knowing the
what, who, and when of changes will help in understanding why changes were made and whether
some changes are redundant or for comparing the performance of particular versions. It may at times
be required to rollback to a previous baseline if a change is not justifi ed or is improper. Users may wish
to compare today’s version of some software with yesterday’s version or last year’s version. Since a
confi guration management system keeps track of every version and revision, this becomes a simple
task.

48 So ware Project Management

by PRINCE. PRINCE stands for PRojects IN Controlled Environments. PRINCE2 is in the public domain,
and offers non-proprietary best practice guidance on project management. It is a de facto standard used
extensively in UK and also internationally. In contrast, the traditional project planning approach discussed
in many other text books, and practised in many industries allows considerable fl exibility in the steps to be
carried out, and the manner in which they are carried out. However, it should be clearly understood that all
our discussions in the subsequent chapters can be used in a traditional project management situation without
any loss of generality.

In order to illustrate the Step Wise approach and how it might have to be adapted to deal with different circum-
stances, two parallel examples are used. Let us assume that there are two former Computing and Information
Systems students who now have several years of software development experience under their belts.

CASE STUDY

Example A: A Brightmouth College Payroll

Brigette has been working for the Management Services department of a local authority when she
sees an advertisement for the position of Information Systems Development Offi cer at Brightmouth
College. She is attracted to the idea of being her own boss, working in a relatively small organization
and helping them to set up appropriate information systems from scratch. She applies for the job and
gets it. One of the fi rst tasks that confronts her is the implementation of independent payroll processing.
(This scenario has already been used as the basis of some examples in Chapter 1.)

CASE STUDY

Example B: International Office Equipment Annual Maintenance Contracts

Amanda works for International Offi ce Equipment (IOE), which assembles, supplies, instals and
services various items of high-technology offi ce equipment. An expanding area of their work is the
maintenance of ICT equipment. They have now started to undertake maintenance of equipment of
which they were not the original suppliers. An existing application built by the in-house ICT department
allows sales staff to input and generate invoices for completed work. A large organization might have
to call out IOE several times during a month to deal with problems with equipment. Each month
a batch run of the system generates monthly statements for customers so that only one payment a
month needs to be made. The management of IOE would like to provide a service where for a single
annual payment customers would get free servicing and problem resolution for a pre-specifi ed set of
equipment. Amanda has been given her fi rst project management role, the task of implementing this
extension to the IOE maintenance jobs billing system.

The enhanced application will need a means of recording the details of the items of equipment to be
covered by a customer’s annual maintenance contract. The annual fee will depend on the numbers of
each type of equipment item that is to be covered. Even though the jobs done under this contract will
not be charged for, the work will be recorded to allow for an analysis of costs and the profi tability of
each customer and each type of equipment. This will provide information which will allow IOE to set
future contract prices at an optimally profi table level. At the moment, job details are only recorded
after job completion so that invoices can be generated. The new system will allow a central coordinator
to allocate jobs to engineers and the system to notify engineers of urgent jobs automatically via their
mobile phones.

Guided Tour xxiii

10 So ware Project Management

1.9 Stakeholders
These are people who have a stake or interest in the project. Their early identifi cation is important as you need
to set up adequate communication channels with them. Stakeholders can be categorized as:

 ● Internal to the project team This means that they will be under the direct managerial control of the
project leader.

 ● External to the project team but within the same organization For example, the project leader might need
the assistance of the users to carry out systems testing. Here the commitment of the people involved has
to be negotiated.

 ● External to both the project team and the organization External stakeholders may be customers (or
users) who will benefi t from the system that the project implements. They may be contractors who will
carry out work for the project. The relationship here is usually based on a contract.

Different types of stakeholder may have different objectives and one of the jobs of
the project leader is to recognize these different interests and to be able to reconcile
them. For example, end-users may be concerned with the ease of use of the new
application, while their managers may be more focused on staff savings. The project
leader therefore needs to be a good communicator and negotiator. Boehm and Ross
proposed a ‘Theory W’ of software project management where the manager concen-
trates on creating situations where all parties benefi t from a project and therefore have
an interest in its success. (The ‘W’ stands for ‘win–win’.)

Project managers can sometimes miss an important stakeholder group, especially
in unfamiliar business contexts. These could be departments supplying important
services that are taken for granted.

Given the importance of coordinating the efforts of stakeholders, the recommended
practice is for a communication plan to be created at the start of a project.

 EXERCISE 1.7

Identify the stakeholders in the Brightmouth College payroll project.

1.10 Setting Objectives
Among all these stakeholders are those who actually own the project. They control the fi nancing of the
project. They also set the objectives of the project. The objectives should defi ne what the project team must
achieve for project success. Although different stakeholders have different motivations, the project objectives
identify the shared intentions for the project.

Objectives focus on the desired outcomes of the project rather than the tasks within it – they are the ‘post-con-
ditions’ of the project. Informally the objectives could be written as a set of statements following the opening
words ‘the project will be a success if. . . .’ Thus one statement in a set of objectives might be ‘customers can
order our products online’ rather than ‘to build an e-commerce website’. There is often more than one way to
meet an objective and the more possible routes to success the better.

B.W. Boehm and R.
Ross, ‘Theory W soft-
ware project manage-
ment: principles and
examples’, in B. W.
Boehm (ed.) (1989)
Software Risk Manage-
ment, IEEE Computer
Society Press.

The role and format
of communication
plans will be explained
in greater detail in
Chapter 11 on manag-
ing people in software
environments.

APPENDIX

B

Software project management usually requires carrying out a large amount of book-keeping activities, charting,
computation, and additionally involves collecting information from customers and team members as well as
disseminating information to them. These are some of the activities in which use of automated tools can be of
great help. Let us now briefl y examine these activities. Examples of computational activities in which a tool
can be invaluable include estimation of various project parameters and computation of critical paths. A tool
can also help a project manager effectively and effi ciently develop various charts such as GANTT and PERT
charts. A tool can also help in regular collection of different types of information pertaining to the progress of
the project such as tracking important mile stones can help in revising the different types of charts based on
the information collected, and also in communicating them to the team members over a web interface.

In the absence of automation support, a signifi cant part of a project manager’s time is wasted in mundane
activities. For this reason, it is very important for a project manager to make use of suitable tools. A large
variety of project management tools are available commercially as well as free (GPL) software. These tools
come with various levels of sophistication, usability, and cost. To be able to decide upon a suitable tool to use
for a specifi c project, it is necessary for a project manager to have an understanding of the features supported
by different tools. Broadly, there are two main categories of tools, viz., desktop-based and web-based tools.
The desktop-based tools can be used only on the computer on which it is installed, whereas a web-based tool
can be invoked from any computer in a network.

In the following, we review two commercial project management tools, viz., Microsoft Project and Oracle’s
Primavera SureTrak. We also review Ganttproject as a representative GPL software tool. A summary of
the features of these three tools is presented in Table B.1. For handling small and simple projects, GPL
software tools such as Ganttproject can be suffi cient. When it is required to manage large projects or several
projects that share resources, more sophisticated tools such as Microsoft Project or Oracle Primavera may be
necessary. It should also be remembered that learning to use a sophisticated project management package is
usually much more diffi cult compared to simpler ones.

232 So ware Project Management

FURTHER EXERCISES

 1. Take a look at Amanda’s project schedule shown in Figure 8.7. Identify those activities scheduled to last
more than three weeks and describe how she might monitor progress on each of them on a fortnightly
or weekly basis.

 2. Amanda’s Gantt chart at the end of week 17 (Figure 9.5) indicates that two activities are running late.
What effect might this have on the rest of the project? How might Amanda mitigate the effects of this
delay?

 3. Table 9.2 illustrates Amanda’s earned value calculations based on work-days. Revise the table using
monetary values based on the cost fi gures that you used in Exercise 8.5. Think carefully about how to
handle the costs of Amanda as project manager and the recovered overheads and justify your decisions
about how you treat them.

 4. If you have access to project planning software, investigate the extent to which it offers support for
earned value analysis. If it does not do so directly, investigate ways in which it would help you to
generate a baseline budget (PV) and track the earned value (EV).

 5. Describe a set of change control procedures that would be appropriate for Brigette to implement at
Brightmouth College.

 6. Give examples of errors that can be identifi ed in a design review.

 7. Give examples of how project termination review results can change the development process and the
project management process.

 8. Suppose a project is budgeted to cost £150,000. The project is to be completed in 18 months. After two
months, the project is 10% complete at an expense of £25,000. It was planned that after two months,
15% of the project work should have been completed. Compute the cost performance index and the
schedule performance index. Interpret these values to assess the progress of the project.

 9. What problems are you likely to face if you are developing several versions of the same software
product according to a client’s request and are not using any confi guration management tools?

 10. What do you understand by software confi guration? What is meant by software confi guration
management? How can you manage software confi guration (only mention the names of the principal
activities involved)? Why is software confi guration management crucial to the success of large software
product development projects (write only the important reasons)?

 11. What is a baseline in the context of software confi guration management? How do baselines get updated
to form new baselines?

 12. How the following can be prevented while using a confi guration management tool? Explain.

 (a) Two team members overwriting each other’s work

 (b) Accidental deletion of work product

 (c) Unauthorized modifi cations to a work product

Online Learning Centre

This book is supported by the following additional study

resources for both instructors and students. These are avail-

able at the online learning center, which can be accessed at

http://www.mhhe.com/hughes/spm6.

For Instructors

 ● Power Point Presentations
 ● Tutorial Exercises
 ● Artwork

For Students

 ● Points to Remember
 ● Hints for Selected Questions
 ● Self-test Quizzes
 ● Sample Chapter for Reading

1

 OBJECTIVES
When you have completed this chapter you will be able to:

defi ne the scope of ‘software project management’;•
understand some problems and concerns of software project managers;•
defi ne the usual stages of a software project;•
explain the main elements of the role of management;•
appreciate the need for careful planning, monitoring and control;•
identify the stakeholders of a project and their objectives;•
defi ne the success criteria for a project.•

1.1 Introduction
This textbook is about ‘software project management’. The fi rst question is whether the management of
software projects is really that different from that of other projects. To answer this, we need to look at some
key ideas about the planning, monitoring and control of software projects. We will see that all projects are
about meeting objectives. Like any other project, a software project must satisfy real needs. To do this we
must identify the project’s stakeholders and their objectives. Ensuring that their objectives are met is the aim
of project management. However, we cannot know that a project will meet its objectives in the future unless
we know the present state of the project.

1.2 Why is Soft ware Project Management Important?
This book is for students of software engineering and computer science and also those studying business
information systems. More technically oriented students can be impatient at having to study something which
keeps them away from their code. So why is it important to become familiar with project management?

2 So ware Project Management

First, there is the question of money. A lot of money is at stake with ICT projects. In the
United Kingdom during the fi nancial year 2002–2003, the central government spent
more on contracts for ICT projects than on contracts related to roads (about £2.3 billion
as opposed to £1.4 billion). The biggest departmental spender was the Department for
Work and Pensions, who spent over £800 million on ICT. Mismanagement of ICT
projects means that there is less to spend on good things such as hospitals.

Unfortunately, projects are not always successful. In a report published in 2003, the
Standish Group in the United States analysed 13,522 projects and concluded that only
a third of projects were successful; 82% of projects were late and 43% exceeded their
budget.

The reason for these project shortcomings is often the management of projects. The
National Audit Offi ce in the UK, for example, among other factors causing project
failure identifi ed ‘lack of skills and proven approach to project management and risk
management’.

1.3 What is a Project?
The dictionary defi nitions put a clear emphasis on the project being a planned
activity.

The emphasis on being planned assumes we can determine how to carry out a task
before we start. Yet with exploratory projects this might be diffi cult. Planning is in
essence thinking carefully about something before you do it – even with uncertain
projects this is worth doing as long as the resulting plans are seen as provisional. Other
activities, such as routine maintenance, will have been performed so many times that
everyone knows exactly what to do. In these cases, planning hardly seems necessary,

although procedures might be documented to ensure consistency and to help newcomers.

The activities that benefi t most from conventional project management are likely to
lie between these two extremes – see Figure 1.1.

There is a hazy boundary between the non-routine project and the routine job. The
fi rst time you do a routine task it will be like a project. On the other hand, a project to

develop a system similar to previous ones that you have developed will have a large element of the routine.

FIGURE 1.1 Ac vi es most likely to benefi t from project management

The information in this
paragraph comes from
a National Audit Offi ce
report, Improving
IT Procurement,
November 2004.

There has been some
debate about the
precise validity of the
Standish fi ndings but
the key point about
the prevalence of IT
project failings remains
clear.

Dictionary defi nitions

of ‘project’ include: ‘A
specifi c plan or design’
‘A planned undertaking’
‘A large undertaking:
e.g. a public works
scheme’, Longman
Concise English
Dictionary, 1982.

Programme manage-
ment is often used to
coordinate activities on
concurrent jobs.

Introduction to So ware Project Management 3

The following characteristics distinguish projects:

 ● non-routine tasks are involved;

 ● planning is required;

 ● specifi c objectives are to be met or a specifi ed product is to be created;

 ● the project has a predetermined time span;

 ● work is carried out for someone other than yourself;

 ● work involves several specialisms;

 ● people are formed into a temporary work group to carry out the task;

 ● work is carried out in several phases;

 ● the resources that are available for use on the project are constrained;

 ● the project is large or complex.

The more any of these factors apply to a task, the more diffi cult that task will be. Project size is particularly
important. The project that employs 20 developers is likely to be disproportionately more diffi cult than one
with only 10 staff because of the need for additional coordination. The examples and exercises used in
this book usually relate to smaller projects in order to make the techniques easier to grasp. However, the
techniques and issues discussed are of equal relevance to larger projects.

 EXERCISE 1.1

Consider the following:

 ● producing an edition of a newspaper;

 ● putting a robot vehicle on Mars to search for signs of life;

 ● getting married;

 ● amending a fi nancial computer system to deal with a common European currency;

 ● a research project into what makes a good human–computer interface;

 ● an investigation into the reason why a user has a problem with a computer system;

 ● a second-year programming assignment for a computing student;

 ● writing an operating system for a new computer;

 ● installing a new version of a word processing package in an organization.

Some seem more like real projects than others. Put them into an order most closely matching your ideas
of what constitutes a project. For each entry in the ordered list, describe the difference between it and
the one above which makes it less worthy of the term ‘project’.

There is no one correct answer to this exercise, but a possible solution to this and the other exercises
you will come across may be found at the end of the book.

Some argue that projects are especially problematic as they are temporary sub-orga-
nizations. A group of people is brought together to carry out a task. The existence of
this sub-organization cuts across the authority of the existing units within the organi-
zation. This has the advantage that a group containing various specialists is focused
on a single important task. However, the project is likely to be seen as disruptive to

For example, see Rolf
A. Lundin and Andres
Söderholm (1995)
‘A theory of the tem-
porary organization’
Scandinavian Journal
of Management 11(4)
437–55.

4 So ware Project Management

others. Also, expertise built up during the project may be lost when the team is eventually dispersed at the
end of the project.

1.4 Soft ware Projects versus Other Types of Project
Many techniques in general project management also apply to software project
management, but Fred Brooks identifi ed some characteristics of software projects
which make them particularly diffi cult:

Invisibility When a physical artefact such as a bridge is constructed the progress can
actually be seen. With software, progress is not immediately visible. Software project
management can be seen as the process of making the invisible visible.

Complexity Per dollar, pound or euro spent, software products contain more complexity
than other engineered artefacts.

Conformity The ‘traditional’ engineer usually works with physical systems and materials like cement and
steel. These physical systems have complexity, but are governed by consistent physical laws. Software devel-
opers have to conform to the requirements of human clients. It is not just that individuals can be inconsistent.
Organizations, because of lapses in collective memory, in internal communication or in effective decision
making, can exhibit remarkable ‘organizational stupidity’.

Flexibility That software is easy to change is seen as a strength. However, where the software system inter-
faces with a physical or organizational system, it is expected that the software will change to accommodate
the other components rather than vice versa. Thus software systems are particularly subject to change.

1.5 Contract Management and Technical Project Management
In-house projects are where the users and the developers of new software work for the same organization.
However, increasingly organizations contract out ICT development to outside developers. Here, the client
organization will often appoint a ‘project manager’ to supervise the contract who will delegate many techni-
cally oriented decisions to the contractors. Thus, the project manager will not worry about estimating the
effort needed to write individual software components as long as the overall project is within budget and on
time. On the supplier side, there will need to be project managers who deal with the more technical issues.
This book leans towards the concerns of these ‘technical’ project managers.

1.6 Activities Covered by Soft ware Project Management
A software project is not only concerned with the actual writing of software. In fact,
where a software application is bought ‘off the shelf’, there may be no software
writing as such, but this is still fundamentally a software project because so many of
the other activities associated with software will still be present.

Usually there are three successive processes that bring a new system into being – see Figure 1.2.

 1. The feasibility study assesses whether a project is worth starting – that it has a valid business case.
Information is gathered about the requirements of the proposed application. Requirements elicitation
can, at least initially, be complex and diffi cult. The stakeholders may know the aims they wish to

F. P. Brooks (1987).
‘No silver bullet: es-
sence and accidents
of software engineer-
ing’. This essay has
been included in The
Mythical Man-Month,
Anniversary Edition,
Addison Wesley, 1995.

Chapter 4 on project
analysis and technical
planning looks at some
alternative life cycles.

Introduction to So ware Project Management 5

pursue, but not be sure about the means of achievement. The developmental and
operational costs, and the value of the benefi ts of the new system, will also have
to be estimated. With a large system, the feasibility study could be a project in
its own right with its own plan. The study could be part of a strategic planning
exercise examining a range of potential software developments. Sometimes an organization assesses a
programme of development made up of a number of projects.

 2. Planning If the feasibility study indicates that the prospective project appears
viable, then project planning can start. For larger projects, we would not do all
our detailed planning at the beginning. We create an outline plan for the whole
project and a detailed one for the fi rst stage. Because we will have more detailed
and accurate project information after the earlier stages of the project have been
completed, planning of the later stages is left to nearer their start.

 3. Project execution The project can now be executed. The execution of a project
often contains design and implementation sub-phases. Students new to project
planning often fi nd that the boundary between design and planning can be hazy. Design is making
decisions about the form of the products to be created. This could relate to the external appearance of
the software, that is, the user interface, or the internal architecture. The plan details the activities to be
carried out to create these products. Planning and design can be confused because at the most detailed
level, planning decisions are infl uenced by design decisions. Thus a software product with fi ve major
components is likely to require fi ve sets of activities to create them.

Figure 1.3 shows the typical sequence of software development activities recom-
mended in the international standard ISO 12207. Some activities are concerned with
the system while others relate to software. The development of software will be only
one part of a project. Software could be developed, for example, for a project which
also requires the installation of an ICT infrastructure, the design of user jobs and user
training.

 ● Requirements analysis starts with requirements elicitation or requirements
gathering which establishes what the potential users and their managers require
of the new system. It could relate to a function – that the system should do
something. It could be a quality requirement – how well the functions must work. An example of this is

FIGURE 1.2 The feasibility study/plan/execu on cycle

Chapter 2 explores
some further as-
pects of programme
management.

The PRINCE2 method,
which is described in
Appendix A, takes this
iterative approach to
planning. Annex 1 to
this chapter has an
outline of the content
of a plan.

Figure 1.3 suggests
that these stages must
be done strictly in se-
quence – we will see
in Chapter 4 that other,
iterative approaches
can be adopted.
However, the actual
activities listed here
would still be done.

6 So ware Project Management

dispatching an ambulance in response to an emergency telephone call. In this case transaction time would
be affected by hardware and software performance as well as the speed of human operation. Training to
ensure that operators use the computer system effi ciently is an example of a system requirement for the
project, as opposed to a specifi cally software requirement. There would also be resource requirements
that relate to application development costs.

 ● Architecture design The components of the new system that fulfi l each requirement have to be identifi ed.
Existing components may be able to satisfy some requirements. In other cases, a new component
will have to be made. These components are not only software: they could be new hardware or work
processes. Although software developers are primarily concerned with software components, it is very
rare that these can be developed in isolation. They will, for example, have to take account of existing
legacy systems with which they will interoperate. The design of the system architecture is thus an
input to the software requirements. A second architecture design process then takes place that maps the
software requirements to software components.

 ● Detailed design Each software component is made up of a number of software units that can be
separately coded and tested. The detailed design of these units is carried out separately.

FIGURE 1.3 The ISO 12207 so ware development life cycle

Introduction to So ware Project Management 7

 ● Code and test refers to writing code for each software unit. Initial testing to debug individual software
units would be carried out at this stage.

 ● Integration The components are tested together to see if they meet the overall requirements. Integration
could involve combining different software components, or combining and testing the software element
of the system in conjunction with the hardware platforms and user interactions.

 ● Qualifi cation testing The system, including the software components, has to be tested carefully to
ensure that all the requirements have been fulfi lled.

 ● Installation This is the process of making the new system operational. It would include activities such
as setting up standing data (for example, the details for employees in a payroll system), setting system
parameters, installing the software onto the hardware platforms and user training.

 ● Acceptance support This is the resolving of problems with the newly installed system, including the
correction of any errors, and implementing agreed extensions and improvements. Software maintenance
can be seen as a series of minor software projects. In many environments, most software development
is in fact maintenance.

 EXERCISE 1.2

Brightmouth College is a higher education institution which used to be managed by a local government
authority but has now become autonomous. Its payroll is still administered by the local authority and
pay slips and other output are produced in the local authority’s computer centre. The authority now
charges the college for this service. The college management are of the opinion that it would be cheaper
to obtain an ‘off-the shelf’ payroll package and do the payroll processing themselves.

What would be the main stages of the project to convert to independent payroll processing by the
college? Bearing in mind that an off-the-shelf package is to be used, how would this project differ from
one where the software was to be written from scratch?

 EXERCISE 1.3

Assume that a software organization development has been asked to carry out a feasibility study to
develop the payroll package for Brightmouth College. The development organization plans to develop
the software by customizing one of its existing products. What are the main steps through which the
project manager of the organization would carry out the feasibility study?

1.7 Plans, Methods and Methodologies
A plan for an activity must be based on some idea of a method of work. For example, if you were asked to
test some software, you may know nothing about the software to be tested, but you could assume that you
would need to:

 ● analyse the requirements for the software;

 ● devise and write test cases that will check that each requirement has been satisfi ed;

8 So ware Project Management

 ● create test scripts and expected results for each test case;

 ● compare the actual results and the expected results and identify discrepancies.

While a method relates to a type of activity in general, a plan takes that method (and perhaps others) and
converts it to real activities, identifying for each activity:

 ● its start and end dates;

 ● who will carry it out;

 ● what tools and materials – including information – will be needed.

The output from one method might be the input to another. Groups of methods or techniques are often
grouped into methodologies such as object-oriented design.

 EXERCISE 1.4

This should ideally be done in groups of about four, but you can think about how you would go about
this exercise on your own if needs be. You are probably in a building that has more than one storey.
From the point of view of this exercise, the bigger the building the better.

In a group of four, work out how you would obtain an accurate estimate of the height of the building.
(If you happen to be in a single-storey building, you can estimate the fl oor area instead!) Plan how
you would carry out any actions needed to obtain your estimate. Spend 20 minutes on this – you must
remain in the same room for this planning phase. Once planning is complete, implement your plan,
timing how long it takes to produce your fi nal fi gure.

If there is more than one group carrying out this exercise, after completion of the task you can compare
answers and also the approach you used when coming up with your answer.

1.8 Some Ways of Categorizing Soft ware Projects
Projects may differ because of the different technical products to be created. Thus we need to identify the
characteristics of a project which could affect the way in which it should be planned and managed. Other
factors are discussed below.

Compulsory versus voluntary users
In workplaces there are systems that staff have to use if they want to do something, such as recording a sale.
However, use of a system is increasingly voluntary, as in the case of computer games. Here it is diffi cult to
elicit precise requirements from potential users as we could with a business system. What the game will do
will thus depend much on the informed ingenuity of the developers, along with techniques such as market
surveys, focus groups and prototype evaluation.

Information systems versus embedded systems
A traditional distinction has been between information systems which enable staff to
carry out offi ce processes and embedded systems which control machines. A stock
control system would be an information system. An embedded, or process control,
system might control the air conditioning equipment in a building. Some systems may

have elements of both where, for example, the stock control system also controls an automated warehouse.

Embedded systems
are also called real-
time or industrial
systems.

Introduction to So ware Project Management 9

 EXERCISE 1.5

Would an operating system on a computer be an information system or an embedded system?

Outsourced projects
While developing a large project, sometimes, it makes good commercial sense for a company to outsource
some parts of its work to other companies. There can be several reasons behind such a decision. For example,
a company may consider outsourcing as a good option, if it feels that it does not have suffi cient expertise to
develop some specifi c parts of the product or if it determines that some parts can be developed cost-effec-
tively by another company. Since an outsourced project is a small part of some project, it is usually small in
size and needs to be completed within a few months. Considering these differences between an outsourced
project and a conventional project, managing an outsourced project entails special challenges.

Indian software companies excel in executing outsourced software projects and have earned a fi ne reputation
in this fi eld all over the world. Of late, the Indian companies have slowly begun to focus on product devel-
opment as well.

The type of development work being handled by a company can have an impact on its profi tability. For
example, a company that has developed a generic software product usually gets an uninterrupted stream of
revenue over several years. However, outsourced projects fetch only one time revenue to any company.

Objective-driven development
Projects may be distinguished by whether their aim is to produce a product or to meet
certain objectives.

A project might be to create a product, the details of which have been specifi ed by the
client. The client has the responsibility for justifying the product.

On the other hand, the project requirement might be to meet certain objectives which
could be met in a number of ways. An organization might have a problem and ask a
specialist to recommend a solution.

Many software projects have two stages. First is an objective-driven project resulting in recommendations.
This might identify the need for a new software system. The next stage is a project actually to create the
software product.

This is useful where the technical work is being done by an external group and the user needs are unclear at
the outset. The external group can produce a preliminary design at a fi xed fee. If the design is acceptable the
developers can then quote a price for the second, implementation, stage based on an agreed requirement.

 EXERCISE 1.6

Would the project, to implement an independent payroll system at the Brightmouth College described
in Exercise 1.2, above, be an objective-driven project or a product-driven project?

Service level agree-
ments are becoming
increasingly important
as organizations
contract out functions
to external service
suppliers.

10 So ware Project Management

1.9 Stakeholders
These are people who have a stake or interest in the project. Their early identifi cation is important as you need
to set up adequate communication channels with them. Stakeholders can be categorized as:

 ● Internal to the project team This means that they will be under the direct managerial control of the
project leader.

 ● External to the project team but within the same organization For example, the project leader might need
the assistance of the users to carry out systems testing. Here the commitment of the people involved has
to be negotiated.

 ● External to both the project team and the organization External stakeholders may be customers (or
users) who will benefi t from the system that the project implements. They may be contractors who will
carry out work for the project. The relationship here is usually based on a contract.

Different types of stakeholder may have different objectives and one of the jobs of
the project leader is to recognize these different interests and to be able to reconcile
them. For example, end-users may be concerned with the ease of use of the new
application, while their managers may be more focused on staff savings. The project
leader therefore needs to be a good communicator and negotiator. Boehm and Ross
proposed a ‘Theory W’ of software project management where the manager concen-
trates on creating situations where all parties benefi t from a project and therefore have
an interest in its success. (The ‘W’ stands for ‘win–win’.)

Project managers can sometimes miss an important stakeholder group, especially
in unfamiliar business contexts. These could be departments supplying important
services that are taken for granted.

Given the importance of coordinating the efforts of stakeholders, the recommended
practice is for a communication plan to be created at the start of a project.

 EXERCISE 1.7

Identify the stakeholders in the Brightmouth College payroll project.

1.10 Setting Objectives
Among all these stakeholders are those who actually own the project. They control the fi nancing of the
project. They also set the objectives of the project. The objectives should defi ne what the project team must
achieve for project success. Although different stakeholders have different motivations, the project objectives
identify the shared intentions for the project.

Objectives focus on the desired outcomes of the project rather than the tasks within it – they are the ‘post-con-
ditions’ of the project. Informally the objectives could be written as a set of statements following the opening
words ‘the project will be a success if. . . .’ Thus one statement in a set of objectives might be ‘customers can
order our products online’ rather than ‘to build an e-commerce website’. There is often more than one way to
meet an objective and the more possible routes to success the better.

B.W. Boehm and R.
Ross, ‘Theory W soft-
ware project manage-
ment: principles and
examples’, in B. W.
Boehm (ed.) (1989)
Software Risk Manage-
ment, IEEE Computer
Society Press.

The role and format
of communication
plans will be explained
in greater detail in
Chapter 11 on manag-
ing people in software
environments.

Introduction to So ware Project Management 11

There may be several stakeholders, including users in different business areas, who might have some claim to
project ownership. In such a case, a project authority needs to be explicitly identifi ed with overall authority
over the project.

This authority is often a project steering committee (or project board or project
management board) with overall responsibility for setting, monitoring and modifying
objectives. The project manager runs the project on a day-to-day basis, but regularly
reports to the steering committee.

Sub-objectives and goals
An effective objective for an individual must be something that is within the control
of that individual. An objective might be that the software application produced must
pay for itself by reducing staff costs. As an overall business objective this might be
reasonable. For software developers it would be unreasonable as any reduction in
operational staff costs depends not just on them but on the operational management
of the delivered system. A more appropriate goal or sub-objective for the software
developers would be to keep development costs within a certain budget.

We can say that in order to achieve the objective we must achieve certain goals or sub-objectives fi rst. These
are steps on the way to achieving an objective, just as goals scored in a football match are steps towards the
objective of winning the match. Informally this can be expressed as a set of statements following the words
‘To reach objective. . ., the following must be in place. . .’.

The mnemonic SMART is sometimes used to describe well-defi ned objectives:

 ● Specifi c Effective objectives are concrete and well defi ned. Vague aspirations
such as ‘to improve customer relations’ are unsatisfactory. Objectives should be
defi ned so that it is obvious to all whether the project has been successful.

 ● Measurable Ideally there should be measures of effectiveness which tell us how
successful the project has been. For example, ‘to reduce customer complaints’
would be more satisfactory as an objective than ‘to improve customer relations’.
The measure can, in some cases, be an answer to simple yes/no question, e.g.
‘Did we install the new software by 1 June?’

 ● Achievable It must be within the power of the individual or group to achieve the objective.

 ● Relevant The objective must be relevant to the true purpose of the project.

 ● Time constrained There should be a defi ned point in time by which the objective should have been
achieved.

 EXERCISE 1.8

Bearing in mind the above discussion of objectives, comment on the appropriateness of the wording of
each of the following ‘objectives’ for software developers:

 (i) to implement the new application on time and within budget;

 (ii) to implement the new software application with the fewest possible software errors that might lead
to operational failures;

This committee is likely
to contain user, devel-
opment and manage-
ment representatives.

Defi ning sub-objectives
requires assumptions
about how the main
objective is to be
achieved.

This still leaves a prob-
lem about the level at
which the target should
be set, e.g. why, say, a
50% reduction in com-
plaints and not 40% or
60%?

12 So ware Project Management

 (iii) to design a system that is user-friendly;

 (iv) to produce full documentation for the new system.

Measures of eff ectiveness
Measures of effectiveness provide practical methods of checking that an objective
has been met. ‘Mean time between failures’ (mtbf) might, for example, be used to
measure reliability. This is a performance measurement and, as such, can only be
taken once the system is operational. Project managers want to get some idea of the
performance of the completed system as it is being constructed. They will therefore

seek predictive measures. For example, a large number of errors found during code inspections might indicate
potential problems with reliability later.

 EXERCISE 1.9

Identify the objectives and sub-objectives of the Brightmouth College payroll project. What measures
of effectiveness could be used to check the success in achieving the objectives of the project?

1.11 Th e Business Case
Most projects need to have a justifi cation or business case: the effort and expense of
pushing the project through must be seen to be worthwhile in terms of the benefi ts
that will eventually be felt. A cost–benefi t analysis will often be part of the project’s
feasibility study. This will itemize and quantify the project’s costs and benefi ts. The
benefi ts will be affected by the completion date: the sooner the project is completed,
the sooner the benefi ts can be experienced. The quantifi cation of benefi ts will often
require the formulation of a business model which explains how the new application

can generate the claimed benefi ts.

A simple example of a business model is that a new web-based application might allow customers from all
over the world to order a fi rm’s products via the internet, increasing sales and thus increasing revenue and
profi ts.

Any project plan must ensure that the business case is kept intact. For example:

 ● that development costs are not allowed to rise to a level which threatens to exceed the value of
benefi ts;

 ● that the features of the system are not reduced to a level where the expected benefi ts cannot be
realized;

 ● that the delivery date is not delayed so that there is an unacceptable loss of benefi ts.

1.12 Project Success and Failure
The project plan should be designed to ensure project success by preserving the business case for the project.
However, every non-trivial project will have problems, and at what stage do we say that a project is actually
a failure? Because different stakeholders have different interests, some stakeholders in a project might see it
as a success while others do not.

These concepts are
explained more fully
in Chapter 13 on soft-
ware quality.

The business case
should be established
at the time of the proj-
ect’s feasibility study.
Chapter 2 explains
the idea of a business
case in more detail.

Introduction to So ware Project Management 13

Broadly speaking, we can distinguish between project objectives and business objec-
tives. The project objectives are the targets that the project team is expected to achieve.
In the case of software projects, they can usually be summarized as delivering:

 ● the agreed functionality

 ● to the required level of quality

 ● on time

 ● within budget.

A project could meet these targets but the application, once delivered could fail to meet the business case. A
computer game could be delivered on time and within budget, but might then not sell. A commercial website
used for online sales could be created successfully, but customers might not use it to buy products, because
they could buy the goods more cheaply elsewhere.

We have seen that in business terms it can generally be said that a project is a success if
the value of benefi ts exceeds the costs. We have also seen that while project managers
have considerable control over development costs, the value of the benefi ts of the
project deliverables is dependent on external factors such as the number of customers.
Project objectives still have some bearing on eventual business success. As we will
see in Chapter 2, increasing development costs reduce the chances of the delivered
product being profi table. A delay in completion reduces the amount of time during which benefi ts can be
generated and diminishes the value of the project.

A project can be a success on delivery but then be a business failure, On the other hand, a project could be
late and over budget, but its deliverables could still, over time, generate benefi ts that outweigh the initial
expenditure.

Some argue that the possible gap between project and business concerns can be reduced by having a broader
view of projects that includes business issues. For example, the project management of an e-commerce
website implementation could plan activities such as market surveys, competitor analysis, focus groups,
prototyping, and evaluation by typical potential users – all designed to reduce business risks.

Because the focus of project management is, not unnaturally, on the immediate project,
it may not be seen that the project is actually one of a sequence. Later projects benefi t
from the technical skills learnt on earlier projects. Technical learning will increase
costs on the earlier projects, but later projects benefi t as the learnt technologies can
be deployed more quickly, cheaply and accurately. This expertise is often accom-
panied by additional software assets, for example reusable code. Where software
development is outsourced, there may be immediate savings, but these longer-term
benefi ts of increased expertise will be lost. Astute managers may assess which areas
of technical expertise it would be benefi cial to develop.

Customer relationships can also be built up over a number of projects. If a client has trust in a supplier who
has done satisfactory work in the past, they are more likely to use that company again, particularly if the new
requirement builds on functionality already delivered. It is much more expensive to acquire new clients than
it is to retain existing ones.

A good introduction to
the issues discussed
here can be found in
A. J. Shenhar and O.
Levy (1997) ‘Mapping
the dimensions of proj-
ect success’ Project
Management Journal
28(2) 9–12.

The assessment of
the value of project
benefi ts is explored
in greater depth in
Chapter 2.

For a wider discussion
of the relationships be-
tween successive proj-
ects, see M. Engwall
(2003) ‘No project is an
island: linking projects
to history and context’
Research Policy 32
789–808.

14 So ware Project Management

1.13 What is Management?
We have explored some of the special characteristics of software. We now look at the ‘management’ aspect of
software project management. It has been suggested that management involves the following activities:

 ● planning – deciding what is to be done;

 ● organizing – making arrangements;

 ● staffi ng – selecting the right people for the job etc.;

 ● directing – giving instructions;

 ● monitoring – checking on progress;

 ● controlling – taking action to remedy hold-ups;

 ● innovating – coming up with new solutions;

 ● representing – liaising with clients, users, developer, suppliers and other stakeholders.

 EXERCISE 1.10

Paul Duggan is the manager of a software development section. On Tuesday at 10.00 a.m. he and his
fellow section heads have a meeting with their group manager about the staffi ng requirements for
the coming year. Paul has already drafted a document ‘bidding’ for staff. This is based on the work
planned for his section for the next year. The document is discussed at the meeting. At 2.00 p.m. Paul
has a meeting with his senior staff about an important project his section is undertaking. One of the
programming staff has just had a road accident and will be in hospital for some time. It is decided that
the project can be kept on schedule by transferring another team member from less urgent work to this
project. A temporary replacement is to be brought in to do the less urgent work but this may take a week
or so to arrange. Paul has to phone both the human resources manager about getting a replacement and
the user for whom the less urgent work is being done, explaining why it is likely to be delayed.

Identify which of the eight management responsibilities listed above Paul was responding to at different
points during his day.

Much of the project manager’s time is spent on only three of the eight identifi ed activities, viz., project
planning, monitoring, and control. The time period during which these activities are carried out is indicated
in Fig. 1.4. It shows that project management is carried out over three well-defi ned stages or processes,
irrespective of the methodology used. In the project initiation stage, an initial plan is made. As the project
starts, the project is monitored and controlled to proceed as planned. However, the initial plan is revised
periodically to accommodate additional details and constraints about the project as they become available.
Finally, the project is closed. In the project closing stage, all activities are logically completed and all contracts
are formally closed.

Initial project planning is undertaken immediately after the feasibility study phase and before starting the
requirements analysis and specifi cation process. Figure 1.4 shows this project initiation period. Initial project
planning involves estimating several characteristics of a project. Based on these estimates, all subsequent
project activities are planned. The initial project plans are revised periodically as the project progresses and
more project data becomes available. Once the project execution starts, monitoring and control activities are
taken up to ensure that the project execution proceeds as planned. The monitoring activity involves monitoring
the progress of the project. Control activities are initiated to minimize any signifi cant variation in the plan.

Introduction to So ware Project Management 15

Project planning is an important responsibility of the project manager. During project planning, the project
manager needs to perform a few well-defi ned activities that have been outlined below. Note that we have
given a very brief description of these activities in this chapter. We will discuss these activities in more detail
in subsequent chapters. Several best practices have been proposed for software project planning activities.
In Chapter 3 we will discuss Step Wise, which is based on the popular PRINCE2 (PRojects IN Controlled
Environments) method. While PRINCE2 is used extensively in the UK and Europe, similar software project
management best practices have been put forward in the USA by the Project Management Institute’s ‘PMBOK’
which refers to their publication ‘A Guide to the Project Management Body of Knowledge.’

 ● Estimation The following project attributes are estimated.

 ● Cost How much is it going to cost to complete the project?

 ● Duration How long is it going to take to complete the project?

 ● Effort How much effort would be necessary for completing the project?

The effectiveness of all activities such as scheduling and staffi ng, which are planned at a later stage, depends
on the accuracy with which the above three project parameters have been estimated.

 ● Scheduling Based on estimations of effort and duration, the schedules for manpower and other resources
are developed.

 ● Staffi ng Staff organization and staffi ng plans are made.

 ● Risk Management This activity includes risk identifi cation, analysis, and abatement planning.

 ● Miscellaneous Plans This includes making several other plans such as quality assurance plan, confi gu-
ration management plan, etc.

Project monitoring and control activities are undertaken after the initiation of development activities. The
aim of project monitoring and control activities is to ensure that the software development proceeds as
planned. While carrying out project monitoring and control activities, a project manager may sometimes
fi nd it necessary to change the plan to cope with specifi c situations and make the plan more accurate as more
project data becomes available.

At the start of a project, the project manager does not have complete knowledge about the details of the
project. As the project progresses through different development phases, the manager’s information base
gradually improves. The complexities of different project activities become clear, some of the anticipated
risks get resolved, and new risks appear. The project parameters are re-estimated periodically incorporating
new understanding and change in project parameters. By taking these developments into account, the project
manager can plan subsequent activities more accurately with increasing levels of confi dence. Figure 1.4
shows this aspect as iterations between monitoring and control, and the plan revision activities.

FIGURE 1.4 Principal project management processes

16 So ware Project Management

1.14 Management Control
Management, in general, involves setting objectives for a system and then monitoring the performance of
the system. In Figure 1.5 the ‘real world’ is shown as being rather formless. Especially in the case of large
undertakings, there will be a lot going on about which management should be aware.

 EXERCISE 1.11

An ICT project is to replace locally held paper-based records with a centrally organized database. Staff
in a large number of offi ces that are geographically dispersed need training and will then have to use
the new ICT system to set up the backlog of manual records on the new database. The system cannot be
properly operational until the last record has been transferred. The new system will only be successful
if new transactions can be processed within certain time cycles.

Identify the data that you would collect to ensure that during execution of the project things were going
to plan.

This will involve the local managers in data collection. Bare details, such as ‘location X has processed 2000
documents’, will not be very useful to higher management: data processing will be needed to transform this
raw data into useful information. This might be in such forms as ‘percentage of records processed’, ‘average
documents processed per day per person’ and ‘estimated completion date’.

FIGURE 1.5 The project control cycle

Introduction to So ware Project Management 17

In our example, the project management might examine the ‘estimated completion date’ for completing
data transfer for each branch. These can be checked against the overall target date for completion of this
phase of the project. In effect they are comparing actual performance with one aspect of the overall project
objectives. They might fi nd that one or two branches will fail to complete the transfer of details in time.
They would then need to consider what to do (this is represented in Figure 1.5 by the box Making decisions/
plans). One possibility would be to move staff temporarily from one branch to another. If this is done, there
is always the danger that while the completion date for the one branch is pulled back to before the overall
target date, the date for the branch from which staff are being moved is pushed forward beyond that date. The
project manager would need to calculate carefully what the impact would be in moving staff from particular
branches. This is modelling the consequences of a potential solution. Several different proposals could be
modelled in this way before one was chosen for implementation.

Having implemented the decision, the situation needs to be kept under review by collecting and processing
further progress details. For instance, the next time that progress is reported, a branch to which staff have been
transferred could still be behind in transferring details. This might be because the reason why the branch has
got behind in transferring details is because the manual records are incomplete and another department, for
whom the project has a low priority, has to be involved in providing the missing information. In this case,
transferring extra staff to do data inputting will not have accelerated data transfer.

It can be seen that a project plan is dynamic and will need constant adjustment during the execution of the
project. Courses and books on project management (such as this one) often focus considerable attention
on project planning. While this is to be expected, with nearly all projects much more time is spent actually
doing the project rather than planning it. A good plan provides a foundation for a good project, but is nothing
without intelligent execution. The original plan will not be set in stone but will be modifi ed to take account
of changing circumstances.

1.15 Traditional versus Modern Project Management Practices
Over the last two decades, the basic approach taken by the software industry to develop software has undergone
a radical change. Hardly any software is being developed from scratch any more. Software development
projects are increasingly being based on either tailoring some existing product or reusing certain pre-built
libraries. In either case, two important goals of recent life cycle models are maximization of code reuse and
compression of project durations. Other goals include facilitating and accommodating client feedbacks and
customer participation in project development work, and incremental delivery of the product with evolving
functionalities. Change requests from customers are encouraged, rather than circumvented. Clients on the
other hand, are demanding further reductions in product delivery times and costs. These recent developments
have changed project management practices in many signifi cant ways. In the following section, we will discuss
some important differences between modern project management practices and traditional practices.

 ● Planning Incremental Delivery Few decades ago, projects were much simpler and therefore more
predictable than the present day projects. In those days, projects were planned with suffi cient detail,
much before the actual project execution started. After the project initiation, monitoring and control
activities were carried out to ensure that the project execution proceeded as per plan. Now, projects
are required to be completed over a much shorter duration, and rapid application development and
deployment are considered key strategies. The traditional long-term planning has given way to adaptive
short-term planning. Instead of making a long-term project completion plan, the project manager now
plans all incremental deliveries with evolving functionalities. This type of project management is

18 So ware Project Management

often called extreme project management. Extreme project management is a highly fl exible approach
to project management that concentrates on the human side of project management (e.g., managing
project stakeholders), rather than formal and complex planning and monitoring techniques.

 ● Quality Management Of late, customer awareness about product quality has increased signifi cantly.
Tasks associated with quality management have become an important responsibility of the project
manager. The key responsibilities of a project manager now include assessment of project progress and
tracking the quality of all intermediate artifacts. We will discuss quality management issues in Chapter
13.

 ● Change Management Earlier, when the requirements were signed off by the customer, any changes
to the requirements were rarely entertained. Customer suggestions are now actively being solicited
and incorporated throughout the development process. To facilitate customer feedback, incremental
delivery models are popularly being used. Product development is being carried out through a series of
product versions implementing increasingly greater functionalities. Also customer feedback is solicited
on each version for incorporation. This has made it necessary for an organization to keep track of the
various versions and revisions through which the product develops. Another reason for the increased
importance of keeping track of the versions and revisions is the following. Application development
through customization has become a popular business model. Therefore, existence of a large number of
versions of a product and the need to support these by a development organization has become common.
In this context, the project manager plays a key role in product base lining and version control. This has
made change management a crucial responsibility of the project manager. Change management is also
known as confi guration management. We will discuss change management in Chapter 9.

 EXERCISE 1.12

Assume that the development of the pay roll package of Brightmouth College has been entrusted to an
organization who would develop it by customizing one of its products. Discuss the main stages through
which the organization could carry out project development?

CONCLUSION

This chapter has laid a foundation for the remainder of the book by defi ning what is meant by various terms
such as ‘software project’ and ‘management’. Among some of the more important points that have been made
are the following:

 ● Projects are by defi nition non-routine and therefore more uncertain than normal undertakings.

 ● Software projects are similar to other projects but have some attributes that present particular diffi -
culties, e.g. the relative invisibility of many of their products.

 ● A key factor in project success is having clear objectives. Different stakeholders in a project, however, are
likely to have different objectives. This points to the need for a recognized overall project authority.

 ● For objectives to be effective there must be practical ways of testing that the objectives have been
met.

 ● Where projects involve many different people, effective channels of information have to be established.
Having objective measures of success helps unambiguous communication between the various parties
to a project.

Introduction to So ware Project Management 19

ANNEX 1 CONTENTS LIST FOR A PROJECT PLAN

 ● Introduction

 ● Background: including reference to the business case

 ● Project objectives

 ● Constraints – these could be included with project objectives

 ● Methods

 ● Project products: both deliverable products that the client will receive and inter-
mediate products

 ● Activities to be carried out

 ● Resources to be used

 ● Risks to the project

 ● Management of the project, including

 ■ organizational responsibilities

 ■ management of quality

 ■ confi guration management

FURTHER EXERCISES

 1. List the problems you experienced when you carried out a recent ICT-related assignment. Try to put
these problems into some order of magnitude. For each problem consider whether there was some way
in which the problem could have been reduced by better organization and planning by yourself.

 2. Identify the main types of personnel employed in an information systems department. For each stage
of a typical IS development project, list the types of personnel who are likely to be involved.

 3. A public library is considering the implementation of a computer-based system to help administer book
loans at libraries. Identify the stakeholders in such a project. What might be the objectives of such a
project and how might the success of the project be measured in practical terms?

 4. A software house has developed a customized order processing system for a client. You are an employee
of the software house that has been asked to organize a training course for the end-users of the system.
At present, a user handbook has been produced, but no specifi c training material. A plan is now needed
for the project which will set up the delivery of the training courses. The project can be assumed to have
been completed when the fi rst training course starts. Among the things that will need to be considered
are the following:

 ● training materials will need to be designed and created;

 ● a timetable will need to be drafted and agreed;

 ● date(s) for the course will need to be arranged;

 ● the people attending the course will need to be identifi ed and notifi ed;

 ● rooms and computer facilities for the course will need to be provided.

The detail that goes
into these sections will
be explained in later
chapters. For example,
Chapter 7 relates to
risk while Chapter 13
explains aspects of the
management of quality.

20 So ware Project Management

A Identify the main stakeholders for this project.

B Draw up objectives for this project.

C For the objectives, identify the measures of effectiveness.

D For each objective, write down sub-objectives or goals and the stakeholders who will be respon-
sible for their achievement.

 5. A manager is in charge of a sub-project of a larger project. The sub-project requires the transfer of paper
documents into a computer-based document retrieval system and their subsequent indexing so that they
can be accessed via key-words. Optical character readers are to be used for the initial transfer but the
text then needs to be clerically checked and corrected by staff. The project is currently scheduled to
take 12 months using permanent staff. A small budget is available to hire temporary staff in the case of
staff absences through holidays, sickness or temporary transfer to other, more urgent, jobs. Discuss the
control system that will need to be in place to control that sub-project.

 6. The idea behind a project is that students should be able to access details of available placements via
an intranet. When there is a placement opportunity for which they wish to be considered, they would
be able to apply for it electronically. This would cause a copy of their CV, which would also be held
online, to be sent to the potential employer.

 Details of interviews and placement offers would all be sent by e-mail. While some human intervention
would be needed, the process would be automated as far as possible.

 You are required to produce a business case report for such an application, which justifi es the potential
development by showing that the value of its potential benefi ts outweighs its development and opera-
tional costs.

 Create lists of the main benefi ts and costs for the project. You do not have to specify actual fi gures, just
the headings under which they would appear.

 7. Distinguish between software product development and outsourced projects. Explain the key ways in
which managing an outsourcing project differs from a product development project.

 8. Identify the important characteristics of software development projects which make these harder to
manage compared to other types of projects. Say for example, a building construction project.

 9. What is the difference between a method and a methodology? What are the essential items that must be
planned before carrying out a method or methodology?

 10. Identify the main differences between managing the development of a conventional project and an
outsourced project.

 11. Identify the key aspects in which modern software project management practices differ from those of
traditional software project management.

 12. Explain the major activities carried out by a software project manager and the order in which these are
carried out.

2

 OBJECTIVES
When you have completed this chapter you will be able to:

describe the contents of a typical business plan;•
explain project portfolio management;•
carry out an evaluation and selection of projects against strategic, technical and economic criteria;•
use a variety of cost–benefi t evaluation techniques for choosing among competing project •
proposals;
evaluate the business risk involved in a project;•
explain how individual projects can be grouped into programmes;•
explain how the implementation of programmes and projects can be managed so that the planned •
benefi ts are achieved.

2.1 Introduction
The fi rst that many developers hear of an ICT project is when they are allocated to the project team. However,
new projects do not appear out of thin air. There will be some process – varying in sophistication between
organizations – that decides that the project is worth doing.

As we saw in Chapter 1, sometimes managers justify a commitment to a single project as the benefi ts will
exceed the costs of the implementation and operation of the new application. In other cases, managers would
not approve a project on its own, but can see that it enables the fulfi lment of strategic objectives when
combined with other projects.

Thus a project to establish an ICT infrastructure within an organization might not deliver a direct fi nancial
benefi t, but could provide a platform for subsequent projects to do so.

22 So ware Project Management

It might not be possible to measure the benefi ts of a project in fi nancial terms. If you create a system which
allows the more accurate recording of data concerning the medical condition of patients, it might contribute
to the alleviation of pain and the preservation of life, but it would be diffi cult to put a money value on these.

The last chapter emphasized that an ICT or software project needed a business case. In this chapter we
explain what such a document might contain. A business case may be presented for several potential projects,
but there may be money or staff time for only some of the projects. Managers need some way of deciding
which projects to select. This is part of portfolio management. This chapter will discuss some ways in which
projects can be evaluated and compared for inclusion in a project portfolio. The chapter fi nishes by discussing
the way groups of projects which together contribute to a common business objective can be managed as
programmes of projects.

2.2 A Business Case
Organizations may have different titles such as a feasibility study or a project justifi -
cation for what we call the business case. Its objective is to provide a rationale for the
project by showing that the benefi ts of the project outcomes will exceed the costs of
development, implementation and operation (or production).

Typically a business case document might contain:

 1. Introduction and background to the proposal

 2. The proposed project

 3. The market

 4. Organizational and operational infrastructure

 5. The benefi ts

 6. Outline implementation plan

 7. Costs

 8. The fi nancial case

 9. Risks

 10. Management plan

These sections will now be described in more detail.

Introduction and background
This is a description of the current environment of the proposed project. A problem to be solved or an oppor-
tunity to be exploited is identifi ed.

Th e proposed project
A brief outline of the proposed project is provided.

Th e market
This is needed when the project is to create new product or a new service capability.
This would contain information like the estimated demand for the product or service
and any likely competitors.

The section on the
business case draws
on B. Hughes (2008)
Exploiting IT for busi-
ness benefi t. British
Computer Society.

In Section 2.3 we will
explore further the dif-
ference between new
product development
and renewal projects.

Project Evaluation and Programme Management 23

Organizational and operational infrastructure
This describes how the structure of the organization will be affected by the implementation of the project.
This is of most relevance where the project is implementing or modifying an information system as part of a
broader business change project. It would also be relevant if a tailored production or distribution system has
to be set up when a new product is designed.

Benefi ts
Where possible, a fi nancial value should be put on the benefi ts of the implemented project. For commercial
organizations this could be related to increased profi ts caused either by increasing income or by making
savings on costs. For not-for-profi t organizations we would try to quantify the benefi ts even if we cannot
quote a precise fi nancial value. In an example we used earlier relating to an IT system that improved the
diagnosis of a particular disease, an increase in the rate of diagnosis might be quoted.

Outline implementation plan
In addition to the ICT aspects of the project, activities such as marketing, promotion and operational and
maintenance infrastructures need to be considered. One consideration will be which project activities can be
outsourced, and which are best kept in-house.

This will also detail the management of the implementation. The responsibilities are allocated for the tasks
identifi ed in the outline implementation plan. Key decision points or milestones, where a health-check on the
state of the implementation is taken, should be identifi ed. As we will see, for a large implementation a number
of projects may be needed which can be managed as a programme.

Costs
Having outlined the steps needed to set up the operations needed by the proposal, a schedule of expected costs
associated with the planned approach can now be presented.

There will clearly be some uncertainties about some of the costs, especially as the details of the requirements
have not yet been worked out.

Th e fi nancial case
There are a number of ways in which the information on income and costs can be analysed and these will be
the subject of the section on evaluation techniques later in this chapter.

Risks
Once again a more detailed discussion of risks will follow in a later section. We note here that many estimates
of costs and, more particularly, benefi ts of the project will be speculative at this stage and the section on risk
should take account of this. In the last chapter we distinguished between project and business objectives.
We can similarly distinguish project risk – relating to threats to successful project execution – from business

24 So ware Project Management

risk – relating to factors threatening the benefi ts of the delivered project. In the business case the main focus
is on business risk.

2.3 Project Portfolio Management
Portfolio project management provides an overview of all the projects that an organi-
zation is undertaking or is considering. It prioritizes the allocation of resources to
projects and decides which new projects should be accepted and which existing ones
should be dropped.

The concerns of project portfolio management include:

 ● identifying which project proposals are worth implementation;

 ● assessing the amount of risk of failure that a potential project has;

 ● deciding how to share limited resources, including staff time and fi nance, between
projects – one problem can be that too many projects are started given the resources
available so that inevitably some projects will miss planned completion dates;

 ● being aware of the dependencies between projects, especially where several projects need to be
completed for an organization to reap benefi ts;

 ● ensuring that projects do not duplicate work;

 ● ensuring that necessary developments have not been inadvertently been missed.

The three key aspects of project portfolio management are portfolio defi nition, portfolio management and
portfolio optimization. An organization would undertake portfolio defi nition before adopting portfolio
management and then proceeding to optimization.

Project portfolio defi nition
An organization should record in a single repository details of all current projects. A
decision will be needed about whether projects of all types are to be included. Should
just ICT projects be included in the repository, or should other projects such as the
setting up of a new warehouse also be included? One problem for many organiza-
tions is that projects can be divided into new product developments (NPD) where the
project deliverable is a product, such as a computer game, that is sold to customers,
and renewal projects which improve the way an organization operates – information
systems projects are often like this. The distinction is not always clear-cut. For

example, a new information system could be used to provide a customer service such as recording the details
of people buying a new insurance product.

NPD projects are often more frequent in organizations which have a continuous development of new goods
and services. Renewal projects may be less frequent and thus inherently more risky as there is less experience
of these types of project. NPD projects fi nd attracting funding easier with their clear relationship between the
project and income. Where both types of project call upon the same pools of resources, including fi nance, the
argument for a common portfolio is strong.

Quite a good introduc-
tion to the concepts of
portfolios can be found
in B. De Reyck et al.
‘The impact of project
portfolio management
on information technol-
ogy projects’ (2005)
International Journal of
Project Management
23 524–37.

Warren McFarlan’s
(1981) ‘Portfolio ap-
proach to information
systems’ Harvard
Business Review 59(5)
142–50 introduced the
portfolio concept to in-
formation systems.

Project Evaluation and Programme Management 25

Project portfolio management
Once the portfolio has been established, more detailed costings of projects can be recorded. The value that
managers hope will be generated by each project can also be recorded. Actual performance of projects on
these performance indicators can then be tracked. This information can be the basis for the more rigorous
screening of new projects.

Project portfolio optimization
The performance of the portfolio can be tracked by high-level managers on a regular basis. A better balance
of projects may be achieved. Some projects could potentially be very profi table but could also be risky. In
the case of an e-commerce site, for example, sales may not be as great as hoped because established compet-
itors reduce prices. Other projects could have modest benefi ts, such as those cutting costs by automating
processes, but have fewer risks. The portfolio ought to have a carefully thought-out balance between the two
types of project.

Some problems with project portfolio management
An important role of project portfolio management is sharing resources between
projects. There can be problems because while apparently full-time staff are allocated
to a project, they may effectively be part-time because they still have routine work to
do. This is particularly so with users, and with developers who may on occasion be
called away from project work to deal with support tasks.

The offi cial project portfolio may not accurately refl ect organizational activity if some
projects are excluded. A formal decision may be made that only projects over a certain
level of cost will be recorded in the portfolio.

The ‘below the line’ projects could in fact consume substantial staff effort and bleed
away effort from the offi cial projects. It can be argued that all projects should be
included in the offi cial portfolio.

However, there are advantages in allowing these tasks. It allows small ad hoc tasks to be done, such as
quick fi xes to systems to deal with externally imposed changes. They reduce work for higher management
by saving them from having to process a large number of small work requests. Developers may fi nd these
small tasks rewarding: dealing with these small requests is an easy way to keep users happy. Thus when
allocating resources to projects, a margin should be set to allow fi rst-line managers some judgement in
accepting non-planned work.

2.4 Evaluation of Individual Projects
We will now look more closely at how the feasibility of an individual project can be evaluated.

Technical assessment
Technical assessment of a proposed system consists of evaluating whether the required functionality can
be achieved with current affordable technologies. Organizational policy, aimed at providing a consistent
hardware/software infrastructure, is likely to limit the technical solutions considered. The costs of the
technology adopted must be taken into account in the cost–benefi t analysis.

Interesting insights into
the practical problems
of portfolios can be
found in B. S. Blichfeldt
and P. Eskerod (2008)
‘Project portfolio man-
agement – there’s
more to it than man-
agement enacts’ Inter-
national Journal of
Project Management
26: 357–65.

26 So ware Project Management

Cost–benefi t analysis
Even where the estimated benefi ts will exceed the estimated costs, it is often necessary
to decide if the proposed project is the best of several options. Not all projects can
be undertaken at any one time and, in any case, the most valuable projects should get
most resources.

Cost–benefi t analysis comprises two steps:

 ● Identifying all of the costs and benefi ts of carrying out the project and operating the delivered appli-
cation These include the development costs, the operating costs and the benefi ts expected from the new
system. Where the proposed system is a replacement, these estimates should refl ect the change in costs
and benefi ts due to the new system. A new sales order processing system, for example, could only claim
to benefi t an organization by the increase in sales due to the use of the new system.

 ● Expressing these costs and benefi ts in common units We must express each cost and benefi t – and the
net benefi t which is the difference between the two – in money.

 Most direct costs are easy to quantify in monetary terms and can be categorized as:

 ● development costs, including development staff costs;

 ● setup costs, consisting of the costs of putting the system into place, mainly of any
new hardware but also including the costs of fi le conversion, recruitment and staff
training;

 ● operational costs relating to operating the system after installation.

 EXERCISE 2.1

Brightmouth College is considering the replacement of the existing payroll service, operated by a third
party, with a tailored, off-the-shelf computer-based system. List some of the costs it might consider
under the headings of:

 ● Development costs

 ● Setup costs

 ● Operational costs

List some of the benefi ts under the headings:

 ● Quantifi ed and valued benefi ts

 ● Quantifi ed but not valued

 ● Identifi ed but not easily valued

For each cost or benefi t, explain how, in principle, it might be measured in monetary terms.

Cash fl ow forecasting
As important as estimating the overall costs and benefi ts of a project is producing
a cash fl ow forecast which indicates when expenditure and income will take place
(Figure 2.1).

Any project aiming at
a return on investment
must, as a minimum,
provide a greater ben-
efi t than putting that
investment in, say, a
bank.

The different types of
benefi ts will be dis-
cussed in greater detail
in the context of ben-
efi ts management later
in this chapter.

Typically products gen-
erate a negative cash
fl ow during their devel-
opment followed by a
positive cash fl ow over
their operating life.
There might be decom-
missioning costs at the
end of a product’s life.

Project Evaluation and Programme Management 27

We need to spend money, such as staff wages, during a project’s development.
Such expenditure cannot wait until income is received (either from using software
developed in-house use or from selling it). We need to know that we can fund this
development expenditure either from the company’s own resources or by borrowing.
A forecast is needed of when expenditure, such as the payment of salaries, and any
income are to be expected.

Accurate cash fl ow forecasting is diffi cult, as it is done early in the project’s life
cycle (at least before any signifi cant expenditure is committed) and many items to
be estimated (particularly the benefi ts of using software) might be some years in the
future.

FIGURE 2.1 Typical product life cycle cash fl ow

When estimating future cash fl ows, it is usual to ignore the effects of infl ation. Forecasts of infl ation rates tend
to be uncertain. Moreover, if expenditure is increased due to infl ation it is likely that income will increase
proportionately.

2.5 Cost–benefi t Evaluation Techniques
We now take a look at some methods for comparing projects on the basis of their cash fl ow forecasts.

Table 2.1 illustrates cash fl ow forecasts for four projects. In each case it is assumed that the cash fl ows
take place at the end of each year. For short-term projects or where there are signifi cant seasonal cash fl ow
patterns, quarterly, or even monthly, cash fl ow forecasts could be appropriate.

TABLE 2.1 Four project cash fl ow projec ons – fi gures are end of year totals (£)

Year Project 1 Project 2 Project 3 Project 4

0 –100,000 –1,000,000 –100,000 –120,000

1 10,000 200,000 30,000 30,000

2 10,000 200,000 30,000 30,000

3 10,000 200,000 30,000 30,000

4 20,000 200,000 30,000 30,000

5 100,000 300,000 30,000 75,000

Net profi t 50,000 100,000 50,000 75,000

The diffi culty and
importance of cash
fl ow forecasting is
evidenced by the
number of companies
that suffer bankruptcy
because, although
they are developing
profi table products or
services, they cannot
sustain an unplanned
negative cash fl ow.

28 So ware Project Management

EXERCISE 2.2

Consider the project cash fl ow estimates for four projects at JOE shown in Table 2.1. Negative values
represent expenditure and positive values income.

Rank the four projects in order of fi nancial desirability and make a note of your reasons for ranking
them in that way before reading further.

Net profi t
The net profi t of a project is the difference between the total costs and the total income over the life of the
project. Project 2 in Table 2.1 shows the greatest net profi t but this is at the expense of a large investment.
Indeed, if we had £1 m to invest, we might undertake all of the other three projects and obtain an even greater
net profi t. Note also that all projects contain an element of risk and we might not be prepared to risk £1 m.
We shall look at the effects of risk and investment later in this chapter.

Moreover, the simple net profi t takes no account of the timing of the cash fl ows.
Projects 1 and 3 each have a net profi t of £50,000 and therefore, according to this
selection criterion, would be equally preferable. The bulk of the income occurs late
in the life of project 1, whereas project 3 returns a steady income throughout its life.
Having to wait for a return has the disadvantage that the investment must be funded
for longer. Add to that the fact that, other things being equal, estimates in the more

distant future are less reliable than short-term estimates and we can see that the two projects are not equally
preferable.

Payback period
The payback period is the time taken to break even or pay back the initial investment. Normally, the project
with the shortest payback period will be chosen on the basis that an organization will wish to minimize the
time that a project is ‘in debt’.

 EXERCISE 2.3

Consider the four project cash fl ows given in Table 2.1 and calculate the payback period for each of
them.

The advantage of the payback period is that it is simple to calculate and is not particularly sensitive to small
forecasting errors. Its disadvantage as a selection technique is that it ignores the overall profi tability of the
project – in fact, it totally ignores any income (or expenditure) once the project has broken even. Thus the fact
that projects 2 and 4 are, overall, more profi table than project 3 is ignored.

Return on investment
The return on investment (ROI), also known as the accounting rate of return (ARR), provides a way of
comparing the net profi tability to the investment required. There are some variations on the formula used to
calculate the return on investment but a straightforward common version is:

Cash fl ows take place
at the end of each
year. The year 0 repre-
sents the initial invest-
ment made at the start
of the project.

Project Evaluation and Programme Management 29

ROI =
average annual profit

total investment
3 100

 EXERCISE 2.4

Calculating the ROI for project 1, the net profi t is £50,000 and the total investment is £100,000. The
return on investment is therefore calculated as

 ROI =
average annual profit

total investment
3 100

 =
50,000 /5

100,000
3 100 = 10%

Calculate the ROI for each of the other projects shown in Table 2.1 and decide which, on the basis of
this criterion, is the most worthwhile.

The return on investment provides a simple, easy-to-calculate measure of return on capital. Unfortunately,
it suffers from two severe disadvantages. Like the net profi tability, it takes no account of the timing of the
cash fl ows. More importantly, this rate of return bears no relationship to the interest rates offered or charged
by banks (or any other normal interest rate) since it takes no account of the timing of the cash fl ows or of the
compounding of interest. It is therefore, potentially, very misleading.

Net present value
The calculation of net present value is a project evaluation technique that takes into
account the profi tability of a project and the timing of the cash fl ows that are produced.
This is based on the view that receiving £100 today is better than having to wait until
next year to receive it. We could, for example, invest the £100 in a bank today and
have £100 plus the interest in a year’s time. If we say that the present value of £100
in a year’s time is £91, we mean that £100 in a year’s time is the equivalent of £91
now.

The equivalence of £91 now and £100 in a year’s time means we are discounting the
future income by approximately 10%. If we received £91 now and invested it for a
year at an annual interest rate of 10%, it would be worth £100 in a year’s time. The
annual rate by which we discount future earnings is known as the discount rate – 10%
in the above example.

Similarly, £100 received in two years’ time would have a present value of approxi-
mately £83 – in other words, £83 invested at an interest rate of 10% would yield
approximately £100 in two years’ time.

The present value of any future cash fl ow may be obtained by applying the following
formula

Present value =
+(1)t

value in year t

r

Net present value
(NPV) and internal
rate of return (IRR) are
collectively known as
discounted cash fl ow
(DCF) techniques.

Note that this example
uses approximate
fi gures.

A rate of 10% may
be unrealistic but is
used here for ease of
calculation.

30 So ware Project Management

where r is the discount rate, expressed as a decimal value, and t is the number of years into the future that the
cash fl ow occurs.

Alternatively, and rather more easily, the present value of a cash fl ow may be calcu-
lated by multiplying the cash fl ow by the appropriate discount factor. A small table of
discount factors is given in Table 2.2.

The NPV for a project is obtained by discounting each cash fl ow (both negative
and positive) and summing the discounted values. It is normally assumed that any
initial investment takes place immediately (indicated as year 0) and is not discounted.
Later cash fl ows are normally assumed to take place at the end of each year and are
discounted by the appropriate amount.

TABLE 2.2 NPV discount factors

Discount rate (%)

Year 5 6 8 10 12 15

1 0.9524 0.9434 0.9259 0.9091 0.8929 0.8696

2 0.9070 0.8900 0.8573 0.8264 0.7972 0.7561

3 0.8638 0.8396 0.7938 0.7513 0.7118 0.6575

4 0.8227 0.7921 0.7350 0.6830 0.6355 0.5718

5 0.7835 0.7473 0.6806 0.6209 0.5674 0.4972

6 0.7462 0.7050 0.6302 0.5645 0.5066 0.4323

7 0.7107 0.6651 0.5835 0.5132 0.4523 0.3759

8 0.6768 0.6274 0.5403 0.4665 0.4039 0.3269

9 0.6446 0.5919 0.5002 0.4241 0.3606 0.2843

10 0.6139 0.5584 0.4632 0.3855 0.3220 0.2472

15 0.4810 0.4173 0.3152 0.2394 0.1827 0.1229

20 0.3769 0.3118 0.2145 0.1486 0.1037 0.0611

25 0.2953 0.2330 0.1460 0.0923 0.0588 0.0304

 EXERCISE 2.5

Assuming a 10% discount rate, the NPV for project 1 (Table 2.1) would be calculated as in Table 2.3.
The net present value for project 1, using a 10% discount rate, is therefore £618. Using a 10% discount
rate, calculate the net present values for projects 2, 3 and 4 and decide which, on the basis of this, is the
most benefi cial to pursue.

More extensive or
detailed tables may be
constructed using the
formula discount fac-
tor

+

1

(1)tt
 for various

values of r(the discount
rate) and t (the number
of years from now).

Project Evaluation and Programme Management 31

TABLE 2.3 Applying the discount factors to project 1

Year Project 1 cash fl ow (£) Discount factor @ 10% Discounted cash fl ow (£)

0 –100,000 1.0000 –100,000

1 10,000 0.9091 9,091

2 10,000 0.8264 8,264

3 10,000 0.7513 7,513

4 20,000 0.6830 13,660

5 100,000 0.6209 62,090

Net Profi t: £50,000 NPV: £618

It is interesting to note that the net present values for projects 1 and 3 are signifi cantly different – even though
they both yield the same net profi t and both have the same return on investment. The difference in NPV
refl ects the fact that, with project 1, we must wait longer for the bulk of the income.

The main diffi culty with NPV for deciding between projects is selecting an appropriate discount rate. Some
organizations have a standard rate but, where this is not the case, then the discount rate should be chosen
to refl ect available interest rates (borrowing costs where the project must be funded from loans) plus some
premium to refl ect the fact that software projects are normally more risky than lending money to a bank.
The exact discount rate is normally less important than ensuring that the same discount rate is used for all
projects being compared. However, it is important to check that the ranking of projects is not sensitive to
small changes in the discount rate – have a look at the following exercise.

 EXERCISE 2.6

Calculate the net present value for each of the projects A, B and C shown in Table 2.4 using each of the
discount rates 8%, 10% and 12%.

For each of the discount rates, decide which is the best project. What can you conclude from these
results?

TABLE 2.4 Three es mated project cash fl ows

Year Project A (£) Project B (£) Project C (£)

0 –8,000 –8,000 –10,000

1 4,000 1,000 2,000

2 4,000 2,000 2,000

(Contd)

32 So ware Project Management

3 2,000 4,000 6,000

4 1,000 3,000 2,000

5 500 9,000 2,000

6 500 −6,000 2,000

Net Profi t 4,000 5,000 6,000

Alternatively, the discount rate can be thought of as a target rate of return. If, for example, we set a target rate
of return of 15% we would reject any project that did not display a positive net present value using a 15%
discount rate. Any project that displayed a positive NPV would be considered for selection – perhaps by using
an additional set of criteria where candidate projects were competing for resources.

Internal rate of return
One disadvantage of NPV as a measure of profi tability is that, although it may be used to compare projects,
it might not be directly comparable with earnings from other investments or the costs of borrowing capital.
Such costs are usually quoted as a percentage interest rate. The internal rate of return (IRR) attempts to
provide a profi tability measure as a percentage return that is directly comparable with interest rates. Thus, a
project that showed an estimated IRR of 10% would be worthwhile if the capital could be borrowed for less
than 10% or if the capital could not be invested elsewhere for a return greater than 10%.

The IRR is calculated as that percentage discount rate that would produce an NPV of zero. It is most easily
calculated using a spreadsheet or other computer program that provides functions for calculating the IRR.
Microsoft Excel, for example, provides IRR functions which, provided with an initial guess or seed value
(which may be zero), will search for and return an IRR.

One defi ciency of the IRR is that it does not indicate the absolute size of the return. A project with an NPV
of £100,000 and an IRR of 15% can be more attractive than one with an NPV of £10,000 and an IRR of 18%
– the return on capital is lower but the net benefi ts greater.

Another objection to the internal rate of return is that, under certain conditions, it is possible to fi nd more than
one rate that will produce a zero NPV. However, if there are multiple solutions, it is always appropriate to take
the lowest value and ignore the others.

NPV and IRR are not, however, a complete answer to economic project evaluation.

 ● A total evaluation must also take into account the problems of funding the cash fl ows – will we, for
example, be able to repay the interest on any borrowed money at the appropriate time?

 ● While a project’s IRR might indicate a profi table project, future earnings from a relatively risky project
might be far less reliable than earnings from, say, investing with a bank. We might undertake a more
detailed risk analysis as described below.

 ● We must also consider any one project within the fi nancial and economic framework of the organi-
zation as a whole – if we fund this one, will we also be able to fund other worthy projects?

(Contd)

Project Evaluation and Programme Management 33

 EXERCISE 2.7

Check if the projects A, B, and C shown in Table 2.4 are worth taking up when the rate of interest on
borrowed capital is 15%.

2.6 Risk Evaluation
Every project involves risk. We have already noted that project risks, which prevent the project from being
completed successfully, are different from the business risk that the delivered products are not profi table.
Project risks will be discussed in Chapter 7. Here we focus on business risk.

Risk identifi cation and ranking
In any project evaluation we should identify the risks and quantify their effects. One approach is to construct
a project risk matrix utilizing a checklist of possible risks and classifying risks according to their relative
importance and likelihood. Importance and likelihood need to be separately assessed – we might be less
concerned with something that, although serious, is very unlikely to occur than with something less serious
that is almost certain. Table 2.5 illustrates a basic project risk matrix listing some of the business risks for
a project, with their importance and likelihood classifi ed as high (H), medium (M), low (L) or exceedingly
unlikely (—). So that projects may be compared, the list of risks must be the same for each project assessed.
It is likely, in reality, that it would be longer than shown and more precise.

The project risk matrix may be used as a way of evaluating projects (those with high risks being less favoured)
or as a means of identifying and ranking the risks for a specifi c project.

TABLE 2.5 A fragment of a basic project/business risk matrix for an e-commerce applica on

Risk Importance Likelihood

Client rejects proposed look and feel of site H —

Competitors undercut prices H M

Warehouse unable to deal with increased demand M L

Online payment has security problems M M

Maintenance costs higher than estimated L L

Response times deter purchasers M M

Risk and net present value
Where a project is relatively risky it is common practice to use a higher discount rate to calculate net present
value. This risk premium might, for example, be an additional 2% for a reasonably safe project or 5% for a
fairly risky one. Projects may be categorized as high, medium or low risk using a scoring method and risk

34 So ware Project Management

premiums designated for each category. The premiums, even if arbitrary, provide a consistent method of
taking risk into account.

Cost–benefi t analysis
A rather more sophisticated approach to the evaluation of risk is to consider each possible outcome and
estimate the probability of its occurring and the corresponding value of the outcome. Rather than a single
cash fl ow forecast for a project, we will then have a set of cash fl ow forecasts, each with an associated proba-
bility of occurring. The value of the project is then obtained by summing the cost or benefi t for each possible
outcome weighted by its corresponding probability. Exercise 2.8 illustrates how this may be done.

 EXERCISE 2.8

BuyRight, a software house, is considering developing a payroll application for use in academic institu-
tions and is currently engaged in a cost–benefi t analysis. Study of the market has shown that, if BuyRight
can target it effi ciently and no competing products become available, it will obtain a high level of sales
generating an annual income of £800,000. It estimates that there is a 1 in 10 chances of this happening.
However, a com petitor might launch a competing application before its own launch date and then sales
might generate only £100,000 per year. It estimates that there is a 30% chance of this happening. The
most likely outcome, it believes, is somewhere in between these two extremes – it will gain a market
lead by launching before any competing product becomes available and achieve an annual income of
£650,000. BuyRight has therefore calculated its expected sales income as in Table 2.6.

TABLE 2.6 BuyRight’s income forecasts

Sales Annual sales income (£) Probability Expected value (£)

i p i 3 p

High 800,000 0.1 80,000

Medium 650,000 0.6 390,000

Low 100,000 0.3 30,000

Expected Income 500,000

Development costs are estimated at £750,000. Sales levels are expected to be constant for at least four
years. Annual costs of marketing and product maintenance are estimated at £200,000, irrespective of
the market share. Would you advise going ahead with the project?

This approach is frequently used to evaluate large projects such as the building of motorways, where variables
such as traffi c volumes, and hence the total benefi t of shorter journey times, are uncertain. The technique, of
course, relies on being able to assign probabilities of occurrence to each scenario, which requires extensive
research.

When used to evaluate a single major project, the cost–benefi t approach, by ‘averaging out’ the negative and
positive outcomes of the different scenarios, does not take full account of ‘worst-case scenarios’. Because

Project Evaluation and Programme Management 35

of this, it is more appropriate for the evaluation of a portfolio of projects where overall profi tability is the
primary concern, more successful projects can offset the impact of less successful ones.

Risk profi le analysis
An approach which attempts to overcome some of the objections to cost–benefi t averaging is the construction
of risk profi les using sensitivity analysis.

This involves varying each of the parameters that affect the project’s cost or benefi ts to ascertain how sensitive
the project’s profi tability is to each factor. We might, for example, vary one of our original estimates by plus
or minus 5% and recalculate the expected costs and benefi ts for the project. By repeating this exercise for
each of our estimates in turn we can evaluate the sensitivity of the project to each factor.

By studying the results of a sensitivity analysis we can identify those factors that are most important to the
success of the project. We then need to decide whether we can exercise greater control over them or otherwise
mitigate their effects. If neither is the case, then we must live with the risk or abandon the project.

Using decision trees
The approaches to risk analysis discussed previously rather assume that we are passive bystanders allowing
nature to take its own course – the best we can do is to reject over-risky projects or choose those with the best
risk profi le. There are many situations, however, where we can evaluate whether a risk is important and, if it
is, decide a suitable course of action.

Such decisions will limit or affect future options and, at any point, it is important to be able to assess how a
decision will affect the future profi tability of the project.

As an example, say a successful company is considering when to replace its sales order processing system.
The decision largely rests upon the rate at which its business expands – if its market share signifi cantly
increases (which it believes will happen if rumours of a competitor’s imminent bankruptcy are fulfi lled) the
existing system might need to be replaced within two years. Not replacing the system in time could be an
expensive option as it could lead to lost revenue if it cannot cope with increased sales. Replacing the system
immediately will, however, be expensive as it will mean deferring other projects already scheduled.

It is calculated that extending the existing system will have an NPV of £75,000, although if the market
expands signifi cantly, this will be turned into a loss with an NPV of –£1 00,000 due to lost revenue. If the
market does expand, replacing the system now has an NPV of £250,000 due to the benefi ts of being able to
handle increased sales and other benefi ts such as improved management information. If sales do not increase,
however, the benefi ts will be severely reduced and the project will suffer a loss with an NPV of –£50,000.

The company estimate the likelihood of the market increasing signifi cantly at 20% – and, hence, the proba-
bility that it will not increase as 80%. This scenario can be represented as a tree structure as shown in
Figure 2.2.

The analysis of a decision tree consists of evaluating the expected benefi t of taking each path from a decision
point (denoted by D in Figure 2.2). The expected value of each path is the sum of the value of each possible
outcome multiplied by its probability of occurrence. The expected value of extending the system is therefore
£40,000 (75,000 3 0.8 – 100,000 3 0.2) and the expected value of replacing the system £10,000 (250,000 3
0.2 – 50,000 3 0.8). The company should therefore choose the option of extending the existing system.

36 So ware Project Management

FIGURE 2.2 A decision tree

2.7 Programme Management
It should now have been made clear that there will be an element of risk with any
single project. Even where projects produce real fi nancial benefi ts, the precise size
of those benefi ts will often be uncertain at the start of the project. This makes it
important for organizations to take a broad view of all its projects to ensure that while
some projects may disappoint, organizational developments overall will generate
substantial benefi ts.

We introduced project portfolios in Section 2.3. We will now examine how careful management of
programmes of projects can provide benefi ts. D. C. Ferns defi ned a programme as ‘a group of projects
that are managed in a coordinated way to gain benefi ts that would not be possible were the projects to be
managed independently’.

Programmes can exist in different forms, as can be seen below.

Business cycle programmes
The collection of projects that an organization undertakes within a particular planning cycle has already been
discussed under the topic of project portfolios. We have seen that many organizations have a fi xed budget for
ICT development. Decisions have to be made about which projects to implement within that budget within
the accounting period, which often coincides with the fi nancial year.

Ferns’ paper appeared
in the International
Journal of Project
Management August
1991.

Project Evaluation and Programme Management 37

Strategic programmes
Several projects together can implement a single strategy. For example, the merging of two organizations’
computer systems could require several projects each dealing with a particular application area. Each activity
could be treated as a distinct project, but would be coordinated as a programme.

Infrastructure programmes
Organizations can have various departments which carry out distinct, relatively self-contained, activities. In
a local authority, one department might have responsibilities for the maintenance of highways, another for
refuse collection, and another for education. These distinct activities will probably require distinct databases
and information systems. In such a situation, the central ICT function would have responsibility for setting up
and maintaining the ICT infrastructure, including the networks, workstations and servers upon which these
distinct applications run. In these circumstances, an infrastructure programme could refer to the activities of
identifying a common ICT infrastructure and its implementation and maintenance.

Research and development programmes
Truly innovative companies, especially those that are trying to develop new products for the market, are
well aware that projects will vary in terms of their risk of failure and the potential returns that they might
eventually reap. Some development projects will be relatively safe, and result in the fi nal planned product,
but that product might not be radically different from existing ones on the market. Other projects might be
extremely risky, but the end result, if successful, could be a revolutionary techno-
logical breakthrough that meets some pressing but previously unsatisfi ed need.

A successful portfolio would need to be a mixture of ‘safe projects’ with relatively
low returns and some riskier projects that might fail, but if successful would generate
handsome profi ts which will offset the losses on the failures.

Innovative partnerships
Companies sometimes come together to work collaboratively on new technologies in a ‘pre-competitive’
phase. Separate projects in different organizations need to be coordinated and this might be done as a
programme.

2.8 Managing the Allocation of Resources within Programmes
We are now going to examine in more detail programmes where resources have to be shared between
concurrent projects. Typically, an ICT department has pools of particular types of expertise, such as software
developers, database designers and network support staff, and these might be called upon to participate in a
number of concurrent projects.

In these circumstances, programme managers will have concerns about the optimal
use of specialist staff. These concerns can be contrasted with those of project managers
– see Table 2.7.

The project managers are said to have an ‘impersonal relationship’ with resource
types because, essentially, they require, for example, a competent systems analyst

Alan Webb (2001)
‘When project manage-
ment doesn’t work’
Project Management
Today May.

The comparison is
based on G. Reiss
(1996) Programme
Management
Demystifi ed, Chapman
& Hall.

38 So ware Project Management

and who fi lls that role does not matter. The programme manager has a number of individual systems analysts
under his or her control whose deployment has to be planned.

When a project is planned, at the stage of allocating resources, programme management will be involved.
Some activities in the project might have to be delayed until the requisite technical staff are freed from work
on other projects. Where expensive technical staff are employed full-time, then you would want to avoid them
having short periods of intense activity interspersed with long periods of idleness, during which they are still
being paid. It is most economic when the demand for work is evenly spread from month to month.

As will be seen in Chapter 9 on monitoring and control, when a project is executed activities can take longer
(or sometimes even less time) than planned. Delays can mean that specialist staff are prevented from moving
on to their next project. Hence it can be seen that programme management needs continually to monitor the
progress of projects and the use of resources.

2.9 Strategic Programme Management
A different form of programme management is where a portfolio of projects all contribute to a common
objective. Take, for example, a business which carries out maintenance work for clients. A customer’s
experience of the organization might be found to be very variable and inconsistent. The employee who
records the customer’s requirements is different from the people who actually carry out the work and different
again from the clerk who deals with the accounts. Often a customer has to explain to one company employee
a problem that has already been discussed at length with some other employee. A business objective might be
to present a consistent and uniform front to the client. This objective might require changes to a number of
different systems which until now have been largely self-contained. The work to reorganize each individual
area could be treated as a separate project, coordinated at a higher level as a programme.

These types of programme are most often needed by large organizations which have a
large and complicated organizational structure. Government departments are typical
examples and it is not surprising that the OGC, the United Kingdom government
agency which was responsible (as the CCTA) for the introduction of PRINCE2 project
management standards, has directed its attention to guidelines for effective programme
management. The approach now described is based on the OGC guidelines.

TABLE 2.7 Programme managers versus project managers

Programme manager Project manager

Many simultaneous projects One project at a time

Personal relationship with skilled resources Impersonal relationship with resource type

Need to maximize utilization of resources Need to minimize demand for resources

Projects tend to be similar Projects tend to be dissimilar

Recall that OGC is the
Offi ce of Government
Commerce which was
formerly the Central
Computing and
Telecommunications
Agency or CCTA.

Project Evaluation and Programme Management 39

2.10 Creating a Programme
Th e programme mandate
The OGC envisages that the planning of a programme will be triggered by the creation of an agreed programme
mandate. Ideally this should be a formal document describing:

 ● the new services or capabilities the programme should deliver;

 ● how the organization will be improved by use of the new services or capability;

 ● how the programme fi ts with corporate goals and any other initiatives.

At this point, a programme director ought to be appointed to provide initial leadership for the programme. To
be successful, the programme needs a champion who is in a prominent position within the organization. This
will signal the seriousness with which the organization takes the programme.

Th e programme brief
A programme brief is now produced which outlines the business case for the programme. It will have sections
setting out:

 ● a preliminary vision statement which describes the new capacity that the organization seeks – it is
described as ‘preliminary’ because this will later be elaborated;

 ● the benefi ts that the programme should create – including when they are likely to be generated and how
they might be measured;

 ● risks and issues;

 ● estimated costs, timescales and effort.

Th e vision statement
The programme brief should give the sponsors enough information to decide whether to request a more
detailed defi nition of the programme. This stage would justify the setting up of a small team. A programme
manager with day-to-day responsibility for the programme would be appointed.

This group takes the vision statement from the project brief and refi nes and expands it. It should describe in
detail the new capability that the programme will give the organization. If estimates for costs, performance
and service levels cannot be provided, then there should at least be an indication of how they might be
measured; for example, one might be able to say that repeat business will be increased, even if the precise
size of the increase cannot be provided.

Th e blueprint
The achievement of the improved capability described in the vision statement can come only through changes
to the structure and operations of the organization. These are detailed in the blueprint. This should contain:

 ● business models outlining the new processes required;

 ● organizational structure – including the numbers of staff required in the new systems and the skills they
will need;

 ● the information systems, equipment and other, non-staff, resources that will be needed;

40 So ware Project Management

 ● data and information requirements;

 ● costs, performance and service level requirements.

To return to the example of the organization which wants to present a consistent interface to its customers:
while this aspiration might be stated in the vision statement, the way that it is to be achieved would have to
be stated in the blueprint. This might, for example, suggest:

 ● the appointment of ‘account managers’ who could act as a point of contact for the client throughout
their business transactions with the company;

 ● a common computer interface allowing the account manager to have access to all the information
relating to a particular client or job, regardless of the computer system from which it originates.

The blueprint is supported by benefi t profi les which estimate when the expected benefi ts will be experi-
enced following implementation of the enhanced capability. One principle is that a programme should deliver
tangible benefi ts. Being provided with a capability does not guarantee that it will be used to obtain the benefi ts
envisaged. For example, as a part of the programme above, the marketing department might be provided
with sales and demographic information which allows them to target potential customers more accurately.
This should improve the ratio of sales revenue to advertising costs. However, just because this information
is available does not mean that the marketing staff will necessarily make effective use of it. Hence the need
for evidence of actual business benefi ts. The timing of the benefi ts needs to be carefully considered. Thus
marketing campaigns that target particular customers might take time to plan and organize and the benefi ts in
increased sales and/or lower advertising costs could take some months to become apparent.

The management structure needed to drive this programme forward would also need to be planned and
organized.

A preliminary list of the projects needed to achieve the programme objectives will be created with estimated
timescales. This programme portfolio will be presented to the programme sponsors.

A major risk is that some of those whose work will be affected by the programme
will not be drawn into the programme effectively. A stakeholder map identifying the
groups of people with an interest in the project and its outcomes and their particular

interests could be drawn up. This can be used to write a communications strategy and plan showing how the
appropriate information fl ows between stakeholders can be set up and maintained.

We noted back in Chapter 1 that with conventional project planning, it is not usually possible to plan all the
phases of a project at the outset, as much of the information needed to produce the detailed plans will not be
available. This is more so with programmes. However, at the initial programme planning stage, a preliminary
plan can be produced containing:

 ● the project portfolio;

 ● cost estimates for each project;

 ● the benefi ts expected (including the appropriate benefi ts profi le);

 ● risks identifi ed;

 ● the resources needed to manage, support and monitor the programme.

This information allows a fi nancial plan to be created. This enables higher management to put in place the
budget arrangements to meet the expected costs at identifi ed points in time. These will be tied to points in the
programme when higher management review progress and authorize further expenditure.

Communication plans
are considered in more
detail in Chapter 12.

Project Evaluation and Programme Management 41

2.11 Aids to Programme Management
Dependency diagrams
There will often be physical and technical dependencies between projects. For example, a project to relocate
staff from one building to another cannot start until the project to construct the new building has been
completed. Dependency diagrams, which are very similar to activity networks at project level, can show
these dependencies. However, where projects run concurrently in a programme and products interchange, the
dependency diagrams could become quite complicated.

Figure 2.3 shows a dependency diagram for a programme to merge two organizations, the constituent parts
of which are explained below.

 A Systems study/design A project is carried out which examines the various existing IT applications in the
two old organizations, analyses their functionality, and makes recommendations about how they are to
be combined.

 B Corporate image design Independently of Project A, this project is designing
the corporate image for the new organization. This would include design of the
new logo to be put on company documents.

 C Build common systems Once Project A has been completed, work can be
triggered on the construction of the new common ICT applications.

FIGURE 2.3 An example of a dependency diagram

 D Relocate offi ces This is the project that plans and carries out the physical co-location of the staff in the
two former organizations. In this scenario, this has to wait until the completion of Project A because that
project has examined how the two sets of applications for the previous organizations could be brought
together, and this has repercussions on the departmental structure of the new merged organization.

 E Training Once staff have been brought together, perhaps with some staff being made redundant, training
in the use of the new systems can begin.

 F Data migration When the new, joint, applications have been developed and staff have been trained in
their use, data can be migrated from existing databases to the new consolidated database.

There will be interde-
pendencies between C
and D that will need to
be managed.

42 So ware Project Management

 G Implement corporate interface Before the new applications can ‘go live’, the interfaces, including the
documentation generated for external customers, must be modifi ed to conform to the new company
image.

Delivery planning
The creation of a delivery dependency diagram would typically lead to the defi nition of tranches of projects.
Atranche is a group of projects that will deliver their products as one step in the programme. The projects in a
tranche should combine to provide a coherent new capability or set of benefi ts for the client. A consideration
in scheduling a tranche will be the need to avoid contention for scarce resources.

Figure 2.4 shows how the programme’s portfolio of projects can be organized into tranches, each of which
delivers some tangible benefi ts to the user.

FIGURE 2.4 Delivering tranches of project deliverables

At this point, the planning of individual projects can be considered. This could be initiated by the writing of
project briefs, defi ning the scope and objectives of each project.

2.12 Some Reservations about Programme Management
Some writers on project management have expressed reservations about the way they see the ideas of
programme management being presented. It is argued that approaches like the one we have described above
focus on structure – for example, who reports to whom – at the expense of process – for example, the basis
on which decisions are made.

The main concern is that the programme may be seen as some kind of ‘super-project’. This could lead to two
problems: fi rst, that programme management may exert an unnecessary control over the subordinate projects,
leading to bureaucratic obstruction. The second is that programmes should be seen as the means by which
the objectives of the business are converted into action at the level of projects. The business environment is
constantly changing and as a consequence programmes need to evolve and be modifi ed during the course of

Project Evaluation and Programme Management 43

their execution. If the super-project idea predominates then too much planning at the beginning plus a reluc-
tance to change the scope of the programme may lead to infl exibility.

As we have seen in the case of the company merger programme, the projects within a programme may be
very different from one another. Also, some programmes – for example where engineering integration is
important – may need to be quite tightly coordinated, whereas other programmes could afford a more fl exible
regime.

The main lessons here seem to be:

 ● programme management is not simply a scaled-up project management;

 ● different forms of programme management may be appropriate for different types of project.

2.13 Benefi ts Management
We have already noted that providing a capability does not guarantee that the capability
will be used to deliver the planned benefi ts. Businesses have become aware of the
lack of evidence of some investments in ICT increasing the productivity of organiza-
tions. Even with business process re-engineering (BPR), the radical reorganization
of businesses to deliver improvements in effi ciency and effectiveness, there are many
reported cases where the expected benefi ts have not materialized.

Benefi ts management is an attempt to remedy this. It encompasses the identifi cation, optimization and
tracking of the expected benefi ts from a business change in order to ensure that they are actually achieved.

To do this, you must:

 ● defi ne the expected benefi ts from the programme;

 ● analyse the balance between costs and benefi ts;

 ● plan how the benefi ts will be achieved and measured;

 ● allocate responsibilities for the successful delivery of the benefi ts;

 ● monitor the realization of the benefi ts.

Benefi ts can be of many different types, including;

 ● Mandatory compliance Governmental or European legislation might make certain changes mandatory.

 ● Quality of service An insurance company, for example, might want to settle claims by customers more
quickly.

 ● Productivity The same, or even more, work can be done at less cost in staff time.

 ● More motivated work force This might be because of an improved rewards system, or through job
enlargement or job enrichment.

 ● Internal management benefi ts (for instance, better decision making) To take an
insurance example again, better analysis of insurance claims could pinpoint those
categories of business which are most risky and allow an insurance company to
adjust premiums to cover this.

 ● Risk reduction The insurance example might also be applicable here, but measures to protect an organi-
zation’s networks and databases from intrusion and external malicious attack would be even more
pertinent.

Thomas K. Landauer
(1995) The Trouble
with Computers:
Usefulness, Usability
and Productivity, MIT
Press, explores the is-
sues of the ‘productiv-
ity paradox’ in IT.

Job enlargement and
enrichment will be dis-
cussed in Chapter 11.

44 So ware Project Management

 ● Economy The reduction of costs, other than those related to staff – procurement policies might be put
in place which encourage the consolidation of purchasing in order to take advantage of bulk-buying at
discount.

 ● Revenue enhancement/acceleration The sooner bills reach customers, the sooner they can pay them.

 ● Strategic fi t A change might not directly benefi t a particular group within the organization but has to be
made in order to obtain some strategic advantage for the organization as a whole.

A change could have more than one of these types of benefi t. In fact, benefi ts are often inter-linked. An
example of this is an insurance company which introduced a facility whereby when settling claims for
damage to property, they directly arranged for contractors to carry out the remedial work. This improved
quality of service for customers as it saved them the trouble of locating a reputable contractor, reduced costs
to the insurance company because they could take advantage of the bulk purchase of services, and improved
staff morale because of the goodwill generated between the insurance company’s front-line staff and the
customer.

Quantifying benefi ts
We have already seen that benefi ts can be:

 ● quantifi ed and valued – that is, a direct fi nancial benefi t is experienced;

 ● quantifi ed but not valued – for example, a decrease in the number of customer complaints;

 ● identifi ed but not easily quantifi ed – for example, public approval of the organization in the locality
where it is based.

A particular activity might also have disbenefi ts. For example, increased sales might mean that more money
has to be spent on expensive overtime working.

There can be controversy over a whether a business change will lead to the particular benefi ts claimed for it,
for example that a new company logo will improve staff morale. Some key tests have been suggested in order
to sound out whether a putative benefi t is likely to be genuine:

 ● Can you explain in precise terms why this benefi t should result from this business change?

 ● Can you identify the ways in which we will be able to see the consequences of this benefi t?

 ● If the required outcomes do occur, can they be attributed directly to the change, or could other factors
explain them?

 ● Is there any way in which the benefi ts can be measured?

We mentioned earlier the need for benefi t profi les that estimate when and how benefi ts will be experienced.
Specifi c staff have to be allocated responsibility for ensuring that the planned benefi ts actually materialize.
These will often be business change managers.

Benefi ts cannot normally be monitored in a purely project environment because the project will almost
certainly have been offi cially closed before the benefi ts start to fi lter through.

In our view, benefi ts management brings to the fore the powerful idea that developers and users are jointly
responsible for ensuring the delivery of the benefi ts of projects.

Project Evaluation and Programme Management 45

CONCLUSION

Some of the key points in this chapter are:

 ● Projects must be evaluated on strategic, technical and economic grounds.

 ● Many projects are not justifi able on their own, but are as part of a broader programme of projects that
implement an organization’s strategy.

 ● Not all benefi ts can be precisely quantifi ed in fi nancial values.

 ● Economic assessment involves the identifi cation of all costs and income over the lifetime of the system,
including its development and operation and checking that the total value of benefi ts exceeds total
expenditure.

 ● Money received in the future is worth less than the same amount of money in hand now, which may be
invested to earn interest.

 ● The uncertainty surrounding estimates of future returns lowers their real value measured now.

 ● Discounted cash fl ow techniques may be used to evaluate the present value of future cash fl ows taking
account of interest rates and uncertainty.

 ● Cost–benefi t analysis techniques and decision trees provide tools for evaluating expected outcomes and
choosing between alternative strategies.

FURTHER EXERCISES

 1. Identify the major risks that could affect the success of the Brightmouth College payroll project and try
to rank them in order of importance.

 2. Explain why discounted cash fl ow techniques provide better criteria for project selection than net profi t
or return on investment.

 3. An insurance company has examined the way that it settles house insurance claims. It decides to
introduce a new computer-based claims settlement system which will reduce the time taken to settle
claims. This reduction in effort is partly achieved by enabling the claims clerk to obtain the infor-
mation needed directly, rather than having to go through other departments. Also, as part of the new
process, new repair work will be allocated by the insurance company to authorized builders, decorators,
plumbers etc., rather than the claimant having to make arrangements to get estimates, and so on.

 (a) Explain the possible benefi ts and disbenefi ts that might be generated by this application. Note
that the benefi ts could come under the following headings:

 Mandatory compliance
 Quality of service
 Productivity
 More motivated work force
 Internal management benefi ts
 Risk reduction
 Economy
 Revenue enhancement/acceleration
 Strategic fi t

 How could the actual benefi t be assessed in each case?

46 So ware Project Management

 (b) When the application is implemented, some of the claims staff at the insurance company
complain about the additional stress of dealing with irate customers grumbling about trades-
people being slow to do repair work or about poor quality workmanship. Also, in some places
there are shortages of qualifi ed repair people leading to delays in getting work done.

 Which projected benefi ts are being affected by these developments?

 How would you deal with these problems?

 How would you assess your success in dealing with these problems?

 4. Suppose Brightmouth College has the option of either buying payroll software off-the-shelf at £50,000
or employing a programmer for six months at a salary of £5000 to develop the software. Perform cost-
benefi t analysis for the two options. You can make suitable assumptions regarding any factor that has
not been mentioned in this problem statement.

3

 OBJECTIVES
When you have completed this chapter you will be able to:

approach project planning in an organized step-by-step manner;•
see where the techniques described in other chapters fi t into an overall planning approach;•
repeat the planning process in more detail for sets of activities within a project as the time comes •
to execute them.

3.1 Introduction to Step Wise Project Planning
This chapter describes a framework of basic steps in project planning upon which the following chapters
build. Many different techniques can be used in project planning and this chapter gives an overview of
the points at which these techniques can be applied during project planning. Chapter 4 will illustrate how
different projects may need different technical approaches, but the overall framework should always apply to
the planning process.

The framework described is called the Step Wise method to help to distinguish it from
other methods such as PRINCE2. PRINCE2 is a set of project management standards
that were originally sponsored by what is now the Offi ce of Government Commerce
(OGC) for use on British government ICT and business change projects. The standards
are now also widely used on non-government projects in the United Kingdom. Step
Wise should be compatible with PRINCE2. It should be noted, however, that Step
Wise covers only the planning stages of a project and not monitoring and control.

It should be clearly understood that the Step Wise method discussed in this chapter
aims to introduce the standardization of the project planning method brought about

The OGC was
previously the
CCTA (Central
Computing and
Telecommunications
Agency).

Appendix A adds
some further details
about the PRINCE2
approach.

48 So ware Project Management

by PRINCE. PRINCE stands for PRojects IN Controlled Environments. PRINCE2 is in the public domain,
and offers non-proprietary best practice guidance on project management. It is a de facto standard used
extensively in UK and also internationally. In contrast, the traditional project planning approach discussed
in many other text books, and practised in many industries allows considerable fl exibility in the steps to be
carried out, and the manner in which they are carried out. However, it should be clearly understood that all
our discussions in the subsequent chapters can be used in a traditional project management situation without
any loss of generality.

In order to illustrate the Step Wise approach and how it might have to be adapted to deal with different circum-
stances, two parallel examples are used. Let us assume that there are two former Computing and Information
Systems students who now have several years of software development experience under their belts.

CASE STUDY

Example A: A Brightmouth College Payroll

Brigette has been working for the Management Services department of a local authority when she
sees an advertisement for the position of Information Systems Development Offi cer at Brightmouth
College. She is attracted to the idea of being her own boss, working in a relatively small organization
and helping them to set up appropriate information systems from scratch. She applies for the job and
gets it. One of the fi rst tasks that confronts her is the implementation of independent payroll processing.
(This scenario has already been used as the basis of some examples in Chapter 1.)

CASE STUDY

Example B: International Office Equipment Annual Maintenance Contracts

Amanda works for International Offi ce Equipment (IOE), which assembles, supplies, instals and
services various items of high-technology offi ce equipment. An expanding area of their work is the
maintenance of ICT equipment. They have now started to undertake maintenance of equipment of
which they were not the original suppliers. An existing application built by the in-house ICT department
allows sales staff to input and generate invoices for completed work. A large organization might have
to call out IOE several times during a month to deal with problems with equipment. Each month
a batch run of the system generates monthly statements for customers so that only one payment a
month needs to be made. The management of IOE would like to provide a service where for a single
annual payment customers would get free servicing and problem resolution for a pre-specifi ed set of
equipment. Amanda has been given her fi rst project management role, the task of implementing this
extension to the IOE maintenance jobs billing system.

The enhanced application will need a means of recording the details of the items of equipment to be
covered by a customer’s annual maintenance contract. The annual fee will depend on the numbers of
each type of equipment item that is to be covered. Even though the jobs done under this contract will
not be charged for, the work will be recorded to allow for an analysis of costs and the profi tability of
each customer and each type of equipment. This will provide information which will allow IOE to set
future contract prices at an optimally profi table level. At the moment, job details are only recorded
after job completion so that invoices can be generated. The new system will allow a central coordinator
to allocate jobs to engineers and the system to notify engineers of urgent jobs automatically via their
mobile phones.

An Overview of Project Planning 49

In Table 3.1 we outline the general approach that might be taken to planning these projects. Figure 3.1
provides an outline of the main planning activities. Steps 1 and 2 ‘Identify project scope and objectives’
and ‘Identify project infrastructure’ could be tackled in parallel in some cases. Steps 5 and 6 will need to be
repeated for each activity in the project.

FIGURE 3.1 An overview of Step Wise

A major principle of project planning is to plan in outline fi rst and then in more detail as the time to carry out
an activity approaches. Hence the lists of products and activities that are the result of Step 4 will be reviewed
when the tasks connected with a particular phase of a project are considered in more detail. This will be
followed by a more detailed iteration of Steps 5 to 8 for the phase under consideration.

3.2 Step 0: Select Project
This is called Step 0 because in a way it is outside the main project planning process. Proposed projects do
not appear out of thin air – some process must decide to initiate this project rather than some other. While a

50 So ware Project Management

TABLE 3.1 An outline of Step Wise planning ac vi es

Step Activities within step

0 Select project

1 Identify project scope and objectives
1.1 Identify objectives and measures of effectiveness in meeting them
1.2 Establish a project authority
1.3 Identify stakeholders
1.4 Modify objectives in the light of stakeholder analysis
1.5 Establish methods of communication with all parties

2 Identify project infrastructure
2.1 Establish relationship between project and strategic planning
2.2 Identify installation standards and procedures
2.3 Identify project team organization

3 Analyse project characteristics
3.1 Distinguish the project as either objective- or product-driven
3.2 Analyse other project characteristics
3.3 Identify high-level project risks
3.4 Take into account user requirements concerning implementation
3.5 Select general life-cycle approach
3.6 Review overall resource estimates

4 Identify project products and activities
4.1 Identify and describe project products (including quality criteria)
4.2 Document generic product fl ows
4.3 Recognize product instances
4.4 Produce ideal activity network
4.5 Modify ideal to take into account need for stages and checkpoints

5 Estimate effort for each activity
5.1 Carry out bottom-up estimates
5.2 Revise plan to create controllable activities

6 Identify activity risks
6.1 Identify and quantify activity-based risks
6.2 Plan risk reduction and contingency measures where appropriate
6.3 Adjust plans and estimates to take account of risks

7 Allocate resources
7.1 Identify and allocate resources
7.2 Revise plans and estimates to take account of resource constraints

8 Review/publicize plan
8.1 Review quality aspects of project plan
8.2 Document plans and obtain agreement

9/10 Execute plan/lower levels of planning
This may require the reiteration of the planning process at a lower level

An Overview of Project Planning 51

feasibility study might suggest that there is a business case for the project, it would
still need to be established that it should have priority over other projects. This evalu-
ation of the merits of projects could be part of project portfolio management.

3.3 Step 1: Identify Project Scope and Objectives
The activities in this step ensure that all the parties to the project agree on the objectives and are committed
to the success of the project. We have already looked at the importance of the correct defi nition of objectives
in Chapter 1.

Step 1.1: Identify objectives and practical measures of the eff ectiveness in meeting
those objectives

CASE STUDY

Examples: Project Objectives

The project objectives for the Brightmouth College payroll project have already been discussed in
Exercise 1.8.

Amanda at JOE has the objectives clearly laid down for her in the recommendations of a business case
report which have been accepted by JOE management. The main objectives are to allow:

 ● details of annual maintenance contracts to be recorded;

 ● details of maintenance work covered by these contracts to be recorded;

 ● analysis of costs to be carried out so that the optimal level of maintenance contract fees may be
identifi ed;

 ● recording of job requests and notifi cation of jobs to engineers via mobile phones.

Other objectives are laid down that refer to expected timescales and the resources that might be used.

Step 1.2: Establish a project authority
We have already noted in Chapter 1 that a single overall project authority needs to be established so that there
is unity of purpose among all those concerned.

Step 1.3: Stakeholder analysis – identify all stakeholders in the project and their
interests
Recall that this was the basis of a discussion in Chapter 1. Essentially all the parties who have an interest in
the project need to be identifi ed. In that chapter we listed as an example the stakeholders in the Brightmouth
College payroll project.

 EXERCISE 3.1

What important stakeholders outside the IOE organization might be considered in the case of the IOE
annual maintenance contracts system?

Chapter 2 has already
discussed these issues
in some detail.

52 So ware Project Management

CASE STUDY

Examples: Project Authorities

Amanda fi nds that her manager and the main user management have already set
up a Project Board which will have overall direction of the project. She is a little
concerned as the equipment maintenance staff are organized with different sections
dealing with different types of equipment. This means that a customer could have
work done by several different sections. Not all the sections are represented on
the Project Board and Amanda is aware that there are some differences of opinion

between some sections. It is left to the user representatives on the board to resolve those differences and
to present an agreed policy to the systems developers.

Brigette fi nds that effectively she has two different clients for the payroll system: the fi nance and
human resources departments. To help resolve confl icts, it is agreed that the managers of both depart-
ments should attend a monthly meeting with the vice-principal which Brigette has arranged in order to
steer the project.

Step 1.4: Modify objectives in the light of stakeholder analysis
In order to gain the full cooperation of all concerned, it might be necessary to modify
the project objectives. This could mean adding new features to the system which give
a benefi t to some stakeholders as a means of assuring their commitment to the project.
This is potentially dangerous as the system size may be increased and the original

objectives obscured. Because of these dangers, it is suggested that this process be done consciously and in a
controlled manner.

CASE STUDY

Examples: Modified Project Objectives

The IOE maintenance staff are to be given the extra task of entering data about completed jobs. As no
customer charges are generated by visits under annual maintenance contracts, engineers may feel that
completing cost details is unnecessary bureaucracy, and start to do this in a careless and inaccurate
manner. To give some benefi t to the engineers, the system is to be extended to reorder spare parts
automatically when required. It will also automatically capture timesheet details which previously had
to be completed by hand.

At Brightmouth College, the human resources department has a lot of work preparing payroll details
for fi nance. It would be tactful to agree to produce some management information reports for human
resources from the payroll details held on the computer.

Step 1.5: Establish methods of communication with all parties
For internal staff this should be fairly straightforward, but a project leader implementing a payroll system
would need to fi nd a contact point with BACS (Bankers Automated Clearing Scheme), for instance. This step
could lead to the fi rst draft of a communications plan – to read more about these, see Chapter 12.

Throughout the text we
use capitalized initial
letters to indicate a
term that has a pre-
cise meaning in the
PRINCE2 standards,
e.g. Project Board.

Compare this with the
‘Theory W’ of Boehm
and Ross mentioned in
Chapter 1.

An Overview of Project Planning 53

3.4 Step 2: Identify Project Infrastructure
Projects are never carried out in a vacuum. There is usually some kind of existing infrastructure into which
the project must fi t. Where project managers are new to the organization, they must fi nd out the precise nature
of this infrastructure. This could be the case where the project manager works for an outside organization
carrying out the work for a client.

Step 2.1: Identify relationship between the project and strategic planning
We saw in Chapter 2 how project portfolio management supported the selection of
the projects to be carried out by an organization. Also, how programame management
can ensure that a group of projects contribute to a common organizational strategy.
There is also a technical framework within which the proposed new systems are
to fi t. Hardware and software standards, for example, are needed so that various
systems can communicate with each other. These technical strategic decisions should
be documented as part of an enterprise architecture process. Compliance with the
enterprise architecture should ensure that successive ICT projects create software
and other components compatible with those created by previous projects and also
with the existing hardware and software platforms.

CASE STUDY

Examples: Role of Existing Strategic Plans

Amanda fi nds at IOE that there is a well-defi ned rolling strategic plan which has
identifi ed her annual maintenance contracts subsystem as an important required
development. Because it is an extension of an existing system, the hardware and
software platforms upon which the application are to run are dictated.

Brigette at Brightmouth College fi nds that there is an overall College strategic plan
which describes new courses to be developed, and so on, and mentions in passing
the need for ‘appropriate administrative procedures’ to be in place. There is a
recommendation in a consultant’s report concerning the implications of fi nancial
autonomy that independent payroll processing be implemented as just one module
in an ERP system which would cover all the college’s fi nancial processing needs.
Although the college has quite a lot of ICT equipment for teaching purposes, there is no machine set
aside for payroll processing and the intention is that the hardware to run the payroll will be acquired at
the same time as the software.

Step 2.2: Identify installation standards and procedures
Any organization that develops software should defi ne their development procedures.
As a minimum, the normal stages in the software life cycle to be carried out should be
documented along with the products created at each stage.

Change control and confi guration management standards should be in place to ensure that changes to require-
ments are implemented in a safe and orderly way.

B. Iyer and R. Gottlieb
(2004) ‘The Four-
Domain Architecture:
an approach to support
enterprise architecture
design’ IBM Systems
Journal 43(3) 587–97
provides a good intro-
duction to enterprise
architecture concepts.

Enterprise Resource
Planning (ERP) sys-
tems are integrated
software applications
usually acquired as off-
the-shelf packages that
require considerable
customization. They in-
tegrate all the standard
fi nancial and trading
applications common
to most businesses.

See discussion of the
ISO/IEC 12207 stan-
dard in Chapter 1.

54 So ware Project Management

The procedural standards may lay down the quality checks that need to be done at
each point of the project life cycle or these may be documented in a separate quality
standards and procedures manual.

The organization, as part of its monitoring and control policy, may have a measurement programme in place
which dictates that certain statistics have to be collected at various stages of a project.

Finally the project manager should be aware of any project planning and control standards. These will relate
to how the project is controlled: for example, the way that the hours spent by team members on individual
tasks are recorded on timesheets.

CASE STUDY

Examples: Identifying Standards

Amanda at IOE fi nds that there is a very weighty volume of development standards which, among other
things, specifi es that a specifi c structured systems analysis and design method be used. She fi nds that
a separate document has been prepared which lays down quality procedures. This specifi es when the
reviews of work will be carried out and describes detailed procedures governing how the reviews are to
be done. Amanda also fi nds a set of project management guidelines modelled on PRINCE2.

Brigette fi nds no documents of the nature that Amanda found at IOE except for some handouts for
students that have been produced by different lecturers at different times and which seem to contradict
each other.

As a stop-gap measure, Brigette writes a brief document which states what the main stages of a ‘project’
(perhaps ‘job for the user’ would be a better term in this context) should be. This happens to be very
similar to the list given in Chapter 1. She stresses that:

 ● no job of work to change a system or implement a new one is to be done without there being a
detailed specifi cation fi rst;

 ● the users must record agreement to each specifi cation in writing before the work is carried out.

She draws up a simple procedure for recording all changes to user requirements.

Brigette, of course, has no organizational quality procedures, but she dictates that each person in the
group (including herself) has to get someone else to check through their work when they fi nish a major
task and that, before any new or amended software is handed over to the users, someone other than the
original developer should test it. She sets up a simple system to record errors found in system testing
and their resolution. She also creates a log fi le of reported user problems with operational systems.

Brigette does not worry about timesheets but arranges an informal meeting with her colleagues each
Monday morning to discuss how things are going and also arranges to see the vice-principal, who is her
offi cial boss, and the heads of the fi nance and human resources sections each month to review progress
in general terms.

Step 2.3: Identify project team organization
Project leaders, especially in the case of large projects, might have some control over the way that their project
team is to be organized. Often, though, the organizational structure will be dictated to them. For example, a

See Chapter 9 on
monitoring and control.

An Overview of Project Planning 55

high-level managerial decision might have been taken that software developers and
business analysts will be in different groups, or that the development of business-to-
consumer web applications will be done within a separate group from that responsible
for ‘traditional’ database applications.

If the project leader does have some control over the project team organization then this would best be
considered at a later stage (see Step 7: Allocate resources).

CASE STUDY

Examples: Project Organization

At IOE, there are groups of business analysts set up as teams which deal with individual user depart-
ments. Hence the users always know whom they should contact within the information systems
department if they have a problem. Software developers, however, work in a ‘pool’ and are allocated to
specifi c projects on an ad hoc basis.

At Brightmouth College, a software developer has been seconded to Brigette from the technicians
supporting the computing courses in the college. She is also allowed to recruit a trainee analyst/
programmer. She is not unduly worried about the organizational structure needed.

3.5 Step 3: Analyse Project Characteristics
The general purpose of this part of the planning operation is to ensure that the appro-
priate methods are used for the project.

Step 3.1: Distinguish the project as either objective- or product-driven
This has already been discussed in the fi rst chapter. As development of a system advances it tends to become
more product-driven, although the underlying objectives always remain and must be respected.

Step 3.2: Analyse other project characteristics (including quality-based ones)
For example, is an information system to be developed or a process control system, or will there be elements
of both? Will the system be safety critical, where human life could be threatened by a malfunction?

Step 3.3: Identify high-level project risks
Consideration must be given to the risks that threaten the successful outcome of the project. Generally
speaking, most risks can be attributed to the operational or development environment, the technical nature of
the project or the type of product being created.

CASE STUDY

Examples: High-Level Risks

We have already noted that Amanda has raised concerns about the possibility that engineers lack the
motivation to complete with due care and attention the cost details for jobs done under annual contracts.

Some of these issues
will be discussed in
Chapter 12 on working
in teams.

Chapter 4 elaborates
on the process of
analysing project
characteristics.

56 So ware Project Management

Another risk relates to the software functionality which will produce cost analysis reports used for the
future pricing of annual contracts. If the analysis is incorrect IOE could suffer fi nancially. Amanda
decides therefore that the analysis functionality will be produced using an iterative approach where an
IOE marketing analyst will look at versions of the reports produced and suggest improvements to the
methods of calculation and presentation before the system is fi nally made operational.

Brigette at Brightmouth College considers the application area to be very well defi ned. There is a risk,
however, that there may be no package on the market that caters for the way that things are done at the
moment. Brigette, therefore, decides that an early task in the project is to obtain information about the
features of the main payroll packages that are available.

Step 3.4: Take into account user requirements concerning implementation
The clients may have their own procedural requirements. For example, an organization might mandate the
use of a particular development method.

Step 3.5: Select development methodology and life-cycle approach
The development methodology and project life cycle to be used for the project will be infl uenced by the
issues raised above. The idea of a methodology, that is, the group of methods to be used in a project, was
discussed in Chapter 1. For many software developers, the choice of methods will seem obvious: they will
use the ones that they have always used in the past. In Chapter 4 we recommend caution in assuming that the
current project is really similar to previous ones.

As well as the methods to be used, there are generic ways of structuring projects, such
as the use of the waterfall life cycle outlined in Chapter 4, that need to be considered.
While the setting of objectives involves identifying the problems to be solved, this
part of planning is working out the ways in which these problems are to be solved. For

a project that is novel to the planner, some research into the methods typically used in the problem domain is
worthwhile. For example, sometimes, as part of a project, a questionnaire survey has to be conducted. There
are lots of books on the techniques used in such surveys and a wise move would be to look at one or two of
them at the planning stage.

Step 3.6: Review overall resource estimates
Once the major risks have been identifi ed and the broad project approach has been
decided upon, this would be a good point at which to re-estimate the effort and other
resources required to implement the project. Where enough information is available
an estimate based on function points might be appropriate.

3.6 Step 4: Identify Project Products and Activities
The more detailed planning of the individual activities now takes place. The longer-term planning is broad
and in outline, while the more immediate tasks are planned in some detail.

Chapter 4 discusses
life cycles in more
detail.

Chapter 5 goes into
more detail on this top-
ic. Function points are
an attempt to measure
system size without
using lines of code.

An Overview of Project Planning 57

Step 4.1: Identify and describe project products (or deliverables)
In general, there can be no project products that do not have activities that create them. Wherever possible, we
ought also to ensure the reverse: that there are no activities that do not produce a tangible product. Identifying
all the things the project is to create helps us to ensure that all the activities we need to carry out are accounted
for. Some of these products will be handed over to the client at the end of the project – these are deliverables.
Other products might not be in the fi nal confi guration, but are needed as intermediate products used in the
process of creating the deliverables.

These products will include a large number of technical products, such as training material and operating
instructions. There will also be products to do with the management and the quality of the project. Planning
documents would, for example, be management products.

The products will form a hierarchy. The main products will have sets of component products which in
turn may have sub-component products, and so on. These relationships can be documented in a Product
Breakdown Structure (PBS) – see Figure 3.2. In this example the products have been grouped into those
relating to the system as a whole, and those related to individual modules. A third ‘group’, which happens to
have only one product, is called ‘management products’ and consists of progress reports. The asterisk in the
progress reports indicates that there will be new instances of the entity ‘progress report’ created repeatedly
throughout the project.

Note that in Figure 3.2 the only boxes that represent tangible products are those at the bottom of the hierarchy
that are not further subdivided. Thus there are only six individual product types shown in the diagram. The
boxes that are higher up – for example ‘module products’ – are simply the names of groups of items.

Some products are created from scratch, for example new software components. A
product could quite easily be a document, such as a software design document. It
might be a modifi ed version of something that already exists, such as an amended
piece of code. A product could even be a person, such as a ‘trained user’, a product
of the process of training. Always remember that a product is the result of an activity.
A common error is to identify as products things that are really activities, such as
‘training’, ‘design’ and ‘testing’. Specifying ‘documentation’ as a product should also
be avoided – by itself this term is just too vague.

PRINCE2 suggests
that the PBS be pre-
sented as a hierarchy
diagram. In practice
it may be more con-
venient to produce a
structured list.

FIGURE 3.2 A fragment of a Product Breakdown Structure for a system development task
* indicates that further progress reports can be added during the course of the project.

58 So ware Project Management

This part of the planning process draws heavily on the standards laid down in PRINCE2. These specify that
products at the bottom of the PBS should be documented by Product Descriptions which contain:

 ● the name/identity of the product;

 ● the purpose of the product;

 ● the derivation of the product (that is, the other products from which it is derived);

 ● the composition of the product;

 ● the form of the product;

 ● the relevant standards;

 ● the quality criteria that defi ne whether the product is acceptable.

 EXERCISE 3.2

At Brightmouth College, Brigette has decided that the fi nance department at the college should carry
out acceptance testing of the new payroll system. This type of testing ensures that the application has
been set up in a way that allows the users to carry out their jobs accurately using the new system. As
the fi nance department staff are not sure what test case documents should look like, Brigette draws up
a product description of a test case. Write the content for this product description.

CASE STUDY

Examples: Product Breakdown Structures

At IOE, Amanda fi nds that there is a standard PBS that she can use as a checklist for her own project.

Brigette at Brightmouth College has no installation standard PBS, although she can, of course, refer to
various books for standard checklists. She decides that one part of the PBS should contain the products
needed to help select the appropriate hardware and software for the payroll application (Figure 3.3).

FIGURE 3.3 A Product Breakdown Structure (PBS) for the products needed to produce an invita on to
tender (ITT)

An Overview of Project Planning 59

 EXERCISE 3.3

What would be the product breakdown structure of the deliverables of the vendor who would develop
the Brightmouth College payroll software by customizing one of his existing products?

Step 4.2: Document generic product fl ows
Some products will need one or more other products to exist fi rst before they can be
created. For example, a program design must be created before the program can be
written and the program specifi cation must exist before the design can be commenced.
These relationships can be portrayed in a Product Flow Diagram (PFD). Figure 3.4
gives an example. Note that the ‘fl ow’ in the diagram is assumed to be from top to
bottom and left to right. In the example in Figure 3.4, ‘user requirements’ is in an oval which means that it is
used by the project but is not created by it. It is often convenient to identify an overall product at the bottom
of the diagram, in this case ‘integrated/tested software’, into which all the other products feed.

FIGURE 3.4 A fragment of a Product Flow Diagram (PFD) for a so ware development task

PFDs should not have links between products which loop back iteratively. This is emphatically not because
iterations are not recognized. On the contrary, the PFD allows for looping back at any point. For example, in
the PFD shown in Figure 3.4, say that during integration testing it was found that a user requirement had been
missed in the overall system specifi cation. If we go back to overall system specifi cation and change it we can
see from the PFD that all the products that follow it might need to be reworked. A new module might need
to be designed and coded, test cases would need to be added to check that the new requirements had been
successfully incorporated, and the integration testing would need to be repeated.

The form that a PFD takes will depend on assumptions and decisions about how the project is to be carried
out. These decisions may not be obvious from the PFD and so a textual description explaining the reasons for
the structure can be helpful.

The PFD effectively
documents, in out-
line, the method (see
Chapter 1) for the
project.

60 So ware Project Management

CASE STUDY

Examples: IOE Has Standard PFD

At IOE, Amanda has an installation standard PFD for software development projects. This is because a
recognized software development method is used which lays down a sequence of documents that have
to be produced. This sequence of products can be straightforwardly documented as a PFD.

 EXERCISE 3.4

Draw up a possible Product Flow Diagram (PFD) based on the Product Breakdown Structure (PBS)
shown in Figure 3.3. This identifi es some of the products of the Brightmouth payroll project, particu-
larly those generated when gathering information to be presented to potential suppliers of the hardware
as part of an ‘invitation to tender’. The volume fi gures are such things as the number of employees for
whom records will have to be maintained.

Step 4.3: Recognize product instances
Where the same generic PFD fragment relates to more than one instance of a particular
type of product, an attempt should be made to identify each of those instances. In the
example in Figure 3.2, it could be that in fact there are just two component software
modules in the software to be built.

Step 4.4: Produce ideal activity network
In order to generate one product from another there must be one or more activities that carry out the transfor-
mation. By identifying these activities we can create an activity network which shows the tasks that have to
be carried out and the order in which they have to be executed.

CASE STUDY

Examples: Activity Network for IOE Maintenance Accounts

Part of the initial activity network developed from the PFD in Figure 3.4 for the software development
task might look like Figure 3.5.

 EXERCISE 3.5

Draw up an activity network for the Product Flow Diagram that you created in Exercise 3.4 (or the PFD
given in the solution if you prefer!).

This may be delayed
to later in the project
when more information
is known.

An Overview of Project Planning 61

The activity networks are ‘ideal’ in the sense that no account has been taken of resource constraints. For
example, in Figure 3.5, it is assumed that resources are available for both software modules to be developed
in parallel. A good rule is that activity networks are never amended to take account of resource constraints.

Step 4.5: Modify the ideal to take into account need for stages and checkpoints
The approach to sequencing activities described above encourages the formulation of a plan which will
minimize the overall duration, or ‘elapsed time’, for the project. It assumes that an activity will start as soon
as the preceding ones upon which it depends have been completed.

There might, however, be a need to modify this by dividing the project into stages and introducing checkpoint
activities. These are activities which draw together the products of preceding activ-
ities to check that they are compatible. This could potentially delay work on some
elements of the project – there has to be a trade-off between effi ciency and quality.

The people to whom the project manager reports could decide to leave the routine
monitoring of activities to the project manager. However, there could be some key
activities, or milestones, which represent the completion of important stages of the
project of which they would want to take particular note. Checkpoint activities are
often useful milestones.

 EXERCISE 3.6

In the example in Figure 3.5, it has been decided that the designs for modules A and B are to be checked
for consistency by ‘dry-running’ them against the integration test cases before committing staff to
software coding. Redraw the activity network to refl ect this.

3.7 Step 5: Estimate Eff ort for Each Activity
Step 5.1: Carry out bottom-up estimates
Some overall estimates of effort, cost and duration will already have been done (see Step 3.6).

FIGURE 3.5 An example of an ac vity network

Strictly, a milestone is
a dummy activity with
no duration that indi-
cates the start or end
of a group of activities.
The milestone would
therefore be after the
checkpoint activity.

62 So ware Project Management

Chapter 5 on software
effort estimation deals
with this topic in more
detail.

At this point, estimates of the staff effort required, the probable elapsed time and the
non-staff resources needed for each activity will need to be produced. The method of
arriving at each of these estimates will vary depending on the type of activity.

The difference between elapsed time and effort should be noted. Effort is the amount
of work that needs to be done. If a task requires three members of staff to work for two full days each, the
effort expended is six days. Elapsed time is the time between the start and end of a task. In our example above,
if the three members of staff start and fi nish at the same time then the elapsed time for the activity would be
two days.

The individual activity estimates of effort should be summed to get an overall bottom-up estimate which can
be reconciled with the previous top-down estimate.

The activities on the activity network can be annotated with their elapsed times so that the overall duration
of the project can be calculated.

Step 5.2: Revise plan to create controllable activities
The estimates for individual activities could reveal that some are going to take quite a long time. Long activ-
ities make a project diffi cult to control. If an activity involving system testing is to take 12 weeks, it would be
diffi cult after six weeks to judge accurately whether 50 per cent of the work is completed. It would be better
to break this down into a series of smaller subtasks.

CASE STUDY

Examples: IOE Annual Maintenance Contracts – Carry Out Bottom-Up Estimates

At IOE, Amanda has to estimate the lines of code for each of the software modules. She looks at
programs that have been coded for similar types of application at IOE in the past to get some idea of
the size of the new modules. She then refers to some conversion tables that the information systems
development department at IOE have produced which convert the lines of code into estimates of effort.
Other tables allow her to allocate the estimated effort to the various stages of the project.

Although Brigette is aware that some additional programs might have to be written to deal with local
requirements, the main software is to be obtained ‘off the shelf’ and so estimating based on lines of
code would clearly be inappropriate. Instead, she looks at each individual task and allocates a time. She
realizes that in many cases these represent ‘targets’ as she is uncertain at the moment how long these
tasks will really take (see Step 6 below).

There might be a number of activities that are important, but individually take up very little time. For a
training course, there might be a need to book rooms and equipment, notify those attending, register students
on the training system, order refreshments, copy training materials, and so on. In a situation like this it would
be easier to bundle the activities into a single merged activity ‘make training course arrangements’ which
could be supplemented with a checklist.

In general, try to make activities about the length of the reporting period used for monitoring and controlling
the project. If you have a progress meeting every two weeks, then it would convenient to have activities of
two weeks’ duration on average, so that progress meetings would normally be made aware of completed tasks
each time they are held.

An Overview of Project Planning 63

Chapter 7 on risk
touches on this topic in
more detail.

3.8 Step 6: Identify Activity Risks
Step 6.1: Identify and quantify activity-based risks
Risks inherent in the overall nature of the project have already been considered
in Step 3. We now want to look at each activity in turn and assess the risks to its
successful outcome. Any plan is always based on certain assumptions. Say the design
of a component is planned to take fi ve days. This is based on the assumption that the
client’s requirement is clear and unambiguous. If it is not then additional effort to clarify the requirement
would be needed. The possibility that an assumption upon which a plan is based is incorrect constitutes a
risk. In this example, one way of expressing the uncertainty would be to express the estimate of effort as a
range of values.

As will be seen in Chapter 7, a simple way of dealing with uncertainty is to have a ‘most likely’ estimate for
where everything works with no problems (such as users changing their requirements) and a second estimate
that includes a safety margin so that it has an estimated 95 per cent chance of being met.

A project plan will be based on a huge number of assumptions, and so some way of picking out the risks
that are most important is needed. The damage that each risk could cause and the likelihood of it occurring
have to be gauged. This assessment can draw attention to the most serious risks. The usual effect if a problem
materializes is to make the task longer or more costly.

Step 6.2: Plan risk reduction and contingency measures where appropriate
It may be possible to avoid or at least reduce some of the identifi ed risks. On the other hand, contingency
plans specify action that is to be taken if a risk materializes. For example, a contingency plan could be to use
contract staff if a member of the project team is unavailable at a key time because of serious illness.

Step 6.3: Adjust overall plans and estimates to take account of risks
We may change our plans, perhaps by adding new activities which reduce risks. For example, a new
programming language might mean we schedule training courses and time for the programmers to practise
their new programming skills on some non-essential work.

CASE STUDY

Examples: Identifying Risks

As well as the new software modules that will have to be written, Amanda has identifi ed several existing
modules that will need to be amended. The ease with which the modules can be amended will depend
upon the way that they were originally written. There is therefore a risk that they may take longer than
expected to modify.

Amanda takes no risk reduction measures as such but notes a pessimistic elapsed time for the amendment
activity.

Brigette identifi es as a risk the possible absence of key staff when investigating the user requirements,
as this activity will take place over the holiday period. To reduce this risk, she adds a new activity,
‘arrange user interviews’, at the beginning of the project. This will give her advance notice of any likely
problems of this nature.

64 So ware Project Management

3.9 Step 7: Allocate Resources
Step 7.1: Identify and allocate resources

The type of staff needed for each activity is recorded. The staff available for the
project are identifi ed and are provisionally allocated to tasks.

Step 7.2: Revise plans and estimates to take into account resource constraints
Some staff may be needed for more than one task at the same time and, in this case, an order of priority is
established. The decisions made here may have an effect on the overall duration of the project when some
tasks are delayed while waiting for staff to become free.

Ensuring someone is available to start work on an activity as soon as the preceding activities have been
completed might mean that they are idle while waiting for the job to start and are
therefore used ineffi ciently.

The product of Steps 7.1 and 7.2 would typically be a Gantt chart – see Figure 3.6.
The Gantt chart gives a clear picture of when activities will actually take place and
highlights which ones will be executed at the same time. Activity networks can be
misleading in this respect.

CASE STUDY

Examples: Taking Resource Constraints into Account

Amanda has now identifi ed three new major software modules plus an existing software module that
will need extensive amendment. At IOE the specifi cation of modules is carried out by the lead systems
analyst for the project (who in this case is Amanda) assisted by junior analyst/designers. Four analyst/
programmers are available to carry out the design, coding and unit testing of the individual modules.
After careful consideration and discussion with her manager, Amanda decides to use only three analyst/
programmers so as to minimize the risk of staff waiting between tasks and thus reduce staff costs. It is
accepted that this decision, while reducing the cost of the project, will delay its end.

Brigette fi nds that she herself will have to carry out many important activities. She can reduce the
workload on herself by delegating some work to her two colleagues, but she realizes that she will have
to devote more time to specifying exactly what they will have to do and to checking their work. She
adjusts her plan accordingly.

3.10 Step 8: Review/Publicize Plan
Step 8.1: Review quality aspects of the project plan
A danger when controlling any project is that an activity can reveal that an earlier activity was not properly
completed and needs to be reworked. This, at a stroke, can transform a project that appears to be progressing
satisfactorily into one that is badly out of control. It is important to know that when a task is reported as
completed, it really is – hence the importance of quality reviews. Each task should have quality criteria.
These are quality checks that have to be passed before the activity can be ‘signed off’ as completed.

Chapter 8 on resource
allocation covers this
topic in more detail.

Gantt charts are
named after Henry
Gantt and ‘Gantt’
should therefore not
be written in capital
letters as if it stood for
something!

An Overview of Project Planning 65

CASE STUDY

Examples: IOE Existing Quality Standards

Amanda fi nds that at IOE, the Quality Standards and Procedures Manual lays down quality criteria for
each type of task. For example, all module design documentation for any group of modules that interact
with one another has to be reviewed by a group of colleagues before the coding can commence. This
is to reduce the likelihood of integration problems when the components are fi nally executed together.
Amanda adds an activity to her plan to deal with this.

 EXERCISE 3.7

Brigette has no installation standards to help her apart from the minimal ones she has written herself.
What quality checks might Brigette introduce to ensure that she has understood the users’ requirements
properly?

Step 8.2: Document plans and obtain agreement
It is important that the plans be carefully documented and that all the parties to the project understand and
agree to the commitments required of them in the plan. This may sound obvious, but it is amazing how often
this is not done. Chapter 12 describes the use of a communications plan to ensure appropriate communica-
tions between stakeholders at the right points in the project.

FIGURE 3.6 Gan chart showing when sta will be carrying out tasks

66 So ware Project Management

 EXERCISE 3.8

At the end of Chapter 1 the main sections of a project plan document were listed. Draw up a table
showing which Step Wise activities provide material for which sections of the project plan.

3.11 Steps 9 and 10: Execute Plan/Lower Levels of Planning
Once the project is under way, plans will need to be drawn up in greater detail for each activity as it becomes
due. Detailed planning of the later stages will need to be delayed because more information will be available
nearer the start of the stage. Of course, it is necessary to make provisional plans for the more distant tasks,
because thinking about what needs to be done can help unearth potential problems, but sight should not be
lost of the fact that these plans are provisional.

CASE STUDY

Examples: Lower-Level Planning

While work is going on with the specifi cation of the individual modules, Amanda has some time to start
planning the integration tests in some detail. She fi nds that one of the modules – the one that deals with
recording job requests – does not actually communicate directly with the other new modules and can
therefore be reviewed independently of the others. She schedules an earlier review of this module as
this allows coding of the module to be started earlier.

When Brigette comes to consider the activity ‘draft invitation to tender’, she has to familiarize herself
with the detailed institutional rules and procedures that govern this process. She fi nds that in order to
draft this document she will need to obtain some additional pieces of information from the users.

CONCLUSION

This chapter has presented a framework into which the techniques described in the other parts of the book
should slot. It is suggested that any planning approach should have the following elements:

 ● the establishment of project objectives;

 ● the analysis of the characteristics of the project;

 ● the establishment of an infrastructure consisting of an appropriate organization and set of standards,
methods and tools;

 ● the identifi cation of the products of the project and the activities needed to generate those products;

 ● the allocation of resources to activities;

 ● the establishment of quality controls.

Project planning is an iterative process. As the time approaches for particular activities to be carried out they
should be replanned in more detail.

An Overview of Project Planning 67

FURTHER EXERCISES

 1. List the products created by the Step Wise planning process.

 2. What products must exist before the activity ‘test program’ can take place? What products does this
activity create?

 3. An employee of a training organization has the task of creating case study exercises and solutions for a
training course which teaches a new systems analysis and design method. The person’s work plan has
a three-week task ‘learn new method’. A colleague suggests that this is unsatisfactory as a task as there
are no concrete deliverables or products from the activity. What can be done about this?

 4. In order to carry out usability tests for a new word processing package, the software has to be written
and debugged. User instructions have to be available describing how the package is to be used. These
have to be scrutinized in order to plan and design the tests. Subjects who will use the package in the
tests will need to be selected. As part of this selection process, they will have to complete a question-
naire giving details of their past experience of, and training in, typing and using word processing
packages. The subjects will carry out the required tasks using the word processing package. The tasks
will be timed and any problems the subjects encounter with the package will be noted. After the test, the
subjects will complete another questionnaire about what they felt about the package. All the data from
the tests will be analysed and a report containing recommendations for changes to the package will be
drawn up. Draw up a Product Breakdown Structure, a Product Flow Diagram and a preliminary activity
network for the above.

 5. Question 4 in the further exercises for Chapter 1 refers to a scenario relating to a training exercise.
Using that scenario, draw up a Product Breakdown Structure, a Product Flow Diagram and a prelim-
inary activity network.

 6. Brightmouth College intends to automate the routine activities of its library including issuing books
to users, return of books, handling fi ne collection, and querying availability of books. The library has
around 10,000 books. At present, the activities of the library are being carried out manually by the
four member library staff. The college intends to allot the development of the software to a vendor.
The software would have to be transferred to the library in a fully operational mode. To speed up the
delivery of software, the vendor would have to create the operational database during the development
of the software. This would involve entering details of the existing books into a CSV (comma separated
values) fi le. After the development of the software, the CSV data will have to be imported into the
software. After alpha testing, the software would have to be tested in the operational environment. For
this, the software would have to be run along side the manual system at the library for a week. During
this time, user training would also have to be conducted.

 (a) Identify and represent the deliverables using a product breakdown structure (PBS)

 (b) Develop the product fl ow diagram

 (c) Develop an activity network

4

OBJECTIVES

When you have completed this chapter you will be able to:
evaluate situations where software applications could be acquired off-the-shelf rather than being •
built specially;
take account of the characteristics of the system to be developed when planning a project;•
select an appropriate process model;•
make best use of the waterfall process model where appropriate;•
reduce some risks by the creation of appropriate prototypes;•
reduce other risks by implementing the project in increments;•
identify where unnecessary organizational obstacles can be removed by using agile development •
methods.

4.1 Introduction
The development of software in-house usually means that:

 ● the developers and the users belong to the same organization;

 ● the application will slot into a portfolio of existing computer-based systems;

 ● the methodologies and technologies are largely dictated by organizational standards and policies,
including the existing enterprise architecture.

However, a software supplier could carry out successive development projects for a variety of external
customers. They would need to review the methodologies and technologies to be used for each individual
project. This decision-making process has been called technical planning by some, although here we use the
term project analysis. Other terms for this process are methods engineering and methods tailoring. Even where

Selection of an Appropriate Project Approach 69

development is in-house, any characteristics of the new project requiring a different approach from previous
projects need to be considered. A wide range of system development methods exists, but many organizations
get along without using any of the recognized approaches. Where methods are used, ‘means–end inversion’
can happen: developers focus on the means – the procedures and intermediate products of a prescribed
method – at the expense of the ‘end’, the actual required outcomes of the work. These issues are the subject
of this chapter.

The relevant part of the Step Wise approach is Step 3: Analyse project characteristics.
The selection of a particular process model could add new products to the Project
Breakdown Structure or new activities to the activity network. This will generate
inputs for Step 4: Identify the products and activities of the project (see Figure 4.1).

B. Fitzgerald, N. L.
Russo and T. O’Kane
(2003). ‘Software
development method
tailoring at Motorola’
Communications of
the ACM 46(4) 65–70
provides a good insight
into how method tailor-
ing works in practice.

FIGURE 4.1 Project analysis is the subject of Step 3

70 So ware Project Management

In the remainder of this chapter we will look at how the characteristics of a project’s environment and the
application to be delivered infl uence the shape of the plan of a project. We will then look at some of the most
common process models, namely the waterfall approach, prototyping and incremental delivery. Some of the
ideas of prototyping and incremental delivery have been further developed and made part of agile methods.
We will have a look at how these lightweight processes have been designed to remove what have been seen
as the bureaucratic obstacles created by more formal, heavyweight methods.

4.2 Build or Buy?
Software development can be seen from two differing viewpoints: that of the devel-
opers and that of the clients or users. With in-house development, the developers and
the users are in the same organization. Where the development is outsourced, they are
in different organizations. In these days of global system development, the different
organizations could be on different continents. These factors will affect the way that
a project is organized.

The development of a new IT application within an organization would often require the recruitment of
technical staff who, once the project has been completed, will no longer be required. Because this project is
a unique new development for the client organization there may be a lack of executives qualifi ed to lead the
effort. Contracting the project out to an external IT development company may be attractive in these circum-
stances. The contracting company will have technical and project expertise not readily available to the client.
However, there would still be considerable management effort needed by the client to establish and manage
the contract and this is the subject of Chapter 10 on managing contracts.

Whether in-house or outsourced, software development is still involved. An option which is increasingly
taken – as in the case of the Brightmouth College payroll scenario – is to obtain a licence to run off-the-shelf
software. The advantages of such an approach include:

 ● the supplier of the application can spread the cost of development over a large number of customers and
thus the cost per customer should be reduced;

 ● the software already exists and so

 ■ it can be examined and perhaps even trialed before acquisition,

 ■ there is no delay while the software is being built;

 ● where lots of people have already used the software, most of the bugs are likely to have been reported
and removed, leading to more reliable software.

However, there are disadvantages, which include the following.

 ● As you have the same application as everyone else, there is no competitive advantage.

 ● Modern off-the-shelf software tends to be very customizable: the characteristics of the application can
be changed by means of various parameter tables. However, this fl exibility has limits and you may end
up having to change your offi ce procedures in order to fi t in with the computer system.

 ● You will not own the software code. This may rule out making modifi cations to the application in
response to changes in the organization or its environment.

 ● Once you have acquired your off-the-shelf system, your organization may come to be very reliant upon
it. This may create a considerable barrier to moving to a different application. The supplier may be in a
position to charge infl ated licence fees because you are effectively a captive customer.

The communication
challenges of geo-
graphically dispersed
projects are discussed
in Chapter 12 on work-
ing in teams.

Selection of an Appropriate Project Approach 71

We will explore these issues further in Chapter 10 on managing contracts. In the remainder of this chapter we
focus on situations where new software is being developed, whether in-house or outsourced.

4.3 Choosing Methodologies and Technologies
In the context of ICT system development and software engineering, the term
methodology describes a collection of methods. We introduced ‘method’ in Chapter
1 as a general way of carrying out a specifi c task that could be applicable to any
project needing to do that task. Techniques and methods are sometimes distinguished.
Techniques tend to involve the application of scientifi c, mathematical or logical
principles to resolve a particular kind of problem. They often require the practice of particular personal skills
(the word ‘technique’ is derived from the Greek for skilful) – software design is a good example. Methods
often involve the creation of models. A model is a representation of a system which abstracts certain features
but ignores others. For example, an entity relationship diagram (ERD) is a model of the structure of the data
used by a system. What can be confusing is that a software development life cycle itself is a type of system.
Features of life cycles can therefore be abstracted and represented as ‘models’ as we will see later in this
chapter. Some of these models can thus start to look a bit like methods.

Project analysis should select the most appropriate methodologies and technologies for a project. Methodologies
include approaches like the Unifi ed Software Development Process (USDP), Structured Systems Analysis
and Design Method (SSADM) and Human-Centred Design, while technologies might include appropriate
application-building and automated testing environments. The analysis identifi es the methodology, but also
selects the methods within the methodology that are to be deployed.

As well as the products and activities, the chosen methods and technologies will affect:

 ● the training requirements for development staff;

 ● the types of staff to be recruited;

 ● the development environment – both hardware and software;

 ● system maintenance arrangements.

We are now going to describe some of the steps of project analysis.

Identify project as either objective-driven or product-driven
In Chapter 1 we distinguished between objective-driven and product-driven projects.
A product-driven project creates products defi ned before the start of the project. An
objective-driven project will often have come fi rst which will have defi ned the general
software solution that is to be implemented.

The project manager’s dream is to have well-defi ned objectives but as much freedom
as possible about how those objectives are to be satisfi ed. An objective might be to
pay staff in a start-up company reliably, accurately and with low administrative costs. The company does not
have to specify the use of a particular packaged software solution at the outset – but as we will see, there can
be exceptions to this.

Sometimes the objectives of the project are uncertain or are the subject of disagreement. People might be
experiencing problems but no one knows exactly how to solve these problems. ICT specialists might provide

Strictly speaking,
methodology should
refer to the ‘study of
methods’.

The soft systems ap-
proach is described in
P. Checkland and J.
Scholes (1999) Soft
Systems Methodology
in Action, John Wiley
and Sons.

72 So ware Project Management

help with some problems but assistance from other specialisms might be needed with others. In these kinds
of situation a soft systems approach might be considered.

Analyse other project characteristics
The following questions can be usefully asked.

 ● Is a data-oriented or process-oriented system to be implemented? Data-oriented
systems generally mean information systems that will have a substantial database.
Process-oriented systems refer to embedded control systems. It is not uncommon
to have systems with elements of both. Some writers suggest that the OO approach
is more suitable for process-oriented systems where control is important than for
systems dominated by a relational database.

 ● Will the software that is to be produced be a general tool or application specifi c? An example of a
general tool would be a spreadsheet or a word processing package. An application-specifi c package
could be, for example, an airline seat reservation system.

 ● Are there specifi c tools available for implementing the particular type of application? For example:

– does it involve concurrent processing? – the use of techniques appropriate to the
analysis and design of such systems would be considered;

– will the system to be created be knowledge-based? – expert systems have rules
which result in some ‘expert advice’ when applied to a problem, and specifi c
methods and tools exist for developing such systems; or

 – will the system to be produced make heavy use of computer graphics?

 ● Is the system to be created safety critical? For instance, could a malfunction in the system endanger
human life? If so, among other things, testing would become very important.

 ● Is the system designed primarily to carry out predefi ned services or to be engaging and entertaining?
With software designed for entertainment, design and evaluation will need to be carried out differently
from more conventional software products.

 ● What is the nature of the hardware/software environment in which the system will operate? The
environment in which the fi nal software will operate could be different from that in which it is to be
developed. Embedded software might be developed on a large development machine which has lots of
supporting software tools such as compilers, debuggers and static analysers, but then be downloaded
to a small processor in the target confi guration. A standalone desktop application needs a different
approach to one for a mainframe or a client–server environment.

 EXERCISE 4.1

How would you categorize each of the following systems according to the classifi cation above?

 (a) a payroll system;

 (b) a system to control a bottling plant;

 (c) a system which holds details of the plans of plant used by a water company to supply water to
consumers;

 (d) a software package to support project managers;

 (e) a system used by lawyers to access case law relating to company taxation.

We fi rst introduced the
difference between in-
formation systems and
embedded systems in
Chapter 1.

Note that here we are
talking about writing
the software tool, not
its use.

Selection of an Appropriate Project Approach 73

Identify high-level project risks
At the beginning of a project, some managers might expect elaborate plans even though
we are ignorant of many important factors affecting the project. For example, until we
have analysed the users’ requirements in detail we cannot estimate the effort needed
to build a system to meet those requirements. The greater the uncertainties at the
beginning, the greater the risk that the project will be unsuccessful. Once we recognize
an area of uncertainty we can, however, take steps to reduce its uncertainty.

One suggestion is that uncertainty can be associated with the products, processes, or resources of a project.

 ● Product uncertainty How well are the requirements understood? The users themselves could be
uncertain about what a proposed information system is to do. The government, say, might introduce
a new form of taxation but its detailed operation might not be known until case law has been built up.
Some environments change so quickly that a seemingly precise and valid statement of requirements
rapidly becomes out of date.

 ● Process uncertainty The project under consideration might be the fi rst where
an organization is using an approach like extreme programming (XP) or a new
application-building tool. Any change in the way that the systems are developed
introduces uncertainty.

 ● Resource uncertainty The main area of uncertainty here is likely to be the avail-
ability of staff of the right ability and experience. The larger the number of
resources needed or the longer the duration of the project, the more inherently
risky it will be.

Some factors – such as continually changing requirements – increase uncertainty, while others – for instance,
software size – increase complexity. Different strategies are needed to deal with the two distinct types of
risks.

 EXERCISE 4.2

At IOE, Amanda has identifi ed possible user resistance as a risk to the annual maintenance contracts
project. Would you classify this as a product, process or resource risk? It may be that it does not fi t into
any of these categories and some other is needed.

Brigette at Brightmouth College has identifi ed as a risk the possibility that no suitable payroll package
would be available on the market. What other risks might be inherent in the Brightmouth College
payroll project?

Take into account user requirements concerning implementation
We suggested earlier that staff planning a project should try to ensure that unnec-
essary constraints are not imposed on the way that a project’s objectives are to be met.
The example given was the specifi cation of the exact payroll package to be deployed.
Sometimes, such constraints are unavoidable. International conglomerates have found
that imposing uniform applications and technologies throughout all their component parts can save time and
money. Obtaining IT services for the whole organization from a single supplier can mean that large discounts
can be negotiated.

Chapter 2 has already
touched on some as-
pects of risk which are
developed further in
Chapter 7.

Extreme programming
will be discussed in
Section 4.15.

Of course, some risk
factors can increase
both uncertainty and
complexity.

Chapter 13 on soft-
ware quality discusses
BS EN ISO 9001.

74 So ware Project Management

A client organization often lays down standards that have to be adopted by any contractor providing software
for them. Sometimes organizations specify that suppliers of software have BS EN ISO 9001 : 2000 or TickIT
accreditation. This will affect the way projects are conducted.

Select general life-cycle approach
 ● Control systems A real-time system will need to be implemented using an appro-

priate methodology. Real-time systems that employ concurrent processing may
have to use techniques such as Petri nets.

 ● Information systems Similarly, an information system will need a method-
ology, such as SSADM or Information Engineering, that matches that type of
environment. SSADM would be especially appropriate where the project employs
a large number of development staff whose work will need to be coordinated: the
method lays down in detail the activities and products needed at each step. Team
members would therefore know exactly what is expected.

 ● Availability of users Where the software is for the general market rather than application and user
specifi c, then a methodology which assumes that identifi able users exist who can be quizzed about
their needs would have to be thought about with caution. Some business systems development methods
assume an existing clerical system which can be analysed to yield the logical features of a new, comput-
er-based, system. In these cases a marketing specialist may act as a surrogate user.

 ● Specialized techniques For example, expert system shells and logic-based programming languages
have been invented to expedite the development of knowledge-based systems. Similarly, a number of
specialized techniques and standard components are available to assist in the development of graphics-
based systems.

 ● Hardware environment The environment in which the system is to operate could put constraints on the
way it is to be implemented. The need for a fast response time or restricted computer memory might
mean that only low-level programming languages can be used.

 ● Safety-critical systems Where safety and reliability are essential, this might justify the additional
expense of a formal specifi cation using a notation such as OCL. Extremely critical systems could
justify the cost of having independent teams develop parallel systems with the same functionality. The

operational systems can then run concurrently with continuous cross-checking. This
is known as n-version programming.

 ● Imprecise requirements Uncertainties or a novel hardware/software platform
mean that a prototyping approach should be considered. If the environment in
which the system is to be implemented is a rapidly changing one, then serious
consideration would need to be given to incremental delivery. If the users
have uncertain objectives in connection with the project, then a soft systems
approach might be desirable.

SSADM as a named
methodology is now
rarely used, but many
of methods within it
are still in wide use
– sometimes under
the general name
of business system
development (BSD)
techniques.

OCL stands for Object
Constraint Language.

The implications of
prototyping and the
incremental approach
are explored later in
the chapter.

Selection of an Appropriate Project Approach 75

 EXERCISE 4.3

What, in broad outline, would be the most suitable approach for each of the following?

 (a) a system which calculates the amount of a drug that should be administered to a patient who has a
particular complaint;

 (b) a system to administer a student loans scheme;

 (c) a system to control trains in the Channel Tunnel.

4.4 Soft ware Processes and Process Models
A software product development process usually starts when a request for the product is received from the
customer. For a generic product, the marketing department of the company is usually considered as the
customer. This expression of need for the product is called product inception. From the inception stage, a
product undergoes a series of transformations through a few identifi able stages until it is fully developed and
released to the customer. After release, the product is used by the customer and during this time the product
needs to be maintained for fi xing bugs and enhancing functionalities. This stage is called the maintenance
stage. When the product is no longer useful to the customer, it is retired. This set of identifi able stages through
which a product transits from inception to retirement form the life cycle of the product. The software life
cycle is also commonly referred to as Software Development Life Cycle (SDLC) and software process.

A life cycle model (also called a process model) of a software product is a graphical or textual representation
of its life cycle. Additionally, a process model may describe the details of various types of activities carried
out during the different phases and the documents produced.

4.5 Choice of Process Models
The word ‘process’ emphasizes the idea of a system in action. In order to achieve an outcome, the system
will have to execute one or more activities: this is its process. This applies to the development of computer-
based applications. A number of interrelated activities have to be undertaken to create a fi nal product. These
activities can be organized in different ways and we can call these process models.

The planner selects methods and specifi es how they are to be applied. Not all parts of a methodology such
as USDP or SSADM will be compulsory. Many student projects have the rather basic failing that at the
planning stage they claim that, say, SSADM is to be used: in the event all that is produced are a few SSADM
fragments such as a top-level data fl ow diagram and a preliminary logical data structure diagram. If this is all
the particular project requires, it should be explicitly stated.

4.6 Structure versus Speed of Delivery
Although some ‘object-oriented’ specialists might object(!), we include the OO
approach as a structured method – after all, we hope it is not unstructured. Structured
methods consist of sets of steps and rules which, when applied, generate system
products such as use case diagrams. Each of these products is carefully defi ned. Such
methods are more time consuming and expensive than more intuitive approaches. The pay-off, it is hoped, is
a less error prone and more maintainable fi nal system. This balance of costs and benefi ts is more likely to be

The principle behind
structured methods is
‘get it right fi rst time’.

76 So ware Project Management

justifi ed on a large project involving many developers and users. Because of the additional effort needed and
their greater applicability to large and complex projects, these are often called heavyweight methods.

It might be thought that users would generally welcome the more professional approach that structured
methods imply. However, customers for software are concerned with getting working applications delivered
quickly and at less cost and often see structured methods as unnecessarily bureaucratic and slow. One response
to this has been rapid application development (RAD) which puts the emphasis on quickly producing proto-
types of the software for users to evaluate.

The RAD approach does not preclude the use of some elements of structured methods
such as the drafting of logical data structure diagrams but also adopts tactics such
as joint application development (JAD) workshops. In these workshops, developers
and users work together intensively for, say, three to fi ve days and identify and agree
fully documented system requirements. Often these workshops are conducted away
from the normal business and development environments in clean rooms, special

conference rooms free from outside interruption and suitably furnished with whiteboards and other aids to
communication. Advocates of JAD believe that these hot-house conditions can speed up communication and
negotiation that might otherwise take several weeks or months.

Use of JAD does not mean that the project is not structured. The defi nition of the scope of the project, the
initial research involving the interviewing of key personnel and the creation of preliminary data and process
models would need to planned and executed before the JAD sessions were organized. The results of JAD
sessions could be implemented using quite conventional methods.

Another way of speeding up delivery is simply to deliver less. This can be done by breaking a large devel-
opment into a series of small increments, each of which delivers a small amount of useful functionality
quickly.

Two competing pressures can be seen. One is to get the job done as quickly and cheaply as possible, and the
other is to make sure that the fi nal product has a robust structure which will be able to meet evolving needs.
Later in this chapter and in Chapter 12 we will discuss the increasingly important topic of agile methods
which focuses on lightweight processes. There is, however, a contrasting approach which is the attempt to
create model-driven architectures (MDA). System development using MDA involves creating a platform-
independent model (PIM) which specifi es system functionality using UML diagrams supplemented by
additional information recorded in the Object Constraint Language (OCL). A PIM is the logical structure that
should apply regardless of the software and hardware environment in which the system is to be implemented.
This can be transformed into a platform-specifi c model (PSM) that takes account of a particular development
and implementation environment. A PSM can then be transformed into executable code to implement a
working system. The goal is that once a PIM had been created the creation of PSMs and executable code will
be automated. At present, the automation of these transformation processes is still being developed.

4.7 Th e Waterfall Model
This is the ‘classical’ model of system development that is also known as the one-shot or once-through model.
As can be seen from the example in Figure 4.2, there is a sequence of activities working from top to bottom.
The diagram shows some arrows pointing upwards and backwards. This indicates that a later stage may
reveal the need for some extra work at an earlier stage, but this should defi nitely be the exception rather than
the rule. After all, the fl ow of a waterfall should be downwards, with the possibility of just a little splashing

Joint Application
Development by Jane
Wood and Denise
Silver, Wiley and Sons,
1995, is a useful intro-
duction to JAD.

Selection of an Appropriate Project Approach 77

back. The limited scope for iteration is in fact one of the strengths of this process
model. With a large project you want to avoid reworking tasks previously thought
to be completed. Having to reopen completed activities plays havoc with promised
completion dates.

The waterfall approach may be favoured by some managements because it creates
natural milestones at the end of each phase. At these points, managers can review
project progress to see whether the business case for the project is still valid. This
is sometimes referred to as the stage-gate model. As we will see, stage-gates are
compatible with process models other than the waterfall, but higher management may
have to accept that activities may have to be grouped in different ways with these alternative approaches.

Even though writers often advocate alternative models, there is nothing intrinsically wrong with the waterfall
approach in the right place. It is the ideal for which the project manager strives. Where the requirements
are well defi ned and the development methods are well understood, the waterfall approach allows project
completion times to be forecast with some confi dence, allowing the effective control of the project. However,
where there is uncertainty about how a system is to be implemented, and unfortunately there very often is, a
more fl exible, iterative, approach is required.

The waterfall model can expanded into the V-process model which is further explored in Section 13.11 on
testing. This expansion is done by expanding the testing process into different types of testing which check

FIGURE 4.2 The waterfall model

The fi rst descrip-
tion of this approach
is said to be that of
H. D. Bennington in
‘Production of Large
Computer Programs’
in 1956. This was
reprinted in 1983 in
Annals of the History of
Computing 5(4).

78 So ware Project Management

the executable code against the products of each of the activities in the project life cycle leading up to the
coding. For example, the code may seem to execute correctly, but may be at variance with the expected
design. This is explained further in Chapter 13.

4.8 Th e Spiral Model
It could be argued that this is another way of looking at the waterfall model. In the
waterfall model, it is possible to escape at the end of any activity in the sequence. A
feasibility study might decide that the implementation of a proposed system would
be benefi cial. The management therefore authorize work on the detailed analysis
of user requirements. Some analysis, for instance the interviewing of users, might
already have taken place at the feasibility stage, but a more thorough investigation is
now launched. This could reveal that the costs of implementing the system would be
higher than projected benefi ts and lead to a decision to abandon the project.

A greater level of detail is considered at each stage of the project and a greater degree of confi dence about
the probability of success for the project should be justifi ed. This can be portrayed as a loop or a spiral where
the system to be implemented is considered in more detail in each sweep. Each sweep terminates with an
evaluation before the next iteration is embarked upon. Figure 4.3 illustrates how SSADM can be interpreted
in such a way.

The original ideas be-
hind the spiral model
can be found in B. W.
Boehm’s 1988 paper
‘A spiral model of soft-
ware development and
enhancement’ in IEEE
Computer, 21(5).

FIGURE 4.3 The applica on of the spiral model to SSADM version 4

Selection of an Appropriate Project Approach 79

A key point here is that uncertainty about a project is usually because of a lack of knowledge about some
aspect. We can spend money on activities at the start of the project that buy knowledge and reduce that
uncertainty.

The distinguishing characteristic features of the spiral model are the incremental style of development and the
ability to handle various types of risks. Each loop of the spiral is called a phase of this software process. In
each phase, one or more features of the product are implemented after resolving any associated risks through
prototyping. The exact number of loops of the spiral is not fi xed and varies from one project to another.
Note that the number of loops shown in Figure 4.4 is just an example illustrating how the spiral model can
subsume SSADM. Each loop of the spiral is divided into four quadrants, indicating four stages in each phase.
In the fi rst stage of a phase, one or more features of the product are analysed and the risks in implementing
those features are identifi ed and resolved through prototyping. In the third stage, the identifi ed features are
implemented using the waterfall model. In the fourth and fi nal stage, the developed increment is reviewed by
the customer along with the development team and the features to be implemented next are identifi ed. Note
that the spiral model provides much more fl exibility compared to the other models, in the sense that the exact
number of phases through which the product is to be developed can be tailored by the project manager during
execution of the project.

4.9 Soft ware Prototyping
This is one way in which we can buy knowledge and reduce uncertainty. A prototype is a working model of
one or more aspects of the projected system. It is constructed and tested quickly and inexpensively in order
to test out assumptions.

Prototypes can be classifi ed as throw-away or evolutionary.

 ● Throw-away prototypes The prototype tests out some ideas and is then discarded when the true devel-
opment of the operational system is commenced. The prototype could be developed using a different
software or hardware environment. For example, a desktop application builder could be used to evolve
an acceptable user interface. A procedural programming language is then used for the fi nal system
where machine-effi ciency is important.

 ● Evolutionary prototypes The prototype is developed and modifi ed until it is fi nally in a state where it
can become the operational system. In this case the standards that are used to develop the software have
to be carefully considered.

Some of the reasons that have been put forward for prototyping follow.

 ● Learning by doing We can usually look back on a task and see where we have made mistakes.

 ● Improved communication Users do not get a feel for how the system is likely to work in practice from
a specifi cation.

 ● Improved user involvement The users can be more actively involved in design decisions.

 ● Clarifi cation of partially known requirements Where there is no existing system to mimic, users can often
get a better idea of what might be useful to them by trying out prototypes.

 ● Demonstration of the consistency and completeness of a specifi cation Any
mechanism that attempts to implement a specifi cation on a computer is likely to
uncover ambiguities and omissions. The humble spreadsheet can, for instance,
check that calculations have been specifi ed correctly.

The most important
justifi cation for a
prototype is the need
to reduce uncer-
tainty by conducting an
experiment.

80 So ware Project Management

 ● Reduced need for documentation Because a working prototype can be examined
there is less need for detailed documentation of requirements.

 ● Reduced maintenance costs If the user is unable to suggest modifi cations at
the prototyping stage they are more likely to ask for changes to the operational
system. This reduction of maintenance costs is the core of the fi nancial case for
prototypes.

 ● Feature constraint If an application-building tool is used, then the prototype will tend to have features
that are easily implemented by that tool. A paper-based design might suggest features that are expensive
to implement.

 ● Production of expected results The problem with creating test cases is generally not the creation of the
test input but the accurate calculation of the expected results. A prototype can help here.

Software prototyping is not without its drawbacks and dangers, however.

 ● Users can misunderstand the role of the prototype For example, they might expect the prototype to
have as stringent input validation or as fast a response as the operational system, although this was not
intended.

 ● Lack of project standards possible Evolutionary prototyping could just be an excuse for a sloppy ‘hack
it out and see what happens’ approach.

 ● Lack of control It can be diffi cult to control the prototyping cycle if the driving force is the users’
propensity to try out new things.

 ● Additional expense Building and exercising a prototype will incur additional expenses. However, this
should not be over-estimated as many analysis and design tasks have to be undertaken whatever the
approach.

 ● Machine effi ciency A system built through prototyping, while sensitive to the users’ needs, might not
be as effi cient in machine terms as one developed using more conventional methods.

 ● Close proximity of developers Prototyping could mean that code developers have to be sited close to
the users. One trend is for organizations in developed countries to transfer software development to
developing countries with lower costs such as India. Prototyping might prevent this.

4.10 Other Ways of Categorizing Prototypes
What is being learnt?
The most important reason for prototyping is a need to learn about an area of uncertainty. Thus it is essential
to identify at the outset what is to be learnt from the prototype.

Computing students often realize that the software that they are to write as part of their fi nal-year project
could not safely be used by real users. They therefore call the software a ‘prototype’. However, if it is a real
prototype then they must:

 ● specify what they hope to learn from the prototype;

 ● plan how the prototype is to be evaluated;

 ● report on what has actually been learnt.

Prototypes can be used to fi nd out about new development techniques, by using them in a pilot project.
Alternatively, the development methods might be well known, but the nature of the application uncertain.

Some may argue, how-
ever, that this is a very
dangerous suggestion.

Selection of an Appropriate Project Approach 81

Different projects will have uncertainties at different stages. Prototypes can therefore be used at different
stages. A prototype might be used, for instance, at the requirements gathering stage to pin down requirements
that seem blurred and shifting. A prototype might, on the other hand, be used at the design stage to test out
the users’ ability to navigate through a sequence of input screens.

To what extent is the prototyping to be done?
It would be unusual for the whole of the application to be prototyped. The prototyping usually simulates only
some aspects of the target application. For example there might be:

 ● Mock-ups As when copies of input screens are shown to the users on a terminal, but the screens cannot
actually be used.

 ● Simulated interaction For example, the user can type in a request to access a record and the system
will show the details of a record, but the details shown are always the same and no access is made to a
database.

 ● Partial working model:

 ■ Vertical Some, but not all, features are prototyped fully.

 ■ Horizontal All features are prototyped but not in detail – perhaps there is not full validation of
input.

What is being prototyped?
 ● The human–computer interface With business applications, business process requirements have usually

been established at an early stage. Prototyping tends, therefore, to be confi ned to the nature of operator
interaction. Here the physical vehicle for the prototype should be as similar as possible to the opera-
tional system.

 ● The functionality of the system Here the precise way the system should function internally is not known.
For example, a computer model of some real-world phenomenon is being developed. The algorithms
used might need to be repeatedly adjusted until they satisfactorily imitate real-world behaviour.

 EXERCISE 4.4

At what stage of a system development project (for example, feasibility study, requirements analysis,
etc.) would a prototype be useful as a means of reducing the following uncertainties?

 (a) There is a proposal that the senior managers of an insurance company have personal access to
management information through an executive information system installed on personal computers
located on their desks. Such a system would be costly to set up and there is some doubt about
whether the managers would actually use the system.

 (b) A computer system is to support sales offi ce staff taking phone calls from members of the public
enquiring about motor insurance and giving quotations over the phone.

 (c) The insurance company is considering implementing the telephone sales system using the system
development features supplied by Microsoft Access. They are not sure, at the moment, that it
can provide the kind of interface that would be needed and are also concerned about the possible
response times of a system developed using Microsoft Access.

82 So ware Project Management

Controlling changes during prototyping
A major problem with prototyping is controlling changes to the prototype following suggestions by the users.
One approach has been to categorize changes as belonging to one of three types:

 ● Cosmetic (often about 35% of changes)

 These are simple changes to the layout of the screens or reports. They are:

 (a) implemented;

 (b) recorded.

 ● Local (often about 60% of changes)

 These change the way that a screen or report is processed but do not affect other
parts of the system. They are:

 (a) implemented;

 (b) recorded;

 (c) backed-up so that they can be removed at a later stage if necessary;

 (d) inspected retrospectively.

 ● Global (about 5% of changes)

 These are changes that affect more than one part of the processing. All changes here have to be the
subject of a design review before they can be implemented.

4.11 Incremental Delivery
This approach breaks the application down into small components which are then implemented and delivered
in sequence. Each component delivered must give some benefi t to the user. Figure 4.4 gives a general idea
of the approach.

Inspections are dis-
cussed in Chapter 13.

FIGURE 4.4 Inten onal incremental delivery

Selection of an Appropriate Project Approach 83

Time-boxing is often associated with an incremental approach. Here the scope of deliverables for an increment
is rigidly constrained by an agreed deadline. This deadline has to be met, even at the expense of dropping
some of the planned functionality. Omitted features can be transferred to later increments.

Advantages of this approach
These are some of the justifi cations given for the approach.

 ● The feedback from early increments improves the later stages.

 ● The possibility of changes in requirements is reduced because of the shorter
time span between the design of a component and its delivery.

 ● Users get benefi ts earlier than with a conventional approach.

 ● Early delivery of some useful components improves cash fl ow, because you get
some return on investment early on.

 ● Smaller sub-projects are easier to control and manage.

 ● Gold-plating, that is, the requesting of features that are unnecessary and not in fact used, is less as users
know that if a feature is not in the current increment then it can be included in the next.

 ● The project can be temporarily abandoned if more urgent work emerges.

 ● Job satisfaction is increased for developers who see their labours bearing fruit at regular, short,
intervals.

Disadvantages
On the other hand, these disadvantages have been put forward.

 ● Later increments might require modifi cations to earlier increments. This is known as software
breakage.

 ● Software developers may be more productive working on one large system than on a series of smaller
ones.

 ● Grady Booch, an authority on OO, suggests that with what he calls ‘requirements
driven’ projects (which equate to incremental delivery) ‘Conceptual integrity
sometimes suffers because there is little motivation to deal with scalability,
extensibility, portability or reusability beyond what any vague requirements
might imply.’ Booch also suggests there could be a tendency towards a large
number of discrete functions with little common infrastructure.

Th e incremental delivery plan
The nature and order of each increment to be delivered to the users have to be planned
at the outset.

This process is similar to strategic planning but at a more detailed level. Attention is
given to increments of a user application rather than whole applications. The elements
of the incremental plan are the system objectives, incremental plan and the open
technology plan.

Tom Gilb, whose
Principles of
Software Engineering
Management was
published by Addison-
Wesley in 1988, is a
prominent advocate of
this approach.

This quotation is from
Grady Booch (1996)
Object Solutions:
Managing the Object
Oriented Project,
Addison-Wesley.

The process of plan-
ning the increments of
a project as described
by Gilb has similarities
with strategic planning
described in Chapter 2.

84 So ware Project Management

System objectives
Recall that earlier we suggested that project planners ideally want well-defi ned objectives, but as much
freedom as possible about how these are to be met. These overall objectives can be expanded into more
specifi c functional goals and quality goals.

Functional goals will include:

 ● objectives it is intended to achieve;

 ● jobs the system is to do;

 ● computer/non-computer functions to achieve them.

In addition, measurable quality characteristics should be defi ned, such as reliability,
response and security. If this is done properly these overarching quality requirements
can go some way to meeting the concerns, expressed by Grady Booch, that these
might get lost with the concentration on the requirements at increment level. It also

refl ects Tom Gilb’s concern that system developers always keep sight of the objectives that they are trying
to achieve on behalf of their clients. In the changing environment of an application individual requirements
could change over the course of the project, but the objectives should not.

Open technology plan
If the system is to be able to cope with new components being continually added then it needs to be extendible,
portable and maintainable.

As a minimum this will require the use of:

 ● a standard high-level language;

 ● a standard operating system;

 ● small modules;

 ● variable parameters, for example items such as the names of an organization and its departments, charge
rates, and so on, are held in a parameter fi le that can be amended without programmer intervention;

 ● a standard database management system.

These are all things that might be expected as a matter of course in a modern software development
environment.

Although Gilb does not suggest this, following Booch’s hints it would be desirable to draw up an initial
logical data model or object model for the whole system. It is diffi cult to see how the next stage of planning
the scope and order of each increment could be done without this foundation.

Incremental plan
Having defi ned the overall objectives and an open technology plan, the next stage is to plan the increments
using the following guidelines:

 ● Steps typically should consist of 1–5% of the total project.

 ● Non-computer steps should be included.

 ● An increment should, ideally, not exceed one month and should not, at worst, take more than three
months.

Chapter 13 discusses
software quality
characteristics.

Selection of an Appropriate Project Approach 85

 ● Each increment should deliver some benefi t to the user.

 ● Some increments will be physically dependent on others.

 ● In other cases value-to-cost ratios may be used to decide priorities (see below).

A new system might be replacing an old computer system and the fi rst increments
could use parts of the old system. For example, the data for the database of the new system could initially be
obtained from the old system’s standing fi les.

Which steps should be fi rst? Some steps will be prerequisites because of physical dependencies but others
can be in any order. Value-to-cost ratios (see Table 4.1) can be used to establish the order in which increments
are to be developed. The customer is asked to rate the value of each increment with a score in the range 1–10.
The developers also rate the cost of developing each of the increments with a score in the range 0–10. This
might seem rather crude, but people are often unwilling to be more precise. Dividing the value rating by the
cost rating generates a ratio which indicates the relative ‘value for money’ of each increment.

TABLE 4.1 Ranking by value-to-cost ra o

Step Value Cost Ratio Rank

Profi t reports 9 1 9 (2nd)

Online database 1 9 0.11 (6th)

Ad hoc enquiry 5 5 1 (4th)

Production sequence plans 2 8 0.25 (5th)

Purchasing profi t factors 9 4 2.25 (3rd)

Clerical procedures 0 7 0 (7th)

Profi t-based pay for managers 9 0 ` (1st)

An incremental example
Tom Gilb describes a project where a software supplier negotiated a fi xed-price contract with a three-month
delivery time with the Swedish government to supply a system to support map-making. It later became
apparent that the original estimate of effort upon which the bid was based was probably about half the real
effort.

The project was replanned and divided into ten increments, each supplying something of use to the customer.
The fi nal increments were not available until three months after the contract’s delivery date. The customer
was not in fact unhappy about this as the most important parts of the application had actually been delivered
early.

4.12 Atern/Dynamic Systems Development Method
In the United Kingdom, SSADM (Structured Systems Analysis and Design Method) has until recently been
a predominant methodology. In no small part, this has been because of sponsorship by the United Kingdom
government. More recently, however, it has lost some favour, partly because it has been perceived as overly

A non-computer step
could be something
like a streamlined cleri-
cal procedure.

A zero cost would
mean that the change
can be implemented
without software de-
velopment – some
costs might be incurred
by users in changing
procedures.

The value to cost ratio
= V/C where V is a
score 1–10 represent-
ing value to customer
and C is a score 0–10
representing cost.

86 So ware Project Management

bureaucratic and prescriptive. In contrast, there has been an increased interest in the iterative and incremental
approaches we have outlined above. As a consequence, a consortium has developed guidelines for the use of
such techniques and packaged the overall approach as the Dynamic Systems Development Method (DSDM).
This has been re-badged as Atern. It is possible to attend courses on the method and to become an accredited
Atern practitioner.

Eight core Atern principles have been enunciated.

 1. Focus on business need. Every decision in the development process should be taken with a view to best
satisfying business needs. Effectively this is emphasizing the need to avoid means–end inversion that
we described in Section 4.1, that is, focusing on the detail of a procedure to the detriment of satisfactory
project deliverables.

 2. Deliver on time. Time-boxing is applied. Every deadline will see the delivery of valuable products, even
if some less valuable ones are held over. This is better than delivery dates being pushed back until a
delivery of all scheduled products can be made.

 3. Collaborate. A one-team culture should be promoted, where user representatives are integrated into the
delivery team.

 4. Never compromise quality. Realistic quality targets are set early in the project. A process of continu-
ously testing developing products starting as soon as possible is adopted.

 5. Develop iteratively. The prototyping approach described in Section 4.8 would be an example of how
this might be done.

 6. Build incrementally from fi rm foundations. The incremental delivery approach as described in Section
4.11 is embraced.

 7. Communicate continuously. In the case of users this could, for example, be done via workshops and the
demonstration of prototypes.

 8. Demonstrate control. Atern methodology has a range of plans and reports that can
be used to communicate project intentions and outcomes to project sponsors and
other management stakeholders.

Figure 4.5 outlines the general approach. The main life cycle phases are shown:

JAD, Joint Application
Development, was dis-
cussed in Section 4.6.

FIGURE 4.5 Atern process model

Selection of an Appropriate Project Approach 87

 ● Feasibility/foundation. Among the activities undertaken here is derivation of a business case of the
sort discussed in Chapter 2 and general outlines of the proposed architecture of the system to be
developed.

 ● Exploration cycle. This investigates the business requirements. These requirements are translated into
a viable design for the application. This could be an iterative process that could involve the creation
of exploratory prototypes. A large project could be decomposed into smaller increments to assist the
design process.

 ● Engineering cycle. This takes the design generated in the exploration cycle and converts it into usable
components of the fi nal system that will be used operationally. Once again this could be done using
incremental and evolutionary techniques.

 ● Deployment. This gets the application created in the engineering cycle into actual operational use.

Not only can there be iterations within the exploration and engineering cycles, but an increment could involve
requirements investigation followed by the building of the functionality.

Atern encourages the use of time-boxes. It is suggested that these should typically be
between two and six weeks in order to make participants focus on real needs. It will
be recalled that in order to meet the deadline imposed by a time-box, the implemen-
tation of less important features may be held over to later increments (or even dropped
altogether). The relative importance of requirements can be categorized using the
‘MoSCoW’ classifi cation:

 ● Must have: that is, essential features.

 ● Should have: these would probably be mandatory if you were using a conventional development
approach – but the system can operate without them.

 ● Could have: these requirements can be delayed with some inconvenience.

 ● Won’t have: these features are wanted, but their delay to a later increment is readily accepted.

The possibility of requirements being reallocated to different increments means that project plans will need
to be constantly updated if the project is to be successfully controlled.

4.13 Rapid Application Development
Rapid Application Development (RAD) model is also sometimes referred to as the rapid prototyping model.
This model has the features of both the prototyping and the incremental delivery models.

The major aims of the RAD model are as follows:

 ● to decrease the time taken and the cost incurred to develop software systems; and

 ● to limit the costs of accommodating change requests by incorporating them as early as possible before
large investments have been made on development and testing.

One of the major problems that has been identifi ed with the waterfall model is the following. Clients often
do not know what they exactly want until they see a working system. However, they do not see the working
system until the development is complete in all respects and delivered to them. As a result, the exact require-
ments are brought out only through the process of customers commenting on the installed application. The
required changes are incorporated through subsequent maintenance efforts. This makes the cost of accommo-
dating any change extremely high. As a result, it takes a long time and enormous cost to have a good solution

Time-boxes were
discussed in Section
4.11 on incremental
delivery.

88 So ware Project Management

in place. Clearly, this model of developing software would displease even the best customer. The RAD model
tries to overcome this problem by inviting and incorporating customer feedback on successively developed
prototypes. In the RAD model, absence of long-term and detailed planning gives the fl exibility to accom-
modate requirements change requests solicited from the customer during project execution.

In the RAD model, development takes place in a series of short cycles called iterations. Plans are made for
one iteration at a time only. The time planned for each iteration is called a time box. Each iteration enhances
the implemented functionality of the application a little. During each iteration, a quick and dirty prototype
for some functionality is developed. The customer evaluates the prototype and gives feedback, based on
which the prototype is refi ned. Thus, over successive iterations, the full set of functionalities of the software
takes shape. However, it needs to be noted that in the RAD model, the prototype is used as an instrument for
gathering customer feedback only and is not released to the customer for regular use.

The development team is also required to include a customer representative to clarify the requirements. Thus,
conscious attempts are made to bridge the communication gap between the customer and the development
team and to tune the system to the exact customer requirements. But, how does RAD model lead to faster
product development? RAD emphasizes code reuse as an important means to get the work done fast. In fact,
the RAD adopters were the earliest to embrace object-oriented languages and practices. RAD also advocates
the use of specialized tools for faster creation of working prototypes.

4.14 Agile Methods
Agile methods are designed to overcome the disadvantages we have noted in our discussions on the heavyweight
implementation methodologies. One of the main disadvantages of the traditional heavyweight methodologies
is the diffi culty of effi ciently accommodating change requests from customers during execution of the project.
Note that the agile model is an umbrella term that refers to a group of development processes, and not any
single model of software development. There are various agile approaches such as the following:

 ● Crystal Technologies

 ● Atern (formerly DSDM)

 ● Feature-driven Development

 ● Scrum

 ● Extreme Programming (XP)

In the agile model, the feature requirements are decomposed into several small parts
that can be incrementally developed. The agile model adopts an iterative approach.
Each incremental part is developed over an iteration. Each iteration is intended to be
small and easily manageable, and lasts for a couple of weeks only. At a time, only
one increment is planned, developed, and then deployed at the customer’s site. No
long-term plans are made. The time taken to complete an iteration is called a time box.
The implication of the term ‘time box’ is that the end date for an iteration does not
change. The development team can, however, decide to reduce the delivered function-
ality during a time box, if necessary, but the delivery date is considered sacrosanct.

Besides the delivery of increments after each time box, a few other principles discussed
below are central to the agile model.

The Agile Manifesto is
available at http://www.
agilealliance.org

See S. Nerur, R.
Mahapatra and G.
Mangalara (2005)
‘Challenges of migrat-
ing to agile methodolo-
gies’ Communications
of the ACM 48(5) 73–8.

Selection of an Appropriate Project Approach 89

 ● Agile model emphasizes face-to-face communication over written documents.
Team size is deliberately kept small (5–9 people) to help the team members
effectively communicate with each other and collaborate. This makes the agile
model well-suited to the development of small projects, though large projects
can also be executed using the agile model. In a large project, it is likely that the
collaborating teams might work at different locations. In this case, the different
teams maintain daily contact through video conferencing, telephone, e-mail,
etc.

 ● An agile project usually includes a customer representative in the team. At the end of each iteration, the
customer representative along with the stakeholders review the progress made, re-evaluate the require-
ments, and give suitable feedback to the development team.

 ● Agile development projects usually deploy pair programming. In this approach, two programmers
work together at one work station. One types the code while the other reviews the code as it is typed.
The two programmers switch their roles every hour or so. Several studies indicate that programmers
working in pairs produce compact well-written programs and commit fewer errors as compared to
programmers working alone.

 EXERCISE 4.5

As can be seen, there is much in common between the RAD model and the agile model. Identify the
important differences between the agile model and the RAD model.

4.15 Extreme Programming (XP)
The primary source of information on XP is Kent Beck’s Extreme programming
explained: embrace change, fi rst published in 1999 and updated in 2004. The
description here is based on the fi rst edition, with some comments where the ideas
have been developed further in the second.

The ideas were largely developed on the C3 payroll development project at Chrysler.
The approach is called ‘extreme programming’ because, according to Beck, ‘XP takes
commonsense principles to extreme levels’. Four core values are presented as the
foundations of XP.

 1. Communication and feedback. It is argued that the best method of communication is face-to-face
communication. Also, the best way of communicating to the users the nature of the software under
production is to provide them with frequent working increments. Formal documentation is avoided.

2. Simplicity. The simplest design that implements the users’ requirements should always be adopted.
Effort should not be spent trying to cater for future possible needs – which in any case might never
actually materialize.

3. Responsibility. The developers are the ones who are ultimately responsible for the quality of the
software – not, for example, some system testing or quality control group.

4. Courage. This is the courage to throw away work in which you have already invested a lot of effort, and
to start with a fresh design if that is what is called for. It is also the courage to try out new ideas – after

See H. Merisalo-
Rantanen, T. Tuure
and M. Rossi (2005) ‘Is
extreme programming
just old wine in new
bottles?’ Journal of
Database Management
16(4) 41–61.

See Kent Beck (with
Cynthia Andreas),
Extreme Programming
Explained: Embrace
Change, Addison-
Wesley, 1st edition
1999, 2nd edition
2004. ‘Extreme pro-
gramming’ is some-
times shown with a
capital ‘X’ i.e. ‘eXtreme
Programming’.

90 So ware Project Management

all, if they do not work out, they can always be scrapped. Beck argues that this attitude is more likely
to lead to better solutions.

Among the core practices of XP are the following.

Th e planning exercise
Previously, when we talked about ‘increments’ we meant components of the system
that users could actually use. XP refers to these as releases. Within these releases
code is developed in iterations, periods of one to four weeks’ duration during which
specifi c features of the software are created. Note that these are not usually ‘iterations’
in the sense that they are new, improved, versions of the same feature – although this
is a possibility. The planning game is the process whereby the features to be incorpo-
rated in the next release are negotiated. Each of the features is documented in a short

textual description called a story that is written on a card. A process similar to value-to-cost ratio analysis
discussed earlier in Section 4.11 or Atern’s MoSCoW rating is carried out in order to give priorities to the
features. At the time of the next code release, any features that have not been completed will be held over –
that is, time-boxing is employed.

Small releases
The time between releases of functionality to users should be as short as possible. Beck suggests that releases
should ideally take a month or two. This is compatible with Tom Gilb’s recommendation of a month as the
ideal time for an increment, with a maximum of three months.

Metaphor
The system to be built will be software code that refl ects things that exist and happen in the real world. A
payroll application will calculate and record payments to employees. The terms used to describe the corre-
sponding software elements should, as far as possible, refl ect real-world terminology – at a very basic level
this would mean using meaningful names for variables and procedures such as ‘hourly_rate’ and ‘calculate_
gross_pay’. Beck suggests that what he calls the use of metaphor can do the job that ‘system architecture’
does on conventional projects. In this context ‘architecture’ refers to the use of system models such as class
and collaboration diagrams to describe the system. The astute reader might point out that the use of the term
‘architecture’ is itself a metaphor.

Simple design
This is the practical implementation of the value of simplicity that was described above.

Testing
Testing is done at the same time as coding. The test inputs and expected results should be scripted so that
the testing can be done using automated testing tools. These test cases can then be accumulated so that they
can be used for regression testing to ensure that later developments do not insert errors into existing working
code. This idea can be extended so that the tests and expected results are actually created before the code
is created. Working out what tests are needed to check that a function is correct can itself help to clarify

In the second edition of
his book, Beck favours
iterations of one week
on the grounds that
people tend to work
naturally in weekly
cycles.

Selection of an Appropriate Project Approach 91

requirements. Two types of testing are needed: unit testing which focuses on the code a developer has just
written, and function testing which is user-oriented and checks the correctness of a particular feature and
which may involve several code units.

Refactoring
A threat to the target of striving to have always the simplest design is that over time, as modifi cations are
made to code, the structure tends to become more spaghetti-like. The answer to this is to have the courage to
resist the temptation to make changes that affect as little of the code as possible and be prepared to rewrite
whole sections of code if this will keep the code structured. The repository of past test cases – see the
section immediately above – can be executed to ensure that the refactoring has not introduced bugs into the
application.

Pair programming
All software code is written by pairs of developers, one actually doing the typing and the other observing,
discussing and making comments and suggestions about what the other is doing. At intervals, the devel-
opers can swap roles. The ideal is that you are constantly changing partners so that you get to know about a
wide range of features that are under development. It follows from this that offi ce environments need to be
designed carefully to allow this type of working, and that developers will generally need to keep the same
offi ce hours.

Helen Sharp of the Open University has studied XP in practice. One of her observations is that the social
nature of the development process encourages a rhythm of group meetings, pair working and daily ‘builds’
when new code is integrated that helps to give the project momentum. Interestingly, this rhythm of activity
and review acting as a heart-beat of the project has also been noted in a successful dispersed project.

Collective ownership
This is really the corollary of pair programming. The team as a whole takes collective responsibility for the
code in the system. A unit of code does not ‘belong’ to just one programmer who is the only one who can
modify it.

Continuous integration
This is another aspect of testing practice. As changes are made to software units, integrated tests are run
regularly – at least once a day – to ensure that all the components work together correctly.

Forty-hour weeks
Chapter 11 discusses, among other issues, the question of stress. It points out that working excessive hours
(in some cases 60 hours or more a week) can lead to ill-health and be generally counterproductive. The
principle is that normally developers should not work more than 40 hours a week. It is realistic to accept that
sometimes there is a need for overtime work to deal with a particular problem – but in this case overtime
should not be worked for two weeks in a row. Interestingly, in some case studies of the application of XP, the
40-hour rule was the only one not adhered to.

92 So ware Project Management

On-site customers
Fast and effective communication with the users is achieved by having a user domain expert on-site with the
developers.

Coding standards
If code is genuinely to be shared, then there must be common, accepted, coding standards to support the
understanding and ease of modifi cation of the code.

Limitations of XP
The successful use of XP is based on certain conditions. If these do not exist, then its practice could be
diffi cult. These conditions include the following.

 ● There must be easy access to users, or at least a customer representative who is a domain expert. This
may be diffi cult where developers and users belong to different organizations.

 ● Development staff need to be physically located in the same offi ce.

 ● As users fi nd out about how the system will work only by being presented with working versions of the
code, there may be communication problems if the application does not have a visual interface.

 ● For work to be sequenced into small iterations of work, it must be possible to break the system function-
ality into relatively small and self-contained components.

 ● Large, complex systems may initially need signifi cant architectural effort. This might preclude the use
of XP.

XP does also have some intrinsic potential problems – particularly with regard to its reliance on tacit expertise
and knowledge as opposed to externalized knowledge in the shape of documentation.

 ● There is a reliance on high-quality developers which makes software development vulnerable if staff
turnover is signifi cant.

 ● Even where staff retention is good, once an application has been developed and implemented, the tacit,
personal, knowledge of the system may decay. This might make it diffi cult, for example, for mainte-
nance staff without documentation to identify which bits of the code to modify to implement a change
in requirements.

 ● Having a repository of comprehensive and accurate test data and expected results may not be as helpful
as might be expected if the rationale for particular test cases is not documented. For example, where a
change is made to the code, how do you know which test cases need to be changed?

 ● Some software development environments have focused on encouraging code reuse as a means of
improving software development productivity. Such a policy would seem to be incompatible with XP.

4.16 Scrum
In the Scrum model, projects are divided into small parts of work that can be incrementally developed and
delivered over time boxes that are called sprints. The product therefore gets developed over a series of
manageable chunks. Each sprint typically takes only a couple of weeks. At the end of each sprint, stake-
holders and team members meet to assess the progress and the stakeholders suggest to the development team
any changes and improvements they feel necessary.

Selection of an Appropriate Project Approach 93

In the scrum model, the team members assume three fundamental roles, viz., product owner, scrum master,
and team member. The product owner is responsible for communicating the customer’s vision of the product
to the development team. The scrum master acts as a liaison between the product owner and the team, and
facilitates the development work.

4.17 Managing Iterative Processes
This discussion of agile methods might be confusing as it seems to turn many of our previous planning
concepts on their head.

Approaches like XP correctly emphasize the importance of communication and of removing artifi cial barriers
to development productivity. XP to many might seem to be simply a ‘licence to hack’. However, a more
detailed examination of the techniques of XP shows that many (such as pair programming and installation
standards) are conscious techniques to counter the excesses of hacking and to ensure that good maintainable
code is written.

Booch suggests that there are two levels of development: the macro process and the micro process. The macro
process is closely related to the waterfall process model. At this level, a range of activities carried out by a
variety of specialist groups has to be coordinated. We need to have some dates when we know that major
activities will be fi nished so that we know when we will need to bring in staff to work on subsequent activ-
ities. Within this macro process there will be micro process activities which might involve iterative working.
Systems testing has always been one. Figure 4.6 illustrates how a sequential macro process can be imposed

FIGURE 4.6 A macro process containing three itera ve micro processes

94 So ware Project Management

on a number of iterative sub-processes. With iterative micro processes, the use of time-boxes is needed to
control at the macro level.

There are cases where the macro process itself can be iterative. It might be that a prototype for a complex
technical system is produced in two or three successive versions, each taking several months to create and
evaluate. In these circumstances, each iteration should be treated as a project in its own right.

The packaging of micro processes within larger macro processes means that it is
possible for agile projects using XP practices to exist within a more traditional
stage-gate project environment (see Section 4.7) which has formal milestones where
the business case for the project is reviewed. Agile projects might even contribute
helpfully to this process as their progress is more visible.

4.18 Selecting the Most Appropriate Process Model
Construction of an application can be distinguished from its installation. It is possible to use different
approaches for these two stages. For example, an application could be constructed using a waterfall or
one-shot strategy but then be released to its users in increments. The only combinations of construction and
installation strategies that are not feasible are the evolutionary installation with any construction approach
other than evolutionary.

Whenever uncertainty is high, an evolutionary approach needs to be favoured. An example of this situation
would be where the users’ requirements are not clearly defi ned. Where the requirements are relatively certain
but there are many complexities, as with a large embedded system needing a large amount of code, then an
incremental approach is favoured. Where deadlines are tight, then either an evolutionary or an incremental
approach is favoured over a one-shot strategy, as both tactics should allow at least something to be delivered
at the deadline, even if it is not all that was originally promised. Students about to plan fi nal-year projects
would do well to note this.

Selection of an appropriate process model for a project can depend on several issues such as the character-
istics of the software to be developed, the characteristics of the development team, and those of the customer.
For development of simple and well-understood applications, the waterfall model should be suffi cient. In
fact, the waterfall model should be preferred in this case as it is an effi cient model for well-understood
projects undertaken by experienced programmers. Furthermore, the waterfall model results in production of
good documents.

If the development team is entirely novice, then even the development of a simple application may require
an incremental or prototyping model to be adopted. An incremental delivery model is usually suitable for
object-oriented development projects. The spiral model would be appropriate, if the project is large and
it is not possible to anticipate the project risks at the start of the project. The user interface part is usually
developed using the prototyping model. If the customer is unsure about some features of the software to be
developed, then an evolutionary or an agile model would possibly be the best choice. Where deadlines are
tight, an evolutionary, incremental, or agile approach should be favoured over a one-shot strategy, as at least
something would get delivered by the deadline. Students about to plan their fi nal-year projects should make
a note of this.

D. Karlström and
P. Runeson (2005).
‘Combining agile meth-
ods with stage-gate
project management’
IEEE Software, May/
June.

Selection of an Appropriate Project Approach 95

 EXERCISE 4.6

A travel agency needs software for automating its book-keeping activities. The set of activities to
be automated are rather simple and are at present being carried out manually. The travel agency has
indicated that it is unsure about the type of user interface which would be suitable for its employees
and its customers. Would it be proper for a development team to use the spiral model for developing
this software?

CONCLUSION

This chapter has stressed the need to examine each project carefully to see if it has characteristics which
suggest a particular approach or process model. These characteristics might suggest the addition of specifi c
activities to the project plan.

The classic waterfall process model, which attempts to minimize iteration, should lead to projects that are
easy to control. Unfortunately, many projects do not lend themselves to this structure. Prototyping may be
able to reduce project uncertainties by allowing knowledge to be bought through experimentation. The incre-
mental approach encourages the execution of a series of small, manageable, ‘mini-projects’ but does have
some costs.

FURTHER EXERCISES

 1. A building society has a long history of implementing computer-based information systems to support
the work of its branches. It uses a proprietary structured systems analysis and design method. It has
been decided to create a computer model of the property market. This would attempt, for example, to
calculate the effect of changes of interest rates on house values. There is some concern that the usual
methodology used for IS development would not be appropriate for the new project.

 (a) Why might there be this concern and what alternative approaches should be considered?

 (b) Outline a plan for the development of the system which illustrates the application of your preferred
methodology for this project.

 2. A software package is to be designed and built to assist in software cost estimation. It will input certain
parameters and produce initial cost estimates to be used at bidding time.

 (a) It has been suggested that a software prototype would be of value in these circumstances. Explain
why this might be.

 (b) Discuss how such prototyping could be controlled to ensure that it is conducted in an orderly and
effective way and within a specifi ed time span.

 3. An invoicing system is to have the following transactions: amend invoice, produce invoice, produce
monthly statements, record cash payment, clear paid invoices from database, create customer records,
delete customer.

 (a) What physical dependencies govern the order in which these transactions are implemented?

 (b) How could the system be broken down into increments which would be of some value to the
users (Hint – think about the problems of taking existing details onto a database when a system
is fi rst implemented)?

96 So ware Project Management

 4. In Section 4.10 the need was stressed of defi ning what is to be learnt from a prototype and the way that
it will be evaluated to obtain the new knowledge. Outline the learning outcomes and evaluation for the
following.

 (a) A fi nal-year degree student is to build an application that will act as a ‘suggestions box’ in a
factory. The application will allow employees to make suggestions about process improvements,
and will track the subsequent progress of the suggestion as it is evaluated. The student wants to
use a web-based front-end with a conventional database. The student has not previously developed
any applications using this mix of technologies.

 (b) An engineering company has to maintain a large number of different types of document relating
to current and previous projects. It has decided to evaluate the use of a computer-based document
retrieval system and wishes to try it out on a trial basis.

 (c) A business which specializes in ‘e-solutions’, that is, the development of business applica-
tions that exploit the World Wide Web, has been approached by the computing school of a local
university. The school is investigating setting up a special website for its former students. The
website’s core will be information about job and training opportunities and it is hoped that this
will generate income through advertising. It is agreed that some kind of pilot to evaluate the
scheme is needed.

 5. In a college environment, an intranet for students that holds information about courses, such as lecture
programmes, reading lists and assignment briefs, is often set up. As a ‘real’ exercise, plan, organize and
carry out a JAD session to design (or improve the design of) an intranet facility.

 This will require:

 ■ preliminary interviews with representative key stakeholders (for example, staff who might be
supplying information for the intranet);

 ■ creation of documents for use in the JAD proceedings;

 ■ recording of the JAD proceedings;

 ■ creating a report which will present the fi ndings of the JAD session.

 6. What are the major shortcomings of the waterfall model? How have those shortcomings been overcome
by the agile model?

 7. Identify the pros and cons of using pair programming over programmers working alone. Based on
your analysis, point out if there are any situations where the pair programming technique may not be
suitable.

5

 OBJECTIVES
When you have completed this chapter you will be able to:

avoid the dangers of unrealistic estimates;•
understand the range of estimating methods that can be used;•
estimate projects using a bottom-up approach;•
estimate the effort needed to implement software using a procedural programming language;•
count the function points for a system;•
understand the COCOMO II approach to developing effort models.•

5.1 Introduction
A successful project is one delivered ‘on time, within budget and with the required quality’. This implies that
targets are set which the project manager then tries to meet. This assumes that the targets are reasonable –
no account is taken of the possibility of project managers achieving record levels of productivity from their
teams, but still not meeting a deadline because of incorrect initial estimates. Realistic estimates are therefore
crucial.

A project manager like Amanda has to produce estimates of effort, which affect costs, and of activity durations,
which affect the delivery time. These could be different, as in the case where two
testers work on the same task for the same fi ve days.

Some of the diffi culties of estimating arise from the complexity and invisibility of
software. Also, the intensely human activities which make up system development
cannot be treated in a purely mechanistic way. Other diffi culties include:

In Chapter 1, the spe-
cial characteristics of
software identifi ed by
Brooks, i.e. complexity,
conformity, changeabil-
ity and invisibility, were
discussed.

98 So ware Project Management

 ● Subjective nature of estimating For example, some research shows that people tend to underestimate
the diffi culty of small tasks and over-estimate that of large ones.

 ● Political implications Different groups within an organization have different objectives. The IOE
information systems development managers may, for example, want to generate work and will press
estimators to reduce cost estimates to encourage higher management to approve projects. As Amanda is

responsible for the development of the annual maintenance contracts subsystem, she
will want to ensure that the project is within budget and timescale, otherwise this will
refl ect badly on herself. She might therefore try to increase the estimates to create a
‘comfort zone’. To avoid these ‘political’ infl uences, one suggestion is that estimates
be produced by a specialist estimating group, independent of the users and the project
team. Not all agree with this, as developers will be more committed to targets they
themselves have set.

 ● Changing technology Where technologies change rapidly, it is diffi cult to use the experience of previous
projects on new ones.

 ● Lack of homogeneity of project experience Even where technologies have not changed, knowledge
about typical task durations may not be easily transferred from one project to another because of other
differences between projects.

It would be very diffi cult on the basis of this information to advise a project manager
about what sort of productivity to expect, or about the probable distribution of effort
between the phases of design, coding and testing that could be expected from a new
project.

Using existing project data for estimating is also diffi cult because of uncertainties in
the way that various terms can be interpreted. For example, what exactly is meant by

the term ‘testing’? Does it cover the activities of the software developer when debugging code?

 EXERCISE 5.1

Calculate the productivity (i.e. SLOC per work month) of each of the projects in Table 5.1 and also
for the organization as a whole. If the project leaders for projects a and d had correctly estimated the
source number of lines of code (SLOC) and then used the average productivity of the organization to
calculate the effort needed to complete the projects, how far out would their estimates have been from
the actual effort?

TABLE 5.1 Some project data – e ort in work months (as percentage of total
e ort in brackets)

Project Design Coding Testing Total

wm (%) wm (%) wm (%) wm SLOC

a 3.9 (23) 5.3 (32) 7.4 (44) 16.7 6050

b 2.7 (12) 13.4 (59) 6.5 (26) 22.6 8363

The possibility of the
different groups with
stakes in a project
having different and
possibly confl icting ob-
jectives was discussed
in Chapter 1.

The ISO 12207 stan-
dard, touched upon
in Chapter 1, is an at-
tempt to address this
problem by standard-
izing on some of the
terms used.

(Contd)

So ware E ort Estimation 99

c 3.5 (11) 26.8 (83) 1.9 (6) 32.2 13334

d 0.8 (21) 2.4 (62) 0.7 (18) 3.9 5942

e 1.8 (10) 7.7 (44) 7.8 (45) 17.3 3315

f 19.0 (28) 29.7 (44) 19.0 (28) 67.7 38988

g 2.1 (21) 7.4 (74) 0.5 (5) 10.1 38614

h 1.3 (7) 12.7 (66) 5.3 (27) 19.3 12762

i 8.5 (14) 22.7 (38) 28.2 (47) 59.5 26500

 EXERCISE 5.2

In the data presented in Table 5.1, observe that programmer productivity varies from 7 SLOC/day to
150 SLOC/day. In fact, in the industry the average productivity fi gure for programmers is only about 10
SLOC/day. Would you consider programmer productivity of 10 SLOC/day to be too low?

5.2 Where are Estimates Done?
Estimates are carried out at various stages of a software project for a variety of reasons.

 ● Strategic planning Project portfolio management involves estimating the costs
and benefi ts of new applications in order to allocate priorities. Such estimates
may also infl uence the scale of development staff recruitment.

 ● Feasibility study This confi rms that the benefi ts of the potential system will
justify the costs.

 ● System specifi cation Most system development methodologies usefully distinguish between the
defi nition of the users’ requirements and the design which shows how those requirements are to be
fulfi lled. The effort needed to implement different design proposals will need to be estimated. Estimates
at the design stage will also confi rm that the feasibility study is still valid.

 ● Evaluation of suppliers’ proposals In the case of the IOE annual maintenance
contracts subsystem, for example, IOE might consider putting development out
to tender. Potential contractors would scrutinize the system specifi cation and
produce estimates as the basis of their bids. Amanda might still produce her
own estimates so that IOE could question a proposal which seems too low in
order to ensure that the proposer has properly understood the requirements. The
cost of bids could also be compared to in-house development.

 ● Project planning As the planning and implementation of the project becomes more detailed, more
estimates of smaller work components will be made. These will confi rm earlier broad-brush estimates,
and will support more detailed planning, especially staff allocations.

(Contd)

Chapter 2 discussed
project portfolio man-
agement in some
detail.

The estimate at this
stage cannot be based
only on the user re-
quirement: some kind
of technical plan is also
needed – see Chapter
4.

The fi gures are taken
from B. A. Kitchenham
and N. R. Taylor (1985)
‘Software project
development cost
estimation’ Journal of
Systems and Software
(5). The abbrevia-
tion SLOC stands for
‘source lines of code’.
SLOC is one way of
indicating the size of a
system.

100 So ware Project Management

As the project proceeds, so the accuracy of the estimates should improve as knowledge about the project
increases. At the beginning of the project the user requirement is of paramount importance and premature
consideration of the possible physical implementation is discouraged. However, in order to produce an
estimate, there will need to be speculation about the eventual shape of the application.

To set estimating into the context of the Step Wise framework (Figure 5.1) presented in Chapter 3, re-esti-
mating could take place at almost any step, but specifi c provision is made for the production of a relatively
high-level estimate at Step 3, ‘Analyse project characteristics’, and for each individual activity in Step 5. As
Steps 5–8 are repeated at progressively lower levels, so estimates will be done at a fi ner degree of detail. As
we will see later in this chapter, different methods of estimating are needed at these different planning steps.

FIGURE 5.1 So ware es ma on takes place in Steps 3 and 5 in par cular

So ware E ort Estimation 101

5.3 Problems with Over- and Under-Estimates
A project leader such as Amanda will need to be aware that an over-estimate may
cause the project to take longer than it would otherwise. This can be explained by the
application of two ‘laws’.

 ● Parkinson’s Law ‘Work expands to fi ll the time available’, that is, given an easy
target staff will work less hard.

 ● Brooks’ Law The effort of implementing a project will go up disproportionately
with the number of staff assigned to the project. As the project team grows
in size, so will the effort that has to go into management, coordination and
communication. This has given rise, in extreme cases, to the notion of Brooks’
Law: ‘putting more people on a late job makes it later’. If there is an over-
estimate of the effort required, this could lead to more staff being allocated than needed and managerial
overheads being increased.

Some have suggested that while the under-estimated project might not be completed
on time or to cost, it might still be implemented in a shorter time than a project with
a more generous estimate.

The danger with the under-estimate is the effect on quality. Staff, particularly those
with less experience, could respond to pressing deadlines by producing work that
is substandard. This may be seen as a manifestation of Weinberg’s zeroth law of
reliability: ‘if a system does not have to be reliable, it can meet any other objective’.
Substandard work might only become visible at the later, testing, phases of a project which are particularly
diffi cult to control and where extensive rework can easily delay project completion.

 EXERCISE 5.3

How do agile methods such as XP – see Chapter 4 – attempt to address the problems with estimates
described above?

Research has found that motivation and morale are enhanced where targets are achievable. If, over time,
staff become aware that the targets set are unattainable and that projects routinely miss targets, motivation is
reduced. People like to think of themselves as winners and there is a general tendency to put success down to
our own efforts and blame failure on the organization.

An estimate is not really a prediction, it is a management goal. Barry Boehm has
suggested that if a software development cost is within 20% of the estimated cost
for the job then a good manager can turn it into a self-fulfi lling prophecy. A project
leader like Amanda will work hard to make the actual performance conform to the
estimate.

Parkinson’s law was
originally expounded
in C. Northcote
Parkinson’s tongue-
in-cheek book
Parkinson’s Law, John
Murray, 1957. Brooks’
law comes from The
Mythical Man-month
which has been re-
ferred to already.

See, for example, T.
K. Hamid and S. E.
Madnick (1986) ‘Impact
of schedule estimation
on software project be-
haviour’ IEEE Software
July 3(4) 70–5.

Barry Boehm devised
the COCOMO estimat-
ing models which are
described later in this
chapter.

102 So ware Project Management

5.4 Th e Basis for Soft ware Estimating
Th e need for historical data

Most estimating methods need information about past projects. However, care is
needed when applying past performance to new projects because of possible differ-
ences in factors such as programming languages and the experience of staff. If past
project data is lacking, externally maintained datasets of project performance data
can be accessed. One well-known international database is that maintained by the
International Software Benchmarking Standards Group (ISBSG), which currently
contains data from 4800 projects.

Parameters to be estimated
The project manager needs to estimate two project parameters for carrying out project planning. These two
parameters are effort and duration. Duration is usually measured in months. Work-month (wm) is a popular
unit for effort measurement. We have already used this unit of effort measurement in Table 5.1. The term
person-month (pm) is also frequently used to mean the same as work-month. One person-month is the effort an
individual can typically put in a month. The person-month estimate implicitly takes into account the produc-
tivity losses that normally occur due to time lost in holidays, weekly offs, coffee breaks, etc. Person-month
(pm) is considered to be an appropriate unit for measuring effort compared to person-days or person-years
because developers are typically assigned to a project for a certain number of months.

Measure of work
Measure of work involved in completing a project is also called the size of the project. Work itself can be
characterized by cost in accomplishing the project and the time over which it is to be completed. Direct
calculation of cost or time is diffi cult at the early stages of planning. The time taken to write the software
may vary according to the competence or experience of the software developers might not even have been
identifi ed. Implementation time may also vary depending on the extent to which CASE (Computer Aided
Software Engineering) tools are used during development. It is therefore a standard practice to fi rst estimate
the project size; and by using it, the effort and time taken to develop the software can be computed. Thus, we
can consider project size as an independent variable and the effort or time required to develop the software
as dependent variables.

Let us examine the meaning of the term ‘project size’. The size of a project is obviously not the number of
bytes that the source code occupies, neither is it the size of the executable code. The project size is a measure
of the problem complexity in terms of the effort and time required to develop the product. Two metrics are at
present popularly being used to measure size. These are Source Lines of Code (SLOC) and Function Point
(FP). The SLOC measure suffers from various types of disadvantages, which are to a great extent corrected
in the FP measure. However, the SLOC measure is intuitively simpler, so it is still being widely used. It is
important, however, to be aware of the major shortcomings of the SLOC measure.

 ● No precise defi nition. SLOC is a very imprecise measure. Unfortunately, researchers have not been
consistent on points like does it include comment lines or are data declarations to be included? The
writers’ view is that comment lines are excluded in determining the SLOC measure. This can be debated,
but the main point is that consistency is essential.

Details of the work
of the International
Software
Benchmarking
Standards Group can
be found at http://
isbsg.org

So ware E ort Estimation 103

 ● Diffi cult to estimate at start of a project. From the project manager’s perspective, the biggest short-
coming of the SLOC metric is that it is very diffi cult to estimate it during project planning stage, and
can be accurately computed only after the development of the software is complete. The SLOC count
can only be guessed at the beginning of a project, often leading to grossly inaccurate estimations.

 ● Only a code measure. SLOC is a measure of coding activity alone. This point has been illustrated in
Exercise 5.2. A good problem size measure should consider the effort required for carrying out all the
life cycle activities and not just coding.

 ● Programmer-dependent. SLOC gives a numerical value to the problem size that
can vary widely with the coding style of individual programmers. This aspect
alone renders any LOC-based size and effort estimations inaccurate.

 ● Does not consider code complexity. Two software components with the same
KLOC will not necessarily take the same time to write, even if done by the
same programmer in the same environment. One component might be more
complex. Because of this, the effort estimate based on SLOC might have to
be modifi ed to take its complexity into account. Attempts have been made to
fi nd objective measures of complexity, but it depends to a large extent on the
subjective judgment of the estimator.

5.5 Soft ware Eff ort Estimation Techniques
Barry Boehm, in his classic work on software effort models, identifi ed the main ways
of deriving estimates of software development effort as:

 ● algorithmic models, which use ‘effort drivers’ representing characteristics of
the target system and the implementation environment to predict effort;

 ● expert judgement, based on the advice of knowledgeable staff;

 ● analogy, where a similar, completed, project is identifi ed and its actual effort is used as the basis of the
estimate;

 ● Parkinson, where the staff effort available to do a project becomes the ‘estimate’;

 ● price to win, where the ‘estimate’ is a fi gure that seems suffi ciently low to win a contract;

 ● top-down, where an overall estimate for the whole project is broken down into the effort required for
component tasks;

 ● bottom-up, where component tasks are identifi ed and sized and these individual estimates are
aggregated.

Clearly, the ‘Parkinson’ method is not really an effort prediction method, but a method
of setting the scope of a project. Similarly, ‘price to win’ is a way of identifying a price
and not a prediction. Although Boehm rejects them as prediction techniques, they
have value as management techniques. There is, for example, a perfectly acceptable
engineering practice of ‘design to cost’.

We will now look at some of these techniques more closely. First we will examine the
difference between top-down and bottom-up estimating.

R. E. Park has devised
a standard for counting
source statements that
has been widely ad-
opted – see Software
Size Measurement:
A Framework for
Counting Source
Statements, Software
Engineering Institute,
1992.

See B. W. Boehm
(1981) Software
Engineering
Economics, Prentice-
Hall.

This is also the prin-
ciple behind the con-
cept of time-boxing
discussed in Chapter 4
in the context of incre-
mental delivery.

104 So ware Project Management

5.6 Bottom-up Estimating
With the bottom-up approach the estimator breaks the project into its component tasks. With a large project,
the process of breaking it down into tasks is iterative: each task is decomposed into its component subtasks
and these in turn could be further analysed. It is suggested that this is repeated until you get tasks an individual
could do in a week or two. Why is this not a ‘top-down approach’? After all, you start from the top and
work down. Although this top-down analysis is an essential precursor to bottom-up estimating, it is really a
separate process – that of producing a work breakdown schedule (WBS). The bottom-up part comes in adding
up the calculated effort for each activity to get an overall estimate.

The bottom-up approach is best at the later, more detailed, stages of project planning. If this method is used
earlier, assumptions about the characteristics of the fi nal system and project work methods will have to be
made.

Where a project is completely novel or there is no historical data available, the estimator would be forced to
use the bottom-up approach.

 EXERCISE 5.4

Brigette at Brightmouth College has been told that there is a requirement, once the payroll system
has been successfully installed, to create a subsystem that analyses the staffi ng costs for each course.
Details of the pay that each member of staff receives may be obtained from the payroll standing data.
The number of hours that each member of staff spends teaching on each course may be obtained from
standing fi les in a computer-based timetabling system.

What tasks would have to be undertaken to implement this requirement? Try to identify tasks that
would take one person about 1 or 2 weeks.

Which tasks are the ones whose durations are most diffi cult to estimate?

A procedural code-oriented approach
The bottom-up approach described above works at the level of activities. In software development a major
activity is writing code. Here we describe how a bottom-up approach can be used at the level of software
components.

 (a) Envisage the number and type of software modules in the fi nal system
 Most information systems, for example, are built from a small set of system operations, e.g. Insert,

Amend, Update, Display, Delete, Print. The same principle should equally apply to embedded systems,
albeit with a different set of primitive functions.

 (b) Estimate the SLOC of each identifi ed module
 One way to judge the number of instructions likely to be in a program is to draw

up a program structure diagram and to visualize how many instructions would
be needed to implement each identifi ed procedure. The estimator may look at
existing programs which have a similar functional description to assist in this
process.

‘Software module’ here
implies a component
that can be sepa-
rately compiled and
executed.

So ware E ort Estimation 105

 (c) Estimate the work content, taking into account complexity and technical diffi culty
 The practice is to multiply the SLOC estimate by a factor for complexity and technical diffi culty. This

factor will depend largely on the subjective judgement of the estimator. For example, the requirement
to meet particular highly constrained performance targets can greatly increase programming effort.

 (d) Calculate the work-days effort
 Historical data can be used to provide ratios to convert weighted SLOC to effort.

Note that the steps above can be used to derive an estimate of lines of code that can be used as an input to one
of the COCOMO models which are described later.

 EXERCISE 5.5

The IOE annual maintenance contracts subsystem for which Amanda is responsible will have a trans-
action which sets up details of new annual maintenance contract customers.

The operator will input:

 Customer account number

 Customer name

 Address

 Postcode

 Customer type

 Renewal date

All this information will be set up in a CUSTOMER record on the system’s database. If a CUSTOMER
account already exists for the account number that has been input, an error message will be displayed
to the operator.

Draw up an outline program structure diagram for a program to do the processing described above. For
each box on your diagram, estimate the number of lines of code needed to implement the routine in a
programming language that you are familiar with, such as Java.

5.7 Th e Top-down Approach and Parametric Models
The top-down approach is normally associated with parametric (or algorithmic) models. These may be
explained using the analogy of estimating the cost of rebuilding a house. This is of practical concern to house-
owners who need insurance cover to rebuild their property if destroyed. Unless the house-owner is in the
building trade he or she is unlikely to be able to calculate the numbers of bricklayer-hours, carpenter-hours,
electrician-hours, and so on, required. Insurance companies, however, produce convenient tables where the
house-owner can fi nd estimates of rebuilding costs based on such parameters as the number of storeys and
the fl oor space of a house. This is a simple parametric model.

Project effort relates mainly to variables associated with characteristics of the fi nal system. A parametric
model will normally have one or more formulae in the form:

effort = (system size) 3 (productivity rate)

106 So ware Project Management

For example, system size might be in the form ‘thousands of lines of code’ (KLOC) and have the specifi c
value of 3 KLOC while the productivity rate was 40 days per KLOC. These values will often be matters of
judgement.

A model to forecast software development effort therefore has two key components. The fi rst is a method of
assessing the amount of the work needed. The second assesses the rate of work at which the task can be done.
For example, Amanda at IOE may estimate that the fi rst software module to be constructed is 2 KLOC. She
may then judge that if Kate undertook the development of the code, with her expertise she could work at a
rate of 40 days per KLOC per day and complete the work in 2 3 40 days, i.e. 80 days, while Ken, who is less
experienced, would need 55 days per KLOC and take 2 3 55, i.e. 110 days to complete the task. In this case
KLOC is a size driver indicating the amount of work to be done, while developer experience is a productivity
driver infl uencing the productivity or work rate.

If you have fi gures for the effort expended on past projects (in work-days for instance) and also the system
sizes in KLOC, you should be able to work out a productivity rate as

productivity = effort/size

A more sophisticated way of doing this would be by using the statistical technique least squares regression
to derive an equation in the form:

effort = constant1 + (size 3 constant2)

Some parametric models, such as that implied by function points, are focused on system or task size, while
others, such are COCOMO, are more concerned with productivity factors. Those particular models are
described in more detail later in this chapter.

 EXERCISE 5.6

Students on a course are required to produce a written report on an ICT-related topic each semester.
If you wanted to create a model to estimate how long it should take a student to complete such an
assignment, what measure of work content would you use? Some reports might be more diffi cult to
produce than others: what factors might affect the degree of diffi culty?

Having calculated the overall effort required, the problem is then to allocate propor-
tions of that effort to the various activities within that project.

The top-down and bottom-up approaches are not mutually exclusive. Project managers
will probably try to get a number of different estimates from different people using
different methods. Some parts of an overall estimate could be derived using a top-down
approach while other parts could be calculated using a bottom-up method.

5.8 Expert Judgement
This is asking for an estimate of task effort from someone who is knowledgeable about either the application
or the development environment. This method is often used when estimating the effort needed to change
an existing piece of software. The estimator would have to examine the existing code in order to judge the
proportion of code affected and from that derive an estimate. Someone already familiar with the software
would be in the best position to do this.

At the earlier stages of
a project, the top-down
approach would tend
to be used, while at lat-
er stages the bottom-
up approach might be
preferred.

So ware E ort Estimation 107

Some have suggested that expert judgement is simply a matter of guessing, but our
own research has shown that experts tend to use a combination of an informal analogy
approach where similar projects from the past are identifi ed (see below), supple-
mented by bottom-up estimating.

There may be cases where the opinions of more than one expert may need to be
combined. The Delphi technique described in Section 12.3 tackles group decision-
making.

5.9 Estimating by Analogy
This is also called case-based reasoning. The estimator identifi es completed projects
(source cases) with similar characteristics to the new project (the target case). The
effort recorded for the matching source case is then used as a base estimate for the
target. The estimator then identifi es differences between the target and the source and
adjusts the base estimate to produce an estimate for the new project.

This can be a good approach where you have information about some previous
projects but not enough to draw generalized conclusions about what might be useful
drivers or typical productivity rates.

A problem is identifying the similarities and differences between applications where you have a large number
of past projects to analyse. One attempt to automate this selection process is the ANGEL software tool. This
identifi es the source case that is nearest the target by measuring the Euclidean distance between cases. The
Euclidean distance is calculated as:

distance = square-root of ((target_parameter1 – source_parameter1)
2 + . . .

(target_parametern – source_parametern)
2)

 5.1 EXAMPLE

Say that the cases are being matched on the basis of two parameters, the number of inputs to and the
number of outputs from the application to be built. The new project is known to require 7 inputs and 15
outputs. One of the past cases, project A, has 8 inputs and 17 outputs. The Euclidean distance between
the source and the target is therefore the square-root of ((7 – 8)2 + (17 – 15)2), that is 2.24.

 EXERCISE 5.7

Project B has 5 inputs and 10 outputs. What would be the Euclidean distance between this project and
the target new project being considered above? Is project B a better analogy with the target than project
A?

The above explanation is simply to give an idea of how Euclidean distance may be calculated. The ANGEL
package uses rather more sophisticated algorithms based on this principle.

See R. T. Hughes
(1996) ‘Expert judge-
ment as an estimating
method’ Information
and Software
Technology 38(3)
67–75.

See M. Shepperd
and C. Schofi eld
(1997) ‘Estimating
software project ef-
fort using analogies’
IEEE Transactions in
Software Engineering
SE-23(11) 736–43.

108 So ware Project Management

5.10 Albrecht Function Point Analysis
This is a top-down method that was devised by Allan Albrecht when he worked for
IBM. Albrecht was investigating programming productivity and needed to quantify
the functional size of programs independently of their programming languages. He
developed the idea of function points (FPs).

The basis of function point analysis is that information systems comprise fi ve major
components, or ‘external user types’ in Albrecht’s terminology, that are of benefi t to
the users.

 ● External input types are input transactions which update internal computer fi les.

 ● External output types are transactions where data is output to the user. Typically these would be printed
reports, as screen displays would tend to come under external inquiry types (see below).

 ● External inquiry types – note the US spelling of inquiry – are transactions initiated by the user which
provide information but do not update the internal fi les. The user inputs some information that directs
the system to the details required.

 ● Logical internal fi le types are the standing fi les used by the system. The term ‘fi le’ does not sit easily
with modern information systems. It refers to a group of data items that is usually accessed together.
It may be made up of one or more record types. For example, a purchase order fi le may be made up
of a record type PURCHASE-ORDER plus a second which is repeated for each item ordered on the
purchase order – PURCHASE-ORDER-ITEM. In structured systems analysis, a logical internal fi le
would equate to a datastore, while record types would equate to relational tables or entity types.

 ● External interface fi le types allow for output and input that may pass to and from other computer
applications. Examples of this would be the transmission of accounting data from an order processing

system to the main ledger system or the production of a fi le of direct debit details on
a magnetic or electronic medium to be passed to the Bankers Automated Clearing
System (BACS). Files shared between applications would also be counted here.

The analyst identifi es each instance of each external user type in the application. Each
component is then classifi ed as having either high, average or low complexity. The
counts of each external user type in each complexity band are multiplied by specifi ed

weights (see Table 5.2) to get FP scores which are summed to obtain an overall FP count which indicates the
information processing size.

TABLE 5.2 Albrecht complexity mul pliers

External user type Multiplier

Low Average High

External input type 3 4 6

External output type 4 5 7

External inquiry type 3 4 6

Logical internal fi le type 7 10 15

External interface fi le type 5 7 10

See A. J. Albrecht
and J. E. Gaffney Jr.,
‘Software function,
source lines of code,
and development effort
prediction: a software
science validation’,
in M. Shepperd (ed.)
(1993) Software
Engineering Metrics
(Vol. 1), McGraw-Hill.

Albrecht also dictates
that outgoing external
interface fi les should
be double counted
as logical internal fi le
types as well.

So ware E ort Estimation 109

 EXERCISE 5.8

The task for which Brigette has been made responsible in Exercise 5.4 needs a program which will
extract yearly salaries from the payroll fi le, and hours taught on each course by each member of staff
and the details of courses from two fi les maintained by the timetabling system. The program will
produce a report showing for each course the hours taught by each member of staff and the cost of
those hours.

Using the method described above, calculate the Albrecht function points for this subsystem assuming
that the report is of high complexity, but that all the other elements are of average complexity.

With FPs as originally defi ned by Albrecht, the question of whether the external user
type was of high, low or average complexity was intuitive. The International FP User
Group (IFPUG) has now promulgated rules on how this is assessed. For example, in
the case of logical internal fi les and external interface fi les, the boundaries shown in
Table 5.3 are used to decide the complexity level. Similar tables exist for external
inputs and outputs.

TABLE 5.3 IFPUG fi le type complexity

Number of record types Number of data types

<20 20–50 >50

1 Low Low Average

2 to 5 Low Average High

>5 Average High High

 5.2 EXAMPLE

A logical internal fi le might contain data about purchase orders. These purchase orders might be
organized into two separate record types: the main PURCHASE-ORDER details, namely purchase
order number, supplier reference and purchase order date, and then details for each PURCHASE-
ORDER-ITEM specifi ed in the order, namely the product code, the unit price and number ordered.
The number of record types for that fi le would therefore be 2 and the number of data types would be 6.
According to Table 5.3, this fi le type would be rated as ‘low’. This would mean that according to Table
5.2, the FP count would be 7 for this fi le.

Function point analysis recognizes that the effort required to implement a computer-based information system
relates not just to the number and complexity of the features provided but also to the operational environment
of the system.

Fourteen factors have been identifi ed which can infl uence the degree of diffi culty associated with imple-
menting a system. The list that Albrecht produced related particularly to the concerns of information system

The International FP
User Group (IFPUG)
have developed and
published extensive
rules governing FP
counting. Hence
Albrecht FPs are now
often referred to as
IFPUG FPs.

110 So ware Project Management

developers in the late 1970s and early 1980s. Some technology which was then new
and relatively threatening is now well established.

The technical complexity adjustment (TCA) calculation has had many problems. Some
have even found that it produces less accurate estimates than using the unadjusted
function point count. Because of these diffi culties, we omit further discussion of the
TCA.

Tables have been calculated to convert the FPs to lines of code for various languages.
For example, it is suggested that 53 lines of Java are needed on average to implement
an FP, while for Visual C++ the fi gure is 34. You can then use historical productivity
data to convert the lines of code into an effort estimate, as previously described in
Section 5.7.

 EXERCISE 5.9

In the case of the subsystem described in Exercise 5.8 for which Brigette is responsible at Brightmouth
HE College, how many lines of Java code should be needed to implement this subsystem, according
to the standard conversion? Assuming a productivity rate of 50 lines of code a day, what would be the
estimate of effort?

5.11 Function Points Mark II
The Mark II method was originally sponsored by what was then the CCTA (Central
Computer and Telecommunications Agency, now the Offi ce of Government Commerce
or OGC), which lays down standards for UK government projects. The ‘Mark II’ label
implies an improvement and replacement of the Albrecht method. The Albrecht (now
IFPUG) method, however, has had many refi nements made to it and FPA Mark II
remains a minority method used mainly in the United Kingdom.

As with Albrecht, the information processing size is initially measured in unadjusted
function points (UFPs) to which a technical complexity adjustment can then be

applied (TCA). The assumption is that an information system comprises transactions which have the basic
structure shown in Figure 5.2.

Further details on TCA
can be found in the
Albrecht and Gaffney
paper.

The COCOMO II
Model Defi nition
Manual A contains a
table of suggested
conversion rates and
can be downloaded
from http://sunset.usc.
edu/csse

This method has came
into the public domain
with the publication of
the book by Charles
R. Symons (1991)
Software Sizing and
Estimating – Mark II
FPA, John Wiley and
Sons.

FIGURE 5.2 Model of a transac on

So ware E ort Estimation 111

For each transaction the UFPs are calculated:

Wi 3 (number of input data element types) +

We 3 (number of entity types referenced) +

Wo 3 (number of output data element types)

Wi, We, and Wo are weightings derived by asking developers the proportions of effort spent in previous projects
developing the code dealing respectively with inputs, accessing and modifying stored data and processing
outputs.

The proportions of effort are then normalized into ratios, or weightings, which add
up to 2.5. This process for calculating weightings is time consuming and most FP
counters use industry averages which are currently 0.58 for Wi, 1 .66 for We and 0.26
for Wo.

 5.3 EXAMPLE

A cash receipt transaction in the IOE maintenance accounts subsystem accesses two entity types –
INVOICE and CASH-RECEIPT.

The data inputs are:

Invoice number

Date received

Cash received

If an INVOICE record is not found for the invoice number then an error message is issued. If the
invoice number is found then a CASH-RECEIPT record is created. The error message is the only
output of the transaction. The unadjusted function points, using the industry average weightings, for
this transaction would therefore be:

(0.58 3 3) + (1.66 3 2) + (0.26 3 1) = 5.32

 EXERCISE 5.10

Calculate the number of unadjusted Mark II function points for the transaction described previously for
Exercise 5.5, using the industry average weightings.

Mark II FPs follow the Albrecht method in recognizing that one system delivering the same functionality
as another may be more diffi cult to implement (but also more valuable to the users) because of additional
technical requirements. For example, the incorporation of additional security measures would increase the
amount of effort to deliver the system. The identifi cation of further factors to suit local circumstances is
encouraged.

Symons is very much against the idea of using function points to estimate SLOC rather than effort. One
fi nding by Symons is that productivity, that is, the effort per function point to implement a system, is infl u-
enced by the size of the project. In general, larger projects, up to a certain point, are more productive because

The only reason why
2.5 was adopted here
was to produce FP
counts similar to the
Albrecht equivalents.

112 So ware Project Management

of economies of scale. However, beyond a certain size they tend to become less productive because of
additional management overheads.

Some of the rules and weightings used in FP counting, especially in the case of the Albrecht fl avour, are
rather arbitrary and have been criticized by academic writers on this account. FPs, however, have been found
useful as a way of calculating the price for extensions to existing systems, as will be seen in Chapter 10 on
managing contracts.

5 .12 COSMIC Full Function Points
While approaches like that of IFPUG are suitable for information systems, they are
not helpful when it comes to sizing real-time or embedded applications. This has
resulted in the development of another version of function points – the COSMIC FFP
method.

The full function point (FFP) method has its origins in the work of two interlinked research groups in Québec,
Canada. At the start, the developers were at pains to stress that this method should be seen as simply an
extension to the IFPUG method for real-time systems. The original work of FFPs has been taken forward by
the formation of the Common Software Measurement Consortium (COSMIC) which has involved not just
the original developers in Canada, but others from many parts of the world, including Charles Symons, the
originator of Mark II function points. Interestingly, there has been little participation by anyone from the
United States.

The argument is that existing function point methods are effective in assessing the work content of infor-
mation systems where the size of the internal procedures mirrors the number of external features. With a
real-time, or embedded, system, its features will be hidden because the software’s user will probably not be
a human but a hardware device or another software component.

COSMIC deals with this by decomposing the system architecture into a hierarchy of software layers. The
software component to be sized can receive requests for services from layers above and can request services
from those below it. At the same time there could be separate software components at the same level that
engage in peer-to-peer communication. This identifi es the boundary of the software component to be assessed
and thus the points at which it receives inputs and transmits outputs. Inputs and outputs are aggregated into
data groups, where each group brings together data items that relate to the same object of interest.

Data groups can be moved about in four ways:

 ● entries (E), which are effected by subprocesses that move the data group into the software component
in question from a ‘user’ outside its boundary – this could be from another layer or another separate
software component in the same layer via peer-to-peer communication;

 ● exits (X), which are effected by subprocesses that move the data group from the software component to
a ‘user’ outside its boundary;

 ● reads (R), which are data movements that move data groups from persistent storage (such as a database)
into the software component;

 ● writes (W), which are data movements that transfer data groups from the software component into
persistent storage.

COSMIC-FFP stands
for Common Software
Measurement
Consortium – Full
Function Points.

So ware E ort Estimation 113

 EXERCISE 5.11

A small computer system controls the entry of vehicles to a car park. Each time a vehicle pulls up
before an entry barrier, a sensor notifi es the computer system of the vehicle’s presence. The system
examines a count that it maintains of the number of vehicles that are currently in the car park. This
count is kept on backing storage so that it will still be available if the system is temporarily shut down,
for example because of a power cut. If the count does not exceed the maximum allowed then the barrier
is lifted and the count is incremented. When a vehicle leaves the car park, a sensor detects the exit and
reduces the count of vehicles.

There is a system administration system that can set the maximum number of cars allowed, and which
can be used to adjust or replace the count of cars when the system is restarted.

Identify the entries, exits, reads and writes in this application.

The overall FFP count is derived by simply adding up the counts for each of the four types of data movement.
The resulting units are Cfsu (COSMIC functional size units). The method does not take account of any
processing of the data groups once they have been moved into the software component. The framers of the
method do not recommend its use for systems involving complex mathematical algorithms, for example, but
there is provision for the defi nition of local versions for specialized environments which could incorporate
counts of other software features.

COSMIC FFPs have been incorporated into an ISO standard – ISO/IEC 19761:2003.
Prior to this there were attempts to produce a single ISO standard for ‘functional
size measurement’ and there is an ISO document – ISO/IEC 14143–1:1998 – which
lays down some general principles. ISO has decided, diplomatically, that it is unable
to judge the relative merits of the four main methods in the fi eld: IFPUG, Mark II,
NESMA and COSMIC-FFP, and all four have been allowed to submit their methods as candidates to become
ISO standards and then to ‘let the market decide’.

5.13 COCOMO II: A Parametric Productivity Model
Boehm’s COCOMO (COnstructive COst MOdel) is often referred to in the literature
on software project management, particularly in connection with software estimating.
The term COCOMO really refers to a group of models.

Boehm originally based his models in the late 1970s on a study of 63 projects. Of these only seven were
business systems and so the models could be used with applications other than information systems. The
basic model was built around the equation

TABLE 5.4 COCOMO81 constants

System type c k

Organic 2.4 1.05

Semi-detached 3.0 1.12

Embedded 3.6 1.20

The NESMA FP meth-
od has been developed
by the Netherlands
Software Measurement
Association.

Because there is now
a newer COCOMO
II, the older version
is now referred to as
COCOMO81.

114 So ware Project Management

(effort) = c(size)k

where effort was measured in pm or the number of ‘person-months’ consisting of units of 152 working hours,
size was measured in kdsi, thousands of delivered source code instructions, and c and k were constants.

The fi rst step was to derive an estimate of the system size in terms of kdsi. The constants, c and k (see Table
5.4), depended on whether the system could be classifi ed, in Boehm’s terms, as ‘organic’, ‘semi-detached’ or
‘embedded’. These related to the technical nature of the system and the development environment.

 ● Organic mode This would typically be the case when relatively small teams
developed software in a highly familiar in-house environment and when the
system being developed was small and the interface requirements were fl exible.

 ● Embedded mode This meant that the product being developed had to operate
within very tight constraints and changes to the system were very costly.

 ● Semi-detached mode This combined elements of the organic and the embedded modes or had charac-
teristics that came between the two.

The exponent value k, when it is greater than 1, means that larger projects are seen as requiring dispropor-
tionately more effort than smaller ones. This refl ected Boehm’s fi nding that larger projects tended to be less
productive than smaller ones because they needed more effort for management and coordination.

Over the years, Barry Boehm and his co-workers have refi ned a family of cost
estimation models of which the key one is COCOMO II. This approach uses various
multipliers and exponents the values of which have been set initially by experts.
However, a database containing the performance details of executed projects has been
built up and periodically analysed so that the expert judgements can be progressively
replaced by values derived from actual projects. The new models take into account
that there is now a wider range of process models in common use than previously. As

we noted earlier, estimates are required at different stages in the system life cycle and COCOMO II has been
designed to accommodate this by having models for three different stages.

 ● Application composition Here the external features of the system that the users will experience are
designed. Prototyping will typically be employed to do this. With small applications that can be built
using high-productivity application-building tools, development can stop at this point.

 ● Early design Here the fundamental software structures are designed. With larger, more demanding
systems, where, for example, there will be large volumes of transactions and performance is important,
careful attention will need to be paid to the architecture to be adopted.

 ● Post architecture Here the software structures undergo fi nal construction, modifi cation and tuning to
create a system that will perform as required.

To estimate the effort for application composition, the counting of object points is
recommended by the developers of COCOMO II. This follows the function point
approach of counting externally apparent features of the software. It differs by
focusing on the physical features of the application, such as screens and reports,
rather than ‘logical’ ones such as entity types. This is seen as being more useful where
the requirements are being elicited via prototypes.

At the early design stage, FPs are recommended as the way of gauging a basic system size. An FP count may
be converted to an LOC equivalent by multiplying the FPs by a factor for the programming language that is
to be used – see Section 5.10.

Generally, information
systems were regard-
ed as organic while
real-time systems were
embedded.

The detailed COCOMO
II Model Defi nition
Manual has been pub-
lished by the Center for
Software Engineering,
University of Southern
California.

See R. D. Banker,
R. Kauffman and R.
Kumar (1992) ‘An
empirical test of object-
based output measure-
ment metrics’ Journal
of MIS, 8(3).

So ware E ort Estimation 115

The following model can then be used to calculate an estimate of person-months.

pm = A(size)(sf) 3 (em1) 3 (em2) 3 . . . 3 (emn)

where pm is the effort in ‘person-months’, A is a constant (which was set in 2000 at 2.94), size is measured in
kdsi (which may have been derived from an FP count as explained above), and sf is exponent scale factor.

The scale factor is derived thus:

sf = B + 0.01 3 S (exponent driver ratings)

where B is a constant currently set at 0.91. The effect of the exponent (‘. . . to the power of. . .’) scale factor
is to increase the effort predicted for larger projects, that is, to take account of diseconomies of scale which
make larger projects less productive.

The qualities that govern the exponent drivers used to calculate the scale factor are listed below. Note that the
less each quality is applicable, the bigger the value given to the exponent driver. The fact that these factors
are used to calculate an exponent implies that the lack of these qualities increases the effort required dispro-
portionately more on larger projects.

 ● Precedentedness (PREC) This quality is the degree to which there are precedents or similar past cases
for the current project. The greater the novelty of the new system, the more uncertainty there is and the
higher the value given to the exponent driver.

TABLE 5.5 COCOMO II Scale factor values

Driver Very low Low Nominal High Very high Extra high

PREC 6.20 4.96 3.72 2.48 1.24 0.00

FLEX 5.07 4.05 3.04 2.03 1.01 0.00

RESL 7.07 5.65 4.24 2.83 1.41 0.00

TEAM 5.48 4.38 3.29 2.19 1.10 0.00

PMAT 7.80 6.24 4.68 3.12 1.56 0.00

 ● Development fl exibility (FLEX) This refl ects the number of different ways there are of meeting the
requirements. The less fl exibility there is, the higher the value of the exponent driver.

 ● Architecture/risk resolution (RESL) This refl ects the degree of uncertainty about the requirements. If
they are liable to change then a high value would be given to this exponent driver.

 ● Team cohesion (TEAM) This refl ects the degree to which there is a large dispersed team (perhaps in
several countries) as opposed to there being a small tightly knit team.

 ● Process maturity (PMAT) Chapter 13 on software quality explains the process maturity model. The
more structured and organized the way the software is produced, the lower the uncertainty and the
lower the rating will be for this exponent driver.

Each of the scale factors for a project is rated according to a range of judgements: very low, low, nominal,
high, very high, extra high. There is a number related to each rating of the individual scale factors – see Table
5.5. These are summed, then multiplied by 0.01 and added to the constant 0.91 to get the overall exponent
scale factor.

116 So ware Project Management

 EXERCISE 5.12

A new project has ‘average’ novelty for the software supplier that is going to execute it and is thus given
a nominal rating on this account for precedentedness. Development fl exibility is high, but requirements
may change radically and so the risk resolution exponent is rated very low. The development team are
all located in the same offi ce and this leads to team cohesion being rated as very high, but the software
house as a whole tends to be very informal in its standards and procedures and the process maturity
driver has therefore been given a rating of ‘low’.

 (i) What would be the scale factor (sf) in this case?

 (ii) What would the estimate of effort if the size of the application was estimated as in the region of
2000 lines of code?

TABLE 5.6 COCOMO II Early design e ort mul pliers

Code Effort modifi er Extra
low

Very
low

Low Nominal High Very
high

Extra
high

RCPX Product reliability
and complexity

0.49 0.60 0.83 1.00 1.33 1.91 2.72

RUSE Required reusability 0.95 1.00 1.07 1.15 1.24

PDIF Platform diffi culty 0.87 1.00 1.29 1.81 2.61

PERS Personnel capability 2.12 1.62 1.26 1.00 0.83 0.63 0.50

PREX Personnel experience 1.59 1.33 1.12 1.00 0.87 0.74 0.62

FCIL Facilities available 1.43 1.30 1.10 1.00 0.87 0.73 0.62

SCED Schedule pressure 1.43 1.14 1.00 1.00 1.00

In the COCOMO II model the effort multipliers (em) adjust the estimate to take account of productivity
factors, but do not involve economies or diseconomies of scale. The multipliers relevant to early design are
in Table 5.6 and those used at the post architecture stage in Table 5.7. Each of these multipliers may, for a
particular application, be given a rating of very low, low, nominal, high or very high. Each rating for each
effort multiplier has an associated value. A value greater than 1 increases development effort, while a value
less than 1 decreases it. The nominal rating means that the multiplier has no effect. The intention is that the
values that these and other ratings use in COCOMO II will be refi ned over time as actual project details are
added to the database.

So ware E ort Estimation 117

TABLE 5.7 COCOMO II Post architecture e ort mul pliers

Modifi er type Code Effort modifi er

Product attributes RELY Required software reliability

DATA Database size

DOCU Documentation match to life-cycle needs

CPLX Product complexity

REUSE Required reusability

Platform attributes TIME Execution time constraint

STOR Main storage constraint

PVOL Platform volatility

Personnel attributes ACAP Analyst capabilities

AEXP Application experience

PCAP Programmer capabilities

PEXP Platform experience

LEXP Programming language experience

PCON Personnel continuity

Project attributes TOOL Use of software tools

SITE Multisite development

SCED Schedule pressure

 EXERCISE 5.13

A software supplier has to produce an application that controls a piece of equipment in a factory. A
high degree of reliability is needed as a malfunction could injure the operators. The algorithms to
control the equipment are also complex. The product reliability and complexity are therefore rated as
very high. The company would like to take the opportunity to exploit fully the investment that they
made in the project by reusing the control system, with suitable modifi cations, on future contracts. The
reusability requirement is therefore rated as very high. Developers are familiar with the platform and
the possibility of potential problems in that respect is regarded as low. The current staff are generally
very capable and are rated in this respect as very high, but the project is in a somewhat novel application
domain for them so experience is rated as nominal. The toolsets available to the developers are judged
to be typical for the size of company and are rated as nominal, as is the degree of schedule pressure to
meet a deadline.

118 So ware Project Management

Given the data in Table 5.6,

 (i) What would be the value for each of the effort multipliers?

 (ii) What would be the impact of all the effort multipliers on a project estimated as taking 200 staff-
months?

At a later stage of the project, detailed design of the application will have been completed. There will be
a clearer idea of application size in terms of lines of code, and the factors infl uencing productivity will be
better known. A revised estimate of effort can be produced based on the broader range of effort modifi ers
seen in Table 5.7. The method of calculation is the same as for early design. Readers who wish to apply the
model using the post architecture effort multipliers are directed to the COCOMO II Model Defi nition Manual
which is available from the University of Southern California website http://sunset.usc.edu/csse/research/
COCOMOII/COCOMO_main.html.

5.14 Cost Estimation
Project cost can be obtained by multiplying the estimated effort (in man-month, from the effort estimate)
with the manpower cost per month. Implicit in this project cost computation is the assumption that the entire
project cost is incurred on account of the manpower cost alone. However, in addition to manpower cost, a
project would incur several other types of costs which we shall refer to as the overhead costs. The overhead
costs would include the costs of hardware and software required for the project and the company overheads
for administration, offi ce space, etc. Depending on the expected values of the overhead costs, the project
manager has to suitably scale up the cost estimated by using the COCOMO formula.

 EXERCISE 5.14

Assume that the size of an organic type software product is estimated to be 32,000 lines of source code.
Assume that the average salary of a software developer is £2,000 per month. Determine the effort
required to develop the software product, the nominal development time, and the staff cost to develop
the product.

5.15 Staffi ng Pattern
After the effort required to complete a software project has been estimated, the staffi ng requirement for the
project can be determined. Putnam was the fi rst to study the problem of what should be a proper staffi ng
pattern for software projects. He extended the classical work of Norden who had earlier investigated the
staffi ng pattern of general research and development (R&D) type of projects. In order to appreciate the
staffi ng pattern desirable for software projects, we must understand both Norden’s and Putnam’s results.

Norden’s work
Norden studied the staffi ng patterns of several R&D projects. He found the staffi ng patterns of R&D projects
to be very different from that of manufacturing or sales type of work. In a sales outlet, the number of sales staff
does not usually vary with time. For example, in a supermarket the number of sales personnel would depend
on the number of sales counters alone and the number of sales personnel therefore remains fi xed for years

So ware E ort Estimation 119

together. However, the staffi ng pattern of R&D type of projects changes dynamically over time for effi cient
manpower utilization. At the start of an R&D project, the activities of the project are planned and initial
investigations are made. During this time, the manpower requirements are low. As the project progresses,
the manpower requirement increases until it reaches a peak. Thereafter the manpower requirement gradually
diminishes. Norden concluded that the staffi ng pattern for any R&D project can be approximated by the
Rayleigh distribution curve shown in Figure 5.3.

FIGURE 5.3 Rayleigh–Norden Curve

Putnam’s work
Norden’s work was carried out in the context of general R&D projects. Putnam studied the problem of
staffi ng of software projects and found that the staffi ng pattern for software development projects has charac-
teristics very similar to R&D projects. Putnam adapted the Rayleigh–Norden curve to relate the number of
delivered lines of code to the effort and the time required to develop the product. Only a small number of
developers are needed at the beginning of a project to carry out the planning and specifi cation tasks. As the
project progresses and more detailed work is performed, the number of developers increases and reaches a
peak during product delivery which has been shown to occur at time TD in Figure 5.3. After product delivery,
the number of project staff falls consistently during product maintenance.

Putnam suggested that starting from a small number of developers, there should be a staff build-up and after a
peak size has been achieved, staff reduction is required. However, the staff build-up should not be carried out
in large instalments. Experience shows that a very rapid build-up of project staff any time during the project
development correlates with schedule slippage.

 EXERCISE 5.15

Suppose you are the project manager of a large development project. The top management informs that
you would have to manage the project with a fi xed team size throughout the duration of your project.
What would be the likely impact of this decision on your project?

5.16 Eff ect of Schedule Compression
It is quite common for a project manager to encounter client requests to deliver products faster, that is, to
compress the delivery schedule. It is therefore important to understand the impact of schedule compression
on project cost. Putnam studied the effect of schedule compression on the development effort and expressed
it in the form of the following equation:

120 So ware Project Management

Ê ˆ
= ¥ Á ˜

Ë ¯

4
org

new org
new

td
pm pm

td

where pmnew is the new effort, pmorg is the originally estimated effort and tdorg is the originally estimated time
for project completion and tdnew is the compressed schedule.

From this expression, it can easily be observed that when the schedule of a project is compressed, the required
effort increases in proportion to the fourth power of the degree of compression. It means that a relatively
small compression in a delivery schedule can result in substantial penalty on human effort. For example, if
the estimated development time using COCOMO formula is one year, then in order to develop the product
in six months, the total effort required (and hence the project cost) increases 16 times.

Boehm arrived at the result that there is a limit beyond which a software project cannot reduce its schedule
by buying any more personnel or equipment. This limit occurs roughly at 75% of the nominal time estimate
for small and medium sized projects. Thus, if a project manager accepts a customer demand to compress the
development schedule of a typical project (medium or small project) by more than 25%, he is very unlikely
to succeed. The main reason being, that every project has only a limited amount of activities which can be
carried out in parallel, and the sequential activities cannot be speeded up by hiring any number of additional
developers.

 EXERCISE 5.16

The nominal effort and duration of a project is estimated to be 1000 pm and 15 months. The project cost
is negotiated to be £200,000. This needs the product to be developed and delivered in 12 months time.
What is the new cost that needs to be negotiated?

 EXERCISE 5.17

Why does the effort requirement then increase drastically upon schedule compression (as per Putnam’s
results 16 times for schedule is compressed by 50%)? After all, isn’t it the same product that is being
developed?

5.17 Capers Jones Estimating Rules of Th umb
Capers Jones published a set of empirical rules in 1996 in the IEEE Computer journal. He formulated these
rules based on his experience in estimating various parameters of a large number of software projects. Jones
wanted that his rules should be as easy to use as possible, and yet should give the project manager a fairly
good idea of various aspects of a project. Because of their simplicity, these rules are handy to use for making
off-hand estimates. However, these rules should not be expected to yield very accurate estimations and are
certainly not considered appropriate for working out formal cost contracts. Still, while working out formal
contracts, these rules are used to carry out sanity checks for estimations arrived using other more rigorous
techniques. An interesting aspect of Jones’ rules is that these rules give an insight into many aspects of
a project (such as the rate of requirements creep) for which no formal methodologies exist as yet. In the
following section, we discuss a few of Jones’ rules of thumb that are often useful.

So ware E ort Estimation 121

Rule 1: SLOC Function Point Equivalence One function point = 125 SLOC for C programs.

We have already pointed out in Section 5.4 that the SLOC measure is intuitive and helps in developing a good
understanding of the size of a project. SLOC is also used in several popular techniques for estimating several
project parameters. However, often the size estimations for a software project are done using the function
point analysis due to the inherent advantages of the function point metric. In this situation, it often becomes
necessary for the project manager to come up with the SLOC measure for the project from its function point
measurements. Jones determined the equivalence between SLOC and function point for several programming
languages based on experimental data.

To gain an insight into why SLOC function point equivalence varies across different programming languages
let us examine the following. According to Jones, it would take about 320 lines of assembly code to implement
one function point. Why does assembly coding take as much as three times the number of instructions required
in C language to code one function point? It can be argued that to express one SLOC of C would require
several instructions in assembly language.

Rule 2: Project Duration Estimation Function points raised to the power 0.4 predicts the approximate devel-
opment time in calendar months.

To illustrate the applicability of this rule, consider that the size of a project is estimated to be 150 function
points (that is, approximately 18,750 SLOC by Rule 1). The development time (time necessary to complete
the project) would be about eight months by Rule 2.

Rule 3: Rate of Requirements Creep User requirements creep in at an average rate of 2% per month from the
design through coding phases.

In almost every project, the features required by the customer keep on increasing due to a variety of reasons. Of
course, requirement creeps are normally not expected during project testing and installation stages. Observe
that the rule has been carefully worded to take into account the fact that while predicting the total require-
ments creep, it is necessary to remember that the requirement creeps occur from the end of the requirements
phase till the testing phase. Therefore, only an appropriate fraction of the project completion period needs to
be considered to exclude the durations of the requirements and testing phases.

Assume that the size of a project is estimated to be 150 function points. Then, the duration for this project
can be estimated to be eight months by Jones’ Rule 2. Since we need to exclude the duration of requirements
specifi cation and testing phase, it is reasonable to assume that the requirements creep would occur for fi ve
months only. By Rule 3, the original requirements will grow by a rate of three function points per month. So,
the total requirements creep would roughly be 15 function points. Thus, the total size of the project for which
the project manager needs to plan would be 165 function points rather than 150 function points.

Rule 4: Defect Removal Effi ciency Each software review, inspection, or test step will fi nd and remove 30%
of the bugs that are present.

This rule succinctly captures the reason why software development organizations use a series of defect
removal steps, viz., requirements review, design review, code inspection, and code walk-through, followed
by unit, integration, and system testing. In fact, a series of about ten consecutive defect removal operations
must be utilized to achieve good product reliability.

122 So ware Project Management

 EXERCISE 5.18

For a certain project, consider that in the design document 1000 defects are present at the end of the
design stage. Compute how many of these defects would survive after the processes of code review,
unit, integration, and system testing have been completed. Assume that the defect removal effectiveness
of each error removal stage is 30%.

Rule 5: Project Manpower Estimation The size of the software (in function points) divided by 150 predicts
the approximate number of the personnel required for developing the application.

To understand the use of this rule, consider a project whose size is estimated to be 500 function points. By
Rule 5, the number of development personnel required would be four. Observe that Rule 5 predicts the
manpower requirement without considering several other relevant aspects of a project that can signifi cantly
affect the required effort. These aspects include the project complexity, the level of usage of CASE tools, and
the programming language being used. It is therefore natural to expect that the actual manpower requirement
would defer from that predicted by Rule 5. This inaccuracy, however, is in keeping with Jones’ objective of
having rules that are as simple as possible, so that these can be used off-hand to get a gross understanding of
the important project parameters.

Rule 6: Software Development Effort Estimation The approximate number of staff months of effort required
to develop a software is given by the software development time multiplied with the number of personnel
required.

It can be observed that this rule is actually a corollary of the Rules 2 and 5. As an example for application
of this rule, consider a project whose size is estimated to be 150 function points. Using Rules 2 and 5, the
estimated development effort would be 8 months 3 1 person = 8 person-months.

Rule 7: Function points divided by 500 predicts the approximate number of personnel required for regular
maintenance activities.

According to Rule 1, 500 function points is equivalent to about 62,500 SLOC for C programs. Thus, we can
say that approximately for every 60,000 SLOC, one maintenance personnel would be required to carry out
minor bug fi xes and functionality adaptations during the operation phase of the software.

CONCLUSION

To summarize some key points:

 ● Estimates are really management targets.

 ● Collect as much information about previous projects as possible.

 ● Use more than one method of estimating.

 ● Top-down approaches will be used at the earlier stages of project planning while bottom-up approaches
will be more prominent later on.

 ● Be careful about using other people’s historical productivity data as a basis for your estimates, especially
if it comes from a different environment (this includes COCOMO).

So ware E ort Estimation 123

 ● Seek a range of opinions.

 ● Document your method of doing estimates and record all your assumptions.

FURTHER EXERCISES

 1. The size (that is, the effort needed to complete it) of any task will depend on its characteristics. The
units into which the work is divided will also differ. Identify the factors affecting the size of the task
and work units for the following activities:

 ■ installing computer workstations in a new offi ce;

 ■ transporting assembled personal computers from the factory where they were assembled to
warehouses distributed in different parts of the country;

 ■ typing in and checking the correctness of data that is populating a new database;

 ■ system testing a newly written software application.

 2. If you were asked as an expert to provide an estimate of the effort needed to make certain changes to
an existing piece of software, what information would you like to have to hand to assist you in making
that estimate?

 3. A small application maintains a telephone directory. The database for the application contains the
following data types:

 ■ Staff reference

 ■ Surname

 ■ Forenames

 ■ Title

 ■ Department code

 ■ Room number

 ■ Telephone extension

 ■ E-mail address

 ■ Fax number

 Transactions are needed which:

 (i) set up new entries;

 (ii) mend existing entries;

 (iii) delete entries;

 (iv) allow enquirers to list online the details for a particular member of staff;

 (v) produce a complete listing of the telephone directory entries in alphabetical order.

 (a) Use this scenario to produce an estimated Mark II FP count. List all the assumptions you will
need to make.

 (b) Another requirement could be to produce the listing in (v) in departmental order. In your
view, should this increase FP count and if so by how much?

124 So ware Project Management

 4. The following details are held about previously developed software modules.

Module Inputs Entity types accessed Outputs Days

a 1 2 10 2.60

b 10 2 1 3.90

c 5 1 1 1.83

d 2 3 11 3.50

e 1 3 20 4.30

 A new module has 7 inputs, 1 entity type access and 7 outputs. Which of the modules a to e is the
closest analogy in terms of Euclidean distance?

 5. Using the data in further exercise 4 above, calculate the Symons Mark II FPs for each module. Using
the results, calculate the effort needed for the new module described in further exercise 4. How does
this estimate compare to the one based on analogy?

 6. Given the project data below:

Project Inputs Outputs Entity
accesses

System
users

Programming
language

Developer
days

1 210 420 40 10 x 30

2 469 1406 125 20 x 85

3 513 1283 76 18 y 108

4 660 2310 88 200 y 161

5 183 367 35 10 z 22

6 244 975 65 25 z 42

7 1600 3200 237 25 y 308

8 582 874 111 5 z 62

X 180 350 40 20 y

Y 484 1190 69 35 y

 (a) What items are size drivers?

 (b) What items are productivity drivers?

 (c) What are the productivity rates for programming languages x, y and z?

 (d) What would be the estimated effort for projects X and Y using a Mark II function point count?

 (e) What would be the estimated effort for X and Y using an approximate analogy approach?

So ware E ort Estimation 125

 (f) What would have been the best estimating method if the actual effort for X turns out to be 30 days
and for Y turns out to be 120 days? Can you suggest why the results are as they are and how they
might be improved?

 7. A report in a college timetabling system produces a report showing the students who should be
attending each timetabled teaching activity. Four fi les are accessed: the STAFF fi le, the STUDENT fi le,
the STUDENT-OPTION fi le and the TEACHING-ACTIVITY fi le. The report contains the following
information:

 Teaching activity reference

 Topic name

 Staff forenames

 Staff surname

 Title

 Semester (1 or 2)

 Day of week

 Time

 Duration

 Location

 For each student:

 student forename

 student surnames

 Calculate the Mark II FPs that this transaction would generate. What further information would you
need to create an estimate of effort?

 8. Suppose you are the manager of a software project. Explain why it would not be proper to calculate
the number of developers required for the project as a simple division of the effort estimate (in person-
months) by the nominal duration estimate (in months).

 9. Suppose that off-the-shelf price of a certain management information system (MIS) software product
is £50,000 and its size is 100 kdsi. Assuming that in-house developers cost £2000 per programmer-
month (including overheads); would it be more cost-effective to buy the product or build it? Which
elements of the cost are not included in COCOMO estimation model? What additional factors should
be considered while making the decision to buy or build the product?

6

 OBJECTIVES
When you have completed this chapter you will be able to:

produce an activity plan for a project;•
estimate the overall duration of a project;•
create a critical path and a precedence network for a project.•

6.1 Introduction
In earlier chapters we looked at methods for forecasting the effort required for a project – both for the project
as a whole and for individual activities. A detailed plan for the project, however, must also include a schedule
indicating the start and completion times for each activity. This will enable us to:

 ● ensure that the appropriate resources will be available precisely when required;

 ● avoid different activities competing for the same resources at the same time;

 ● produce a detailed schedule showing which staff carry out each activity;

 ● produce a detailed plan against which actual achievement may be measured;

 ● produce a timed cash fl ow forecast;

 ● replan the project during its life to correct drift from the target.

To be effective, a plan must be stated as a set of targets, the achievement or
non-achievement of which can be unambiguously measured. The activity plan does
this by providing a target start and completion date for each activity (or a window
within which each activity may be carried out). The starts and completions of activ-

ities must be clearly visible and this is one of the reasons why it is advisable to ensure that each and every

Project monitoring is
discussed in more de-
tail in Chapter 9.

Activity Planning 127

project activity produces some tangible product or ‘deliverable’. Monitoring the project’s progress is then, at
least in part, a case of ensuring that the products of each activity are delivered on time.

As a project progresses it is unlikely that everything will go according to plan. Much of the job of project
management concerns recognizing when something has gone wrong, identifying its causes and revising the
plan to mitigate its effects. The activity plan should provide a means of evaluating the consequences of not
meeting any of the activity target dates and guidance as to how the plan might most effectively be modifi ed
to bring the project back to target. We shall see that the activity plan may well also offer guidance as to which
components of a project should be most closely monitored.

6.2 Th e Objectives of Activity Planning
In addition to providing project and resource schedules, activity planning aims to achieve a number of other
objectives which may be summarized as follows.

 ● Feasibility assessment Is the project possible within required timescales and resource constraints? In
Chapter 5 we looked at ways of estimating the effort for various project tasks. However, it is not
until we have constructed a detailed plan that we can forecast a completion date with any reasonable
knowledge of its achievability. The fact that a project may have been estimated as requiring two work-
years’ effort might not mean that it would be feasible to complete it within, say, three months were eight
people to work on it – that will depend upon the availability of staff and the degree to which activities
may be undertaken in parallel.

 ● Resource allocation What are the most effective ways of allocating resources to the project. When
should the resources be available? The project plan allows us to investigate the relationship between
timescales and resource availability (in general, allocating additional resources to a project shortens its
duration) and the effi cacy of additional spending on resource procurement.

 ● Detailed costing How much will the project cost and when is that expenditure likely to take place? After
producing an activity plan and allocating specifi c resources, we can obtain more detailed estimates of
costs and their timing.

 ● Motivation Providing targets and being seen to monitor achievement against
targets is an effective way of motivating staff, particularly where they have been
involved in setting those targets in the fi rst place.

 ● Coordination When do the staff in different departments need to be available to
work on a particular project and when do staff need to be transferred between
projects? The project plan, particularly with large projects involving more than a
single project team, provides an effective vehicle for communication and coordi-
nation among teams. In situations where staff may need to be transferred

 between project teams (or work concurrently on more than one project), a set of integrated project
schedules should ensure that such staff are available when required and do not suffer periods of enforced
idleness.

Activity planning and scheduling techniques place an emphasis on completing the project in a minimum time
at an acceptable cost or, alternatively, meeting a set target date at minimum cost. These are not, in themselves,
concerned with meeting quality targets, which generally impose constraints on the scheduling process.

One effective way of shortening project durations is to carry out activities in parallel. Clearly we cannot
undertake all the activities at the same time – some require the completion of others before they can start and

Chapter 11 discusses
motivation in more
detail.

This coordination
will normally form
part of Programme
Management.

128 So ware Project Management

there are likely to be resource constraints limiting how much may be done simultaneously. Activity sched-
uling will, however, give us an indication of the cost of these constraints in terms of lengthening timescales
and provide us with an indication of how timescales may be shortened by relaxing those constraints. If we
try relaxing precedence constraints by, for example, allowing a program coding task to commence before the
design has been completed, it is up to us to ensure that we are clear about the potential effects on product
quality.

6.3 When to Plan
Planning is an ongoing process of refi nement, each iteration becoming more detailed and more accurate than
the last. Over successive iterations, the emphasis and purpose of planning will shift.

During the feasibility study and project start-up, the main purpose of planning will be to estimate timescales
and the risks of not achieving target completion dates or keeping within budget. As the project proceeds
beyond the feasibility study, the emphasis will be placed upon the production of activity plans for ensuring
resource availability and cash fl ow control.

Throughout the project, until the fi nal deliverable has reached the customer, monitoring and replanning must
continue to correct any drift that might prevent meeting time or cost targets.

6.4 Project Schedules
Before work commences on a project or, possibly, a stage of a larger project, the
project plan must be developed to the level of showing dates when each activity should
start and fi nish and when and how much of each resource will be required. Once the
plan has been refi ned to this level of detail we call it a project schedule. Creating a
project schedule comprises four main stages.

The fi rst step in producing the plan is to decide what activities need to be carried out
and in what order they are to be done. From this we can construct an ideal activity plan – that is, a plan of
when each activity would ideally be undertaken were resources not a constraint. It is the creation of the ideal
activity plan that we shall discuss in this chapter. This activity plan is generated by Steps 4 and 5 of Step Wise
(Figure 6.1).

The ideal activity plan will then be the subject of an activity risk analysis, aimed at identifying potential
problems. This might suggest alterations to the ideal activity plan and will almost certainly have implications
for resource allocation. Activity risk analysis is the subject of Chapter 7.

The third step is resource allocation. The expected availability of resources might place constraints on when
certain activities can be carried out, and our ideal plan might need to be adapted to take account of this.
Resource allocation is covered in Chapter 8.

The fi nal step is schedule production. Once resources have been allocated to each activity, we will be in a
position to draw up and publish a project schedule, which indicates planned start and completion dates and
a resource requirements statement for each activity. Chapter 9 discusses how this is done and the role of the
schedule in managing a project.

On a large project,
detailed plans for the
later stages will be
delayed until informa-
tion about the work
required has emerged
from the earlier stages.

Activity Planning 129

6.5 Projects and Activities
Defi ning activities
Before we try to identify the activities that make up a project it is worth reviewing
what we mean by a project and its activities and adding some assumptions that will be
relevant when we start to produce an activity plan.

 ● A project is composed of a number of interrelated activities.

 ● A project may start when at least one of its activities is ready to start.

 ● A project will be completed when all of the activities it encompasses have been completed.

FIGURE 6.1 Ac vity planning is carried out in Steps 4 and 5

Activities must be
defi ned so that they
meet these criteria.
Any activity that does
not meet these criteria
must be redefi ned.

130 So ware Project Management

 ● An activity must have a clearly defi ned start and a clearly defi ned end-point, normally marked by the
production of a tangible deliverable.

 ● If an activity requires a resource (as most do) then that resource requirement must be forecastable and
is assumed to be required at a constant level throughout the duration of the activity.

 ● The duration of an activity must be forecastable – assuming normal circumstances, and the reasonable
availability of resources.

 ● Some activities might require that others are completed before they can begin (these are known as
precedence requirements).

Identifying activities
Essentially there are three approaches to identifying the activities or tasks that make up a project – we shall
call them the activity-based approach, the product-based approach and the hybrid approach.

Th e activity-based approach
The activity-based approach consists of creating a list of all the activities that the project is thought to involve.
This might require a brainstorming session involving the whole project team or it might stem from an analysis
of similar past projects. When listing activities, particularly for a large project, it might be helpful to subdivide
the project into the main life-cycle stages and consider each of these separately.

Rather than doing this in an ad hoc manner, with the obvious risks of omitting or
double-counting tasks, a much favoured way of generating a task list is to create a
Work Breakdown Structure (WBS). This involves identifying the main (or high-level)
tasks required to complete a project and then breaking each of these down into a set
of lower-level tasks. Figure 6.2 shows a fragment of a WBS where the design task has
been broken down into three tasks and one of these has been further decomposed into

two tasks.

FIGURE 6.2 A fragment of an ac vity-based Work Breakdown Structure

Activities are added to a branch in the structure if they contribute directly to the task immediately above – if
they do not contribute to the parent task, then they should not be added to that branch. The tasks at each level
in any branch should include everything that is required to complete the task at the higher level.

WBSs are advocated
by BS 6079, the British
Standards Institution’s
Guide to Project
Management.

Activity Planning 131

When preparing a WBS, consideration must be given to the fi nal level of detail or depth of the structure.
Too great a depth will result in a large number of small tasks that will be diffi cult to manage, whereas a too
shallow structure will provide insuffi cient detail for project control. Each branch should, however, be broken
down at least to a level where each leaf may be assigned to an individual or responsible section within the
organization.

Advantages claimed for the WBS approach include the belief that it is much more
likely to result in a task catalogue that is complete and is composed of non-over-
lapping activities. Note that it is only the leaves of the structure that comprise the
list of activities in the project – higher-level nodes merely represent collections of
activities.

The WBS also represents a structure that may be refi ned as the project proceeds. In
the early part of a project we might use a relatively high-level or shallow WBS, which can be developed as
information becomes available, typically during the project’s analysis and specifi cation phases.

Once the project’s activities have been identifi ed (whether or not by using a WBS), they need to be sequenced
in the sense of deciding which activities need to be completed before others can start.

Th e product-based approach
The product-based approach, used in PRINCE2 and Step Wise, has already been described in Chapter 3. It
consists of producing a Product Breakdown Structure and a Product Flow Diagram. The PFD indicates, for
each product, which other products are required as inputs. The PFD can therefore be easily transformed into
an ordered list of activities by identifying the transformations that turn some products into others. Proponents
of this approach claim that it is less likely that a product will be left out of a PBS than that an activity might
be omitted from an unstructured activity list.

This approach is particularly appropriate if using a methodology such as SSADM or USDP (Unifi ed Software
Development Process), which clearly specifi es, for each step or task, each of the products required and the
activities required to produce it. For example, the SSADM Reference Manual provides a set of generic PBSs
for each stage in SSADM, which can be used as a basis for generating a project specifi c PBS.

In the USDP, products are referred to as artifacts – see Figure 6.3 – and the sequence
of activities needed to create them is called a workfl ow– see Figure 6.4 for an example.
Some caution is needed in drawing up an activity network from these workfl ows.
USDP emphasizes that processes are iterative. This means that it may not be possible
to map a USDP process directly onto a single activity in a network. In Section 4.18
we saw how one or more iterated processes could be hidden in the single execution of
a larger activity. All projects, whether they contain iterations or not, will need to have
some fi xed milestones or time-boxes if progress towards a planned delivery date is to be maintained. These
larger activities with the fi xed completion dates would be the basis of the activity network.

Th e hybrid approach
The WBS illustrated in Figure 6.2 is based entirely on a structuring of activities.
Alternatively, and perhaps more commonly, a WBS may be based upon the project’s
products as illustrated in Figure 6.5, which is in turn based on a simple list of fi nal
deliverables and, for each deliverable, a set of activities required to produce that
product. Figure 6.5 illustrates a fl at WBS and it is likely that, in a project of any size,

A complete task
catalogue will normally
include task defi nitions
along with task input
and output products
and other task-related
information.

See I. Jacobson,
G. Booch and J.
Rumbaugh (1999)
The Unifi ed Software
Development Process,
Addison-Wesley.

BS 6079 states that
WBSs may be product-
based, cost-centre-
based, task-based or
function-based but that
product-based WBSs
are preferred.

132 So ware Project Management

it would be benefi cial to introduce additional levels – structuring both products and activities. The degree to
which the structuring is product-based or activity-based might be infl uenced by the nature of the project and

the particular development method adopted. As with a purely activity-based WBS,
having identifi ed the activities we are then left with the task of sequencing them.

A framework dictating the number of levels and the nature of each level in the
structure may be imposed on a WBS. For example, in their MITP methodology, IBM
recommend that the following fi ve levels should be used in a WBS:

 ● Level 1: Project.

 ● Level 2: Deliverables such as software, manuals and training courses.

 ● Level 3: Components, which are the key work items needed to produce deliverables, such as the modules
and tests required to produce the system software.

FIGURE 6.3 USDP product breakdown structure based on artefacts iden fi ed in Jacobson, Booch and
Rumbaugh (1999)

Not all of the prod-
ucts in this activity
structuring will be fi nal
products. Some will be
further refi ned in sub-
sequent steps.

Activity Planning 133

FIGURE 6.4 A structuring of ac vi es for the USDP requirements capture workfl ow based on Jacobson,
Booch and Rumbaugh (1999)

FIGURE 6.5 A hybrid Work Breakdown Structure based on deliverables and ac vi es

134 So ware Project Management

 ● Level 4: Work-packages, which are major work items, or collections of related tasks, required to produce
a component.

 ● Level 5: Tasks, which are tasks that will normally be the responsibility of a single person.

6.6 Sequencing and Scheduling Activities
Throughout a project, we will require a schedule that clearly indicates when each of the project’s activities
is planned to occur and what resources it will need. We shall be considering scheduling in more detail in
Chapter 8, but let us consider in outline how we might present a schedule for a small project. One way of
presenting such a plan is to use a bar chart as shown in Figure 6.6.

FIGURE 6.6 A project plan as a bar chart

The chart shown has been drawn up taking account of the nature of the development
process (that is, certain tasks must be completed before others may start) and the
resources that are available (for example, activity C follows activity B because Andy
cannot work on both tasks at the same time). In drawing up the chart, we have therefore
done two things – we have sequenced the tasks (that is, identifi ed the dependencies
among activities dictated by the development process) and scheduled them (that is,
specifi ed when they should take place). The scheduling has had to take account of the
availability of staff and the ways in which the activities have been allocated to them.
The schedule might look quite different were there a different number of staff or were
we to allocate the activities differently.

In the case of small projects, this combined sequencing–scheduling approach might
be quite suitable, particularly where we wish to allocate individuals to particular tasks
at an early planning stage. However, on larger projects it is better to separate out these
two activities: to sequence the tasks according to their logical relationships and then
to schedule them taking into account resources and other factors.

The bar chart does
not show why certain
decisions have been
made. It is not clear,
for example, why activ-
ity H is not scheduled
to start until week 9.
It could be that it can-
not start until activity
F has been completed
or it might be because
Charlie is going to
be on holiday during
week 8.

Separating the logical
sequencing from the
scheduling may be
likened to the principle
in systems analysis of
separating the logical
system from its physi-
cal implementation.

Activity Planning 135

Approaches to scheduling that achieve this separation between the logical and the physical use networks to
model the project and it is these approaches that we will consider in subsequent sections of this chapter.

6.7 Network Planning Models
These project scheduling techniques model the project’s activities and their relationships as a network. In the
network, time fl ows from left to right. These techniques were originally developed in the 1950s – the two best
known being CPM (Critical Path Method) and PERT (Program Evaluation Review Technique).

Both of these techniques used an activity-on-arrow approach to visualizing the project
as a network where activities are drawn as arrows joining circles, or nodes, which
represent the possible start and/or completion of an activity or set of activities. More
recently a variation on these techniques, called precedence networks, has become
popular. This method uses activity-on-node networks where activities are repre-
sented as nodes and the links between nodes represent precedence (or sequencing)
requirements. This latter approach avoids some of the problems inherent in the activ-
ity-on-arrow representation and provides more scope for easily representing certain
situations. It is this method that is adopted in the majority of computer applications currently available. These
three methods are very similar and it must be admitted that many people use the same name (particularly
CPM) indiscriminately to refer to any or all of the methods.

In the following sections of this chapter, we will look at the critical path method applied to precedence
(activity-on-node) networks followed by a brief introduction to activity-on-arrow networks – a discussion of
PERT will be reserved for Chapter 7 when we look at risk analysis.

CASE STUDY EXAMPLES

In Chapter 2 we saw how Amanda identifi ed that three new software components would need to be
developed and a further component would need to be rewritten. Figure 6.7 shows the fragment of a
network that she has developed as an activity-on-node network. Figure 6.8 shows how this network
would look represented as an activity-on-arrow network. Study each of the networks briefl y to verify
that they are, indeed, merely different graphical representations of the same thing.

6.8 Formulating a Network Model
The fi rst stage in creating a network model is to represent the activities and their interrelationships as a graph.
In activity-on-node we do this by representing activities as nodes (boxes) in the graph – the lines between
nodes represent dependencies.

Constructing precedence networks
Before we look at how networks are used, it is worth spending a few moments considering some rules for
their construction.

A project network should have only one start node Although it is logically possible to draw a network with
more than one starting node, it is undesirable to do so as it is a potential source of confusion. In such cases
(for example, where more than one activity can start immediately the project starts) it is normal to invent a
‘start’ activity which has zero duration but may have an actual start date.

CPM was devel-
oped by the DuPont
Chemical Company
which published the
method in 1958, claim-
ing that it had saved
them $1 million in its
fi rst year of use.

136 So ware Project Management

A project network should have only one end node The end node designates the completion of the project and
a project may fi nish only once! Although it is possible to draw a network with more than one end node, it will
almost certainly lead to confusion if this is done. Where the completion of a project depends upon more than
one ‘fi nal’ activity it is normal to invent a ‘fi nish’ activity.

A node has duration A node represents an activity and, in general, activities take time to execute. Notice,
however, that the network in Figure 6.7 does not contain any reference to durations. This network drawing
merely represents the logic of the project – the rules governing the order in which activities are to be carried
out.

Links normally have no duration Links represent the relationships between activities.
In Figure 6.9 installation cannot start until program testing is complete. Program
testing cannot start until both coding and data take-on have been completed.

Precedents are the immediate preceding activities In Figure 6.9, the activity ‘Program
test’ cannot start until both ‘Code’ and ‘Data take-on’ have been completed and activity ‘Instal’ cannot start
until ‘Program test’ has fi nished. ‘Code‘ and ‘Data take-on’ can therefore be said to be precedents of ‘Program
test’, and ‘Program test’ is a precedent of ‘Instal’. Note that we do not speak of ‘Code’ and ‘Data take-on’ as
precedents of ‘Instal’ – that relationship is implicit in the previous statement.

Time moves from left to right If at all possible, networks are drawn so that time moves from left to right. It is
rare that this convention needs to be fl outed but some people add arrows to the lines to give a stronger visual
indication of the time fl ow of the project.

FIGURE 6.7 The IOE annual maintenance contracts project ac vity network fragment with a checkpoint
ac vity added

FIGURE 6.8 The IOE annual maintenance contracts project ac vity network fragment represented as a
CPM network

Later we will look at
the possibility of ‘lag’
between activities.

Activity Planning 137

A network may not contain loops Figure 6.10 demonstrates a loop in a network. A loop is an error in that
it represents a situation that cannot occur in practice. While loops, in the sense of iteration, may occur in
practice, they cannot be directly represented in a project network. Note that the logic of Figure 6.10 suggests
that program testing cannot start until the errors have been corrected.

FIGURE 6.9 Fragment of a precedence network

FIGURE 6.10 A loop represents an impossible sequence

If we know the number of times we expect to repeat a set of activities, a test– diagnose–correct sequence, for
example, then we can draw that set of activities as a straight sequence, repeating it the appropriate number
of times. If we do not know how many times a sequence is going to be repeated then we cannot calculate the
duration of the project unless we adopt an alternative strategy such as redefi ning the complete sequence as a
single activity and estimating how long it will take to complete it.

Although it is easy to see the loop in this simple network fragment, very large networks can easily contain
complex loops which are diffi cult to spot when they are initially constructed. Fortunately, all network planning
applications will detect loops and generate error messages when they are found.

A network should not contain dangles A dangling activity such as ‘Write user manual’ in Figure 6.11 should
not exist as it is likely to lead to errors in subsequent analysis. Indeed, in many cases dangling activities
indicate errors in logic when activities are added as an afterthought. If, in Figure 6.11, we mean to indicate
that the project is complete once the software has been installed and the user manual written then we should

FIGURE 6.11 A dangle

138 So ware Project Management

redraw the network with a fi nal completion activity – which, at least in this case, is probably a more accurate
representation of what should happen. The redrawn network is shown in Figure 6.12.

Representing lagged activities
We might come across situations where we wish to undertake two activities in parallel so long as there is a lag
between the two. We might wish to document amendments to a program as it is being tested – particularly if
evaluating a prototype. In such a case we could designate an activity ‘test and document amendments’. This
would, however, make it impossible to show that amendment recording could start, say, one day after testing
had begun and fi nish a little after the completion of testing.

Where activities can occur in parallel with a time lag between them, we represent the lag with a duration on
the linking arrow as shown in Figure 6.13. This indicates that documenting amendments can start one day
after the start of prototype testing and will be completed two days after prototype testing is completed.

FIGURE 6.12 Resolving the dangle

FIGURE 6.13 Indica ng lags

Hammock activities
Hammock activities are activities which, in themselves, have zero duration but are assumed to start at the
same time as the fi rst ‘hammocked’ activity and to end at the same time as the last one. They are normally
used for representing overhead costs or other resources that will be incurred or used at a constant rate over
the duration of a set of activities.

Labelling conventions
There are a number of differing conventions that have been adopted for entering information on an activity-
on-node network. The one adopted here is shown on the left and is based on the British Standard BS 4335.

Documenting amend-
ments may take place
alongside prototype
testing so long as it
starts at least one day
later and fi nishes two
days later.

Activity Planning 139

The activity label is usually a code developed to
uniquely identify the activity and may incorporate a
project code (for example, IoE/P/3 to designate one of
the programming activities for IOE’s annual mainte-
nance contract project). The activity description will
normally be a brief activity name such as ‘Test take-on module’. The other items in our activity node will be
explained as we discuss the analysis of a project network.

6.9 Adding the Time Dimension
Having created the logical network model indicating what needs to be done and the interrelationships between
those activities, we are now ready to start thinking about when each activity should be undertaken.

The critical path approach is concerned with two primary objectives: planning the project in such a way that it
is completed as quickly as possible; and identifying those activities where a delay in their execution is likely
to affect the overall end date of the project or later activities’ start dates.

The method requires that for each activity we have an estimate of its duration. The network is then analysed
by carrying out a forward pass, to calculate the earliest dates at which activities may commence and the
project be completed, and a backward pass, to calculate the latest start dates for activities and the critical
path.

In practice we would use a software application to carry out these calculations for anything but the smallest of
projects. It is important, though, that we understand how the calculations are carried out in order to interpret
the results correctly and understand the limitations of the method.

The description and example that follow use the small example project outlined in Table 6.1 – a project
composed of eight activities whose durations have been estimated as shown in the table. Brigette at
Brightmouth College has completed the software package evaluation and a software package has been
chosen and approved. Now that the application software is known, the hardware needed as a platform can be
acquired. Another task will be ‘system confi guration’ – there are a number of parameters that will have to set
in the application so that it runs satisfactorily for Brightmouth College. Once the parameters have been set,
details of the employees who are to be paid will have to be set up on the new system. Enough information
about the new system will now be available so that offi ce procedures can be devised and documented. There
are currently no staff currently dedicated to payroll administration so a payroll offi cer is to be recruited and
then trained.

 EXERCISE 6.1

Draw an activity network using precedence network conven tions for the
project specifi ed in Table 6.1. When you have completed it, compare your
result with that shown in Figure 6.14.

6.10 Th e Forward Pass
The forward pass is carried out to calculate the earliest dates on which each activity may be started and
completed.

Earliest start Duration Earliest fi nish

Activity label, activity description

Latest start Float Latest fi nish

Figure 6.14 illustrates
the network for the
project specifi ed in
Table 6.1.

140 So ware Project Management

Where an actual start date is known, the calculations may be carried out using actual dates. Alternatively we
can use day or week numbers and that is the approach we shall adopt here. By convention, dates indicate the
end of a period and the project is therefore shown as starting at the end of week zero (or the beginning of
week 1).

TABLE 6.1 An example project specifi ca on with es mated ac vity dura ons
and precedence requirements

Activity Duration (weeks) Precedents

A Hardware selection 6

B System confi guration 4

C Instal hardware 3 A

D Data migration 4 B

E Draft offi ce procedures 3 B

F Recruit staff 10

G User training 3 E, F

H Instal and test system 2 C, D

FIGURE 6.14 The precedence network for the example project

Activity Planning 141

The forward pass and the calculation of earliest start dates are carried out according
to the following reasoning.

 ● Activities A, B and F may start immediately, so the earliest date for their start is
zero.

 ● Activity A will take 6 weeks, so the earliest it can fi nish is week 6.

 ● Activity B will take 4 weeks, so the earliest it can fi nish is week 4.

 ● Activity F will take 10 weeks, so the earliest it can fi nish is week 10.

 ● Activity C can start as soon as A has fi nished so its earliest start date is week 6.
It will take 3 weeks so the earliest it can fi nish is week 9.

 ● Activities D and E can start as soon as B is complete so the earliest they can
each start is week 4. Activity D, which will take 4 weeks, can therefore fi nish
by week 8 and activity E, which will take 3 weeks, can therefore fi nish by week
7.

 ● Activity G cannot start until both E and F have been completed. It cannot therefore start until week 10
– the later of weeks 7 (for activity E) and 10 (for activity F). It takes 3 weeks and fi nishes in week 13.

 ● Similarly, Activity H cannot start until week 9 – the later of the two earliest fi nish dates for the preceding
activities C and D.

 ● The project will be complete when both activities H and G have been completed. Thus the earliest
project completion date will be the later of weeks 11 and 13 – that is, week 13.

The results of the forward pass are shown in Figure 6.15.

FIGURE 6.15 The network a er the forward pass

During the forward
pass, earliest dates are
recorded as they are
calculated.

The forward pass rule:
the earliest start date
for an activity is the
earliest fi nish date for
the preceding activity.
Where there is more
than one immediately
preceding activity we
take the latest of the
earliest fi nish dates for
those activities.

142 So ware Project Management

6.11 Th e Backward Pass
The second stage in the analysis of a critical path network is to carry out a backward
pass to calculate the latest date at which each activity may be started and fi nished
without delaying the end date of the project. In calculating the latest dates, we assume
that the latest fi nish date for the project is the same as the earliest fi nish date – that is,
we wish to complete the project as early as possible.

Figure 6.16 illustrates our network after carrying out the backward pass. The latest
activity dates are calculated as follows.

 ● The latest completion date for activities G and H is assumed to be week 13.

 ● Activity H must therefore start at week 11 at the latest (13 – 2) and the latest start
date for activity G is week 10 (13 – 3).

 ● The latest completion date for activities C and D is the latest date at which activity H must start – that
is, week 11. They therefore have latest start dates of week 8 (11 – 3) and week 7 (11 – 4) respectively.

 ● Activities E and F must be completed by week 10 so their earliest start dates are weeks 7 (10 – 3) and
0 (10 – 10) respectively.

 ● Activity B must be completed by week 7 (the latest start date for both activities D and E) so its latest
start is week 3 (7 – 4).

 ● Activity A must be completed by week 8 (the latest start date for activity C) so its latest start is week 2
(8 – 6).

 ● The latest start date for the project start is the earliest of the latest start dates for activities A, B and F.
This is week zero. This is, of course, not very surprising since it tells us that if the project does not start
on time it won’t fi nish on time.

FIGURE 6.16 The network a er the backward pass

The backward pass
rule: the latest fi nish
date for an activity is
the latest start date
for the activity that
commences imme-
diately that activity is
complete. Where more
than one activity can
commence we take the
earliest of the latest
start dates for those
activities.

Activity Planning 143

6.12 Identifying the Critical Path
There will be at least one path through the network (that is, one set of successive activ-
ities) that defi nes the duration of the project. This is known as the critical path. Any
delay to any activity on this critical path will delay the completion of the project.

The difference between an activity’s earliest start date and its latest start date (or,
equally, the difference between its earliest and latest fi nish dates) is known as the
activity’s fl oat – it is a measure of how much the start or completion of an activity
may be delayed without affecting the end date of the project. Any activity with a fl oat
of zero is critical in the sense that any delay in carrying out the activity will delay the
completion date of the project as a whole. There will always be at least one path through the network joining
those critical activities – this path is known as the critical path and is shown bold in Figure 6.17.

The signifi cance of the critical path is two-fold.

 ● In managing the project, we must pay particular attention to monitoring activities on the critical path
so that the effects of any delay or resource unavailability are detected and corrected at the earliest
opportunity.

 ● In planning the project, it is the critical path that we must shorten if we are to reduce the overall
duration of the project.

Figure 6.17 also shows the activity span. This is the difference between the earliest start date and the latest
fi nish date and is a measure of the maximum time allowable for the activity. However, it is subject to the same
conditions of interpretation as activity fl oat, which is discussed in the next section.

FIGURE 6.17 The cri cal path

The critical path is the
longest path through
the network.

This fl oat is also known
as total fl oat to dis-
tinguish it from other
forms of fl oat – see
Section 6.13.

144 So ware Project Management

 EXERCISE 6.2

Refer back to Amanda’s CPM network illustrated in Figure 6.7.

Using the activity durations given in Table 6.2, calculate the earliest completion date for the project and
identify the critical path on your network.

TABLE 6.2 Es mated ac vity dura ons for Amanda’s network

Activity Estimated duration
(days)

Activity Estimated duration
(days)

Specify overall system 34 Design module C 4

Specify module A 20 Design module D 4

Specify module B 15 Code/test module A 30

Specify module C 25 Code/test module B 28

Specify module D 15 Code/test module C 15

Check specifi cation 2 Code/test module D 25

Design module A 7 System integration 6

Design module B 6

6.13 Activity Float
Although the total fl oat is shown for each activity, it really ‘belongs’ to a path through
the network. Activities A and C in Figure 6.17 each have 2 weeks’ total fl oat. If,
however, activity A uses up its fl oat (that is, it is not completed until week 8) then

activity B will have zero fl oat (it will have become critical). In such circumstances it may be misleading and
detrimental to the project’s success to publicize total fl oat!

There are a number of other measures of activity fl oat, including the following:

 ● Free fl oat: the time by which an activity may be delayed without affecting any subsequent activity.
It is calculated as the difference between the earliest completion date for the activity and the earliest
start date of the succeeding activity. This might be considered a more satisfactory measure of fl oat for
publicizing to the staff involved in undertaking the activities.

 ● Interfering fl oat: the difference between total fl oat and free fl oat. This is quite commonly used, particu-
larly in association with the free fl oat. Once the free fl oat has been used (or if it is zero), the interfering
fl oat tells us by how much the activity may be delayed without delaying the project end date – even
though it will delay the start of subsequent activities.

Total fl oat may only be
used once.

Activity Planning 145

 EXERCISE 6.3

Calculate the free fl oat and interfering fl oat for each of the activities shown in the activity network
(Figure 6.17).

6.14 Shortening the Project Duration
If we wish to shorten the overall duration of a project we would normally consider attempting to reduce
activity durations. In many cases this can be done by applying more resources to the task – working overtime
or procuring additional staff, for example. The critical path indicates where we must look to save time – if
we are trying to bring forward the end date of the project, there is clearly no point in attempting to shorten
non-critical activities. Referring to Figure 6.17, it can be seen that we could complete the project in week 12
by reducing the duration of activity F by one week (to 9 weeks).

As we reduce activity times along the critical path we must continually check for any new critical path
emerging and redirect our attention where necessary.

There will come a point when we can no longer safely, or cost-effectively, reduce critical activity durations in
an attempt to bring forward the project end date. Further savings, if needed, must be sought in a consideration
of our work methods and by questioning the logical sequencing of activities. Generally, time savings are to be
found by increasing the amount of parallelism in the network and the removal of bottlenecks (subject always,
of course, to resource and quality constraints).

 EXERCISE 6.4

Referring to Figure 6.17, suppose that the duration for activity F is shortened to 8 weeks. Calculate the
end date for the project.

What would the end date for the project be if activity F were shortened to 7 weeks? Why?

6.15 Identifying Critical Activities
The critical path identifi es those activities which are critical to the end date of the
project; however, activities that are not on the critical path may become critical. As
the project proceeds, activities will invariably use up some of their fl oat and this
will require a periodic recalculation of the network. As soon as the activities along a
particular path use up their total fl oat then that path will become a critical path and a
number of hitherto non-critical activities will suddenly become critical.

It is therefore common practice to identify near-critical paths – those whose lengths are within, say, 10–20%
of the duration of the critical path or those with a total fl oat of less than, say, 10% of the project’s uncompleted
duration.

The importance of identifying critical and near-critical activities is that it is they that are most likely to be
the cause of delays in completing the project. We shall see, in the next three chapters, that identifying these
activities is an important step in risk analysis, resource allocation and project monitoring.

For a more in-depth
discussion of the role
of the critical path in
project monitoring, see
Chapter 9.

146 So ware Project Management

6.16 Activity-on-Arrow Networks
The developers of the CPM and PERT methods both originally used activity-on-arrow networks. Although
now less common than activity-on-node networks, they are still used and introduce an additional useful
concept – that of events. We will therefore take a brief look at how they are drawn and analysed using the
same project example shown in Table 6.1.

In activity-on-arrow networks activities are represented by links (or arrows) and the nodes represent events
of activities (or groups of activities) starting or fi nishing. Figure 6.18 illustrates our previous example (see
Figure 6.14) drawn as an activity-on-arrow network.

FIGURE 6.18 An ac vity-on-arrow network

Activity-on-arrow network rules and conventions
A project network may have only one start node This is a requirement of activity-on-arrow networks rather
than merely desirable as is the case with activity-on-node networks.

A project network may have only one end node Again, this is a requirement for activity-on-arrow networks.

A link has duration A link represents an activity and, in general, activities take time to execute. Notice,
however, that the network in Figure 6.18 does not contain any reference to durations. The links are not drawn
in any way to represent the activity durations. The network drawing merely represents the logic of the project
– the rules governing the order in which activities are to be carried out.

FIGURE 6.19 Fragment of a CPM network

Nodes have no duration Nodes are events and, as such, are instantaneous points in time. The source node
is the event of the project becoming ready to start and the sink node is the event of the project becoming

Activity Planning 147

completed. Intermediate nodes represent two simultaneous events – the event of all activities leading into a
node having been completed and the event of all activities leading out of that node being in a position to be
started.

In Figure 6.19, node 3 is the event that both ‘coding’ and ‘data take-on’ have been completed and activity
‘program test’ is free to start. ‘Installation’ may be started only when event 4 has been achieved, that is, as
soon as ‘program test’ has been completed.

Time moves from left to right As with activity-on-node networks, activity-on-arrow networks are drawn, if at
all possible, so that time moves from left to right.

Nodes are numbered sequentially There are no precise rules about node numbering but nodes should be
numbered so that head nodes (those at the ‘arrow’ end of an activity) always have a higher number than tail
events (those at the ‘non-arrow’ end of an activity). This convention makes it easy to spot loops.

A network may not contain loops Figure 6.20 demonstrates a loop in an activity-on-arrow network. As
discussed in the context of precedence networks, loops are either an error of logic or a situation that must be
resolved by itemizing iterations of activity groups.

FIGURE 6.20 A loop represents an impossible sequence

A network may not contain dangles A dangling activity, such as ‘Write user manual’
in Figure 6.21, cannot exist, as it would suggest there are two completion points for
the project. If, in Figure 6.21, node 5 represents the true project completion point and
there are no activities dependent on activity ‘Write user manual’, then the network
should be redrawn so that activity ‘Write user manual’ starts at node 2 and terminates at node 5 – in practice,
we would need to insert a dummy activity between nodes 3 and 5. In other words, all events, except the
fi rst and the last, must have at least one activity entering them and at least one activity leaving them and all
activities must start and end with an event.

FIGURE 6.21 A dangle

 EXERCISE 6.5

Take a look at the networks in Figure 6.22. State what is wrong with each of them and, where possible,
redraw them correctly.

Dangles are not al-
lowed in activity-on-
arrow networks.

148 So ware Project Management

FIGURE 6.22 Some ac vity networks

FIGURE 6.23 Two paths with a common node

Activity Planning 149

Using dummy activities
When two paths within a network have a common event although they are, in other respects, independent, a
logical error such as that illustrated in Figure 6.23 might occur.

Suppose that, in a particular project, it is necessary to specify a certain piece of hardware before placing an
order for it and before coding the software. Before coding the software it is also necessary to specify the
appropriate data structures, although clearly we do not need to wait for this to be done before the hardware
is ordered.

Figure 6.23 is an attempt to model the situation described above, although it is incorrect in that it requires
both hardware specifi cation and data structure design to be completed before either an order may be placed
or software coding may commence.

We can resolve this problem by separating the two (more or less) independent paths and introducing a dummy
activity to link the completion of ‘specify hardware’ to the start of the activity ‘code software’. This effec-
tively breaks the link between data structure design and placing the order and is shown in Figure 6.24.

FIGURE 6.24 Two paths linked by a dummy ac vity

Dummy activities, shown as dotted lines on the network diagram, have a zero duration and use no resources.
They are often used to aid in the layout of network drawings as in Figure 6.25. The use of a dummy
activity where two activities share the same start and end nodes makes it easier to distinguish the activity
end-points.

FIGURE 6.25 Another use of a dummy ac vity

These are problems that do not occur with activity-on-node networks.

 EXERCISE 6.6

Take another look at Brigette’s college payroll activity network fragment, which related to the earlier
software selection process and which you developed in Exercise 3.4 (or take a look at the model answer
in Figure B.2). Redraw this as an activity-on-arrow network.

150 So ware Project Management

Representing lagged activities
Activity-on-arrow networks are less elegant when it comes to representing lagged parallel activities. We need
to represent these with pairs of dummy activities as shown in Figure 6.26. Where the activities are lagged
because a stage in one activity must be completed before the other may proceed, it is likely to be better to
show each stage as a separate activity.

Activity labelling
There are a number of differing conventions that have been adopted for entering information on an activi-
ty-on-arrow network. Typically the diagram is used to record information about the events rather than the
activities – activity-based information (other than labels or descriptions) is generally held on a separate
activity table.

FIGURE 6.26 Using the ladder technique to indicate lags

One of the more common conventions for labelling nodes, and the one adopted here,
is to divide the node circle into quadrants and use those quadrants to show the event
number, the latest and earliest dates by which the event should occur, and the event
slack (which will be explained later).

Network analysis
Analysis proceeds in the same way as with activity-on-node
networks, although the discussion places emphasis on the events rather than activity
start and completion times.

The forward pass The forward pass is carried out to calculate the earliest date on
which each event may be achieved and the earliest dates on which each activity may
be started and completed. The earliest date for an event is the earliest date by which
all activities upon which it depends can be completed. Using Figure 6.18 and Table
6.1, the calculation proceeds according to the following reasoning.

 ● Activities A, B and F may start immediately, so the earliest date for event 1 is zero and the earliest start
date for these three activities is also zero.

 ● Activity A will take 6 weeks, so the earliest it can fi nish is week 6 (recorded in the activity table).
Therefore the earliest we can achieve event 2 is week 6.

 ● Activity B will take 4 weeks, so the earliest it can fi nish and the earliest we can achieve event 3 is
week 4.

Where parallel activi-
ties have a time lag we
may show this as a
‘ladder’ of activities:
documentation may
proceed alongside
prototype testing so
long as it starts at least
a day later and will fi n-
ish two days after the
completion of proto-
type testing.

During the forward
pass, earliest dates are
recorded as they are
calculated. For events,
they are recorded on
the network diagram
and for activities they
are recorded on the
activity table.

Activity Planning 151

 ● Activity F will take 10 weeks, so the earliest it can fi nish is week 10 – we cannot,
however, tell whether or not this is also the earliest date that we can achieve
event 5 since we have not, as yet, calculated when activity E will fi nish.

 ● Activity E can start as early as week 4 (the earliest date for event 3) and, since
it is forecasted to take 3 weeks, will be completed, at the earliest, at the end of
week 7.

 ● Event 5 may be achieved when both E and F have been completed, that is, week
10 (the later of 7 and 10).

 ● Similarly, we can reason that event 4 will have an earliest date of week 9. This
is the later of the earliest fi nish for activity D (week 8) and the earliest fi nish for
activity C (week 9).

 ● The earliest date for the completion of the project, event 6, is therefore the end of week 13 – the later
of 11 (the earliest fi nish for H) and 13 (the earliest fi nish for G).

The results of the forward pass are shown in Figure 6.27 and Table 6.3.

FIGURE 6.27 A CPM network a er the forward pass

TABLE 6.3 The ac vity table a er the forward pass

Activity Duration
(weeks)

Earliest
start date

Latest start
date

Earliest
fi nish date

Latest fi nish
date

Total fl oat

A 6 0 6

B 4 0 4

C 3 6 9

D 4 4 8

E 3 4 7

F 10 0 10

G 3 10 13

H 2 9 11

The forward pass rule:
the earliest date for an
event is the earliest
fi nish date for all the
activities terminating
at that event. Where
more than one activity
terminates at a com-
mon event we take the
latest of the earliest
fi nish dates for those
activities.

152 So ware Project Management

The backward pass The second stage is to carry out a backward pass to calculate the
latest date at which each event may be achieved, and each activity started and fi nished,
without delaying the end date of the project. The latest date for an event is the latest
date by which all immediately following activities must be started for the project to
be completed on time. As with activity-on-node networks, we assume that the latest
fi nish date for the project is the same as the earliest fi nish date – that is, we wish to
complete the project as early as possible.

Figure 6.28 illustrates our network and Table 6.4 the activity table after carrying out
the backward pass – as with the forward pass, event dates are recorded on the diagram
and activity dates on the activity table.

FIGURE 6.28 The CPM network a er the backward pass

TABLE 6.4 The ac vity table following the backward pass

Activity Duration
(weeks)

Earliest
start date

Latest start
date

Earliest
fi nish date

Latest fi nish
date

Total fl oat

A 6 0 2 6 8

B 4 0 3 4 7

C 3 6 8 9 11

D 4 4 7 8 11

E 3 4 7 7 10

F 10 0 0 10 10

G 3 10 10 13 13

H 2 9 11 11 13

The backward pass
rule: the latest date for
an event is the latest
start date for all the ac-
tivities that may com-
mence from that event.
Where more than one
activity commences at
a common event we
take the earliest of the
latest start dates for
those activities.

Activity Planning 153

Identifying the critical path The critical path is identifi ed in a way similar to that used in activity-on-node
networks. We do, however, use a different concept, that of slack, in identifying the path. Slack is the difference
between the earliest date and the latest date for an event – it is a measure of how late an event may be
without affecting the end date of the project. The critical path is the path joining all nodes with a zero slack
(Figure 6.29).

FIGURE 6.29 The cri cal path

CONCLUSION

In this chapter, we have discussed the use of the critical path method and precedence networks to obtain an
ideal activity plan. This plan tells us the order in which we should execute activities and the earliest and latest
we can start and fi nish them.

These techniques help us to identify which activities are critical to meeting a target completion date.

In order to manage the project we need to turn the activity plan into a schedule that will specify precisely
when each activity is scheduled to start and fi nish. Before we can do this, we must consider what resources
will be required and whether or not they will be available at appropriate times. As we shall see, the allocation
of resources to an activity may be affected by how we view the importance of the task and the risks associated
with it. In the next two chapters we look at these aspects of project planning before we consider how we might
publish a schedule for the project.

FURTHER EXERCISES

 1. Draw an activity network using either activity-on-node or activity-on-arrow network conventions for
each of the following projects:

 ■ redecorating a room;

 ■ choosing and purchasing a desktop computer;

 ■ organizing and carrying out a survey of users’ opinions of an information system.

 2. If you have access to a project planning application, use it to produce a project plan for the IOE annual
maintenance contracts project. Base your plan on that used for Exercise 6.2 and verify that your appli-
cation reports the same information as you calculated manually when you did the exercise.

The critical path is the
longest path through
the network.

154 So ware Project Management

 3. Based on your answer to Exercise 6.2, discuss what options Amanda might consider if she found it
necessary to complete the project earlier than day 104.

 4. Create a precedence activity network using the following details:

Activity Depends on Duration (days)

A 5

B A 7

C B 6

D A 5

E D 10

F B 15

G B 8

H G 8

I C 4

J G 4

K E, F 5

L I, H 3

 5. Calculate the earliest and latest start and end dates and the fl oat associated with each activity in the
network you have created for further exercise 4 above. From this identify the critical path.

 6. Draw up a precedence activity network for the following scenario: The specifi cation of an ICT appli-
cation is estimated as likely to take two weeks to complete. When this activity has been completed,
work can start on three software modules, A, B and C. Design/coding of the modules will need 5, 10
and 10 days respectively. Modules A and B can only be unit-tested together as their functionality is
closely associated. This joint testing should take about two weeks. Module C will need eight days of
unit testing. When all unit testing has been completed, integrated system testing will be needed, taking
a further three weeks. This testing will be based on the functionality described in the specifi cation and
will need 10 days of planning.

 7. For the activity network in further exercise 6 above, derive the earliest and latest start dates for each
activity and the earliest and latest fi nish dates. Work out the shortest project duration. If only two
software developers were available for the design and coding of modules, what effect would this have
on the project duration?

 8. What are the limitations of the precedence and CPM activity network notations?

 9. Consider a software project with fi ve tasks T1–T5. Duration of the fi ve tasks in weeks is 3, 2, 3, 5, and
2 respectively. T2 and T4 can start when T1 is complete. T3 can start when T2 is complete. T5 can start
when both T3 and T4 are complete. Draw the CPM network representation of the project. When is the
latest start date of the task T3? What is the fl oat time of the task T4? Which tasks are on the critical
path?

7

OBJECTIVES

When you have completed this chapter you will be able to:
identify the factors putting a project at risk;•
categorize and prioritize actions for risk elimination or containment;•
quantify the likely effects of risk on project timescales.•

7.1 Introduction
In Chapter 6 we saw how, at IOE, Amanda planned how the software for the new annual maintenance contracts
application was to be produced. This included estimating how long each task would take – see Figure 6.7 and
Table 6.2. Her plan was based on the assumption that three experienced programmers were available for the
coding of modules A, B, C and D. However, suppose two developers then left for better-paid jobs, and so far
only one replacement has been recruited, who happens to be a trainee.

In the case of Brigette and the Brightmouth payroll implementation project, imagine
that a payroll package has been purchased. However, a new requirement emerges that
the payroll database should be accessed by a new application that calculates the staff
costs for each course delivered by the college. Unfortunately, the purchased payroll
application does not allow this access.

Amanda and Brigette will have to deal with these problems as part of the monitoring and control process
that will be outlined in Chapter 9. In this chapter we consider whether the two project leaders could have
foreseen that these problems were likely to occur and made plans to deal with them. In other words, could
these problems have been identifi ed as risks?

In some work environ-
ments ‘problems’ in
this context are re-
ferred to as ‘issues’.

156 So ware Project Management

7.2 Risk
PM-BOK defi nes risk as ‘an uncertain event or condition that, if it occurs, has a
positive or negative effect on a project’s objectives’. PRINCE2, the UK government-
sponsored project management standard, defi nes risk as ‘the chance of exposure to the
adverse consequences of future events’. The two defi nitions differ, as the fi rst includes
situations where a future uncertainty actually works in our favour and presents us with
an opportunity. We will return to this later in the chapter.

The key elements of a risk follow.

 ● It relates to the future The future is inherently uncertain. Some things which seem obvious when a
project is over, for example that the costs were under estimated or that a new technology was overly
diffi cult to use, might not have been so obvious during planning.

 ● It involves cause and effect For example, a ‘cost over-run’ might be identifi ed as
a risk, but ‘cost over-run’ describes some damage, but does not say what causes
it. Is it, for example, an inaccurate estimate of effort, the use of untrained staff,
or a poor specifi cation? Both the cause (or hazard), such as ‘inexperienced staff’,
and a particular type of negative outcome, such as ‘lower productivity’, should be
defi ned for each risk.

 EXERCISE 7.1

Match the following causes – a to d – to their possible effects – i to iv. The relationships are not neces-
sarily one-to-one. Explain the reasons for each match.

Causes

 (a) staff inexperience;

 (b) lack of top management commitment;

 (c) new technology;

 (d) users uncertain of their requirements.

Effects

 (i) testing takes longer than planned;

 (ii) planned effort and time for activities exceeded;

 (iii) project scope increases;

 (iv) time delays in getting changes to plans agreed.

The boundary between risk management and ‘normal’ software project management is hazy. For example,
when we were selecting the best general approach to a project – see Chapter 4 – one consideration was the
possible consequences of future adverse events. As will be seen in Chapter 13, most of the techniques used to
assure the quality of software, such as reviews and testing, are designed to reduce the risk of faults in project
deliverables. Risk management is not a self-contained topic within project management. The key role of
risk management is considering uncertainty remaining after a plan has been formulated. Every plan is based
on assumptions and risk management tries to plan for and control the situations where those assumptions
become incorrect. Risk planning is carried out in Steps 3 and 6 (Figure 7.1).

The ISPL risk model
(formerly Euromethod)
refers to hazards as
‘situational factors’.

PM-BOK stands for
Project Management
Body of Knowledge,
a project manage-
ment standard pub-
lished by the Project
Management Institute
in the USA.

Risk Management 157

7.3 Categories of Risk
An ICT project manager is normally given the objective of installing the required application by a specifi ed
deadline and within an agreed budget. Other objectives might be set, especially with regard to quality require-
ments. Project risks are those that could prevent the achievement of the objectives given to the project manager
and the project team.

As we noted in Chapter 2, there could be risks that an application after successful implementation is a business
failure. Thus if an e-commerce site is established to sell a product, the site might be correctly implemented,
but customers fail to use the site because of the uncompetitive prices demanded. Dealing with these business

FIGURE 7.1 Risk planning is carried out primarily in Steps 3 and 6

158 So ware Project Management

risks is likely to be outside the direct responsibilities of the application implementation team. However, the
failure to meet any project objective could have a negative impact on the business case for the project. For
example, an increase in development cost might mean that the income (or savings) generated by the delivered
application no longer represents a good return on the increased investment.

Risks have been categorized in other ways. Kalle Lyytinen and his colleagues, for
instance, have proposed a sociotechnical model of risk, a diagrammatic representation
of which appears in Figure 7.2.

The box labelled ‘Actors’ refers to all the people involved in the development of the
application in question. A typical risk in this area is that high staff turnover leads to
expertise of value to the project being lost.

In Figure 7.2, the box labelled ‘Technology’ encompasses both the technology used to implement the appli-
cation and that embedded in the delivered products. Risks here could relate to the appropriateness of the
technologies and to possible faults within them, especially if they are novel.

See K. Lyytinen, L.
Mathiassen and J.
Ropponen (1996)
‘A framework for
risk management’
Journal of Information
Technology, 11(4).

FIGURE 7.2 The Lyy nen–Mathiassen–Ropponen risk framework

‘Structure’ describes the management structures and systems, including those affecting planning and control.
For example, the implementation might need user participation in some tasks, but the responsibility for
managing the users’ contribution might not be clearly allocated.

‘Tasks’ relates to the work planned. For instance, the complexity of the work might lead to delays because of
the additional time required integrate the large number of components.

In Figure 7.2 all boxes are interlinked. Risks often arise from the relationships between factors – for example
between technology and people. If a development technology is novel then the developers might not be
experienced in its use and delay results. The novelty of the new technology is really a characteristic of the
developers: once they are used to the technology, it is no longer ‘novel’.

 EXERCISE 7.2

In the cases of the Brightmouth payroll implementation project and the IOE annual maintenance
contracts development project, identify one risk for each of the four categories in Figure 7.2.

Risk Management 159

7.4 A Framework for Dealing with Risk
Planning for risk includes these steps:

 (i) risk identifi cation;

 (ii) risk analysis and prioritization;

 (iii) risk planning;

 (iv) risk monitoring.

Steps (i) to (iii) above will probably be repeated. When risks that could prevent a project success are identifi ed,
plans can be made to reduce or remove their threat. The plans are then reassessed to ensure that the original
risks are reduced suffi ciently and no new risks inadvertently introduced. Take the risk that staff inexperience
with a new technology could lead to delays in software development. To reduce this risk, consultants expert
in the new technology might be recruited. However, the use of consultants might introduce the new risk that
knowledge about the new technology is not transferred to the permanent staff, making subsequent software
maintenance problematic. Having identifi ed this new risk, further risk reduction activities can be planned.

7.5 Risk Identifi cation
The two main approaches to the identifi cation of risks are the use of checklists and brainstorming.

Checklists are simply lists of the risks that have been found to occur regularly in software development
projects. A specialized list of software development risks by Barry Boehm appears in Table 7.1 in a modifi ed
version. Ideally a group of representative project stakeholders examines a checklist identifying risks appli-
cable to their project. Often the checklist suggests potential countermeasures for each risk.

TABLE 7.1 So ware project risks and strategies for risk reduc on

Risk Risk reduction techniques

Personnel shortfalls Staffi ng with top talent; job matching; teambuilding; training and
career development; early scheduling of key personnel

Unrealistic time and
cost estimates

Multiple estimation techniques; design to cost; incremental
development; recording and analysis of past projects; standard-
ization of methods

Developing the wrong
software functions

Improved software evaluation; formal specifi cation methods;
user surveys; prototyping; early user manuals

Developing the wrong
user interface

Prototyping; task analysis; user involvement

Gold plating Requirements scrubbing; prototyping; cost–benefi t analysis;
design to cost

(Contd)

This top ten list of
software risks is based
on one presented by
Barry Boehm in his
Tutorial on Software
Risk Management,
IEE Computer Society,
1989.

160 So ware Project Management

Late changes to
requirements

Stringent change control procedures; high change threshold;
incremental development (deferring changes)

Shortfalls in externally
supplied components

Benchmarking; inspections; formal specifi cations; contractual
agreements; quality assurance procedures and certifi cation

Shortfalls in externally
performed tasks

Quality assurance procedures; competitive design or prototyping;
contract incentives

Real-time performance
shortfalls

Simulation; benchmarking; prototyping; tuning; technical
analysis

Development techni-
cally too diffi cult

Technical analysis; cost–benefi t analysis; prototyping; staff
training and development

Project management methodologies, such PRINCE2, often recommend that on
completion of a project a review identifi es any problems during the project and the
steps that were (or should have been) taken to resolve or avoid them. These problems
could in some cases be added to an organizational risk checklist for use with new
projects.

Brainstorming
Ideally, representatives of the main stakeholders should be brought together once

some kind of preliminary plan has been drafted. They then identify, using their individual knowledge of
different parts of the project, the problems that might occur. This collaborative approach may generate a sense
of ownership in the project.

Brainstorming might be used with Brigette’s Brightmouth payroll implementation
project as she realizes that there are aspects of college administration of which she is
unaware. She therefore suggests to the main stakeholders in the project, who include
staff from the fi nance offi ce and the personnel offi ce, that they meet and discuss where
the risks facing the project lie.

7.6 Risk Assessment
A common problem with risk identifi cation is that a list of risks is potentially endless. A way is needed of
distinguishing the damaging and likely risks. This can be done by estimating the risk exposure for each risk
using the formula:

risk exposure = (potential damage) 3 (probability of occurrence)

Using the most rigorous – but not necessarily the most practical – approach, the potential damage would be
assessed as a money value. Say a project depended on a data centre vulnerable to fi re. It might be estimated
that if a fi re occurred a new computer confi guration could be established for £500,000. It might also be
estimated that where the computer is located there is a 1 in 1000 chance of a fi re actually happening, that is
a probability of 0.001.

(Contd)

The ‘lessons learnt’ re-
port differs from a ‘post
implementation review’
(PIR). It is written on
project completion and
focuses on project is-
sues. A PIR, produced
when the application
has been operational
for some time, focuses
on business benefi ts.

‘Brainstorming’ is also
mentioned in Chapter
13 in connection with
quality circles.

Risk Management 161

The risk exposure in this case would be:

£500,000 3 0.001 = £500

A crude way of understanding this value is as the minimum sum an insurance company would require as a
premium. If 1000 companies, all in the same position, each contributed £500 to a fund then, when the 1 in
1000 chance of the fi re actually occurred, there would be enough money to cover the cost of recovery.

 EXERCISE 7.3

What conditions would have to exist for the risk pooling arrangement described above to work?

The calculation of risk exposure above assumes that the amount of damage sustained will always be the same.
However, it is usually the case that there could be varying amounts of damage. For example, as software
development proceeds, more software is created, and more time would be needed to re-create it if it were
lost.

With some risks, there could be not only damage but also gains. The testing of a software component is
scheduled to take six days, but is actually done in three days. A team leader might therefore feel justifi ed in
producing a probability chart like the one in Figure 7.3. This shows the probability of a task being completed
in four days (5%), then fi ve days (10%), and so on. The accumulated probability for the seventh day (65%)
means that there is a 65% chance that the task will be fi nished on or before the seventh day.

FIGURE 7.3 Probability chart

Clients would almost certainly insist we pick one of the days as the target. This target could be ‘aggressive’,
for instance only fi ve days in the above scenario, but with an 85% chance of failure according to the chart. A
safer estimate would be eight days which would have a probability of failure of only 15%. We will return to
this point later on in this chapter.

In Figure 7.3 the ‘loss’ is effectively being measured in days rather than money. In this context, days, or some
other unit of personal effort, is often used as a surrogate for a fi nancial loss.

Most managers resist very precise estimates of loss or of the probability of something occurring, as such
fi gures are usually guesses. Barry Boehm has suggested that, because of this, both the risk losses and the

162 So ware Project Management

probabilities be assessed using relative scales in the range 0 to 10. The two fi gures could then be multiplied
together to get a notional risk exposure. Table 7.2 provides an example, based on Amanda’s IOE group
accounts project, of where this has been done. This value could be used to prioritize the importance of risks,
although more sophisticated risk calculations are not possible.

TABLE 7.2 Part of Amanda’s risk exposure assessment

Ref Hazard Likelihood Impact Risk

R1 Changes to requirements specifi cation during coding 8 8 64

R2 Specifi cation takes longer than expected 3 7 21

R3 Signifi cant staff sickness affecting critical path activities 5 7 35

R4 Signifi cant staff sickness affecting non-critical activities 10 3 30

R5 Module coding takes longer than expected 4 5 20

R6 Module testing demonstrates errors or defi ciencies in design 4 8 32

Boehm suggests that planners focus attention on the 10 risks with the highest risk exposure scores. For
smaller projects – including the fi nal-year projects of computing students – the focus could be on a smaller
number of risks.

Even using indicative numbers in the range 0 to 10, rather than precise money values
and probabilities, is not completely satisfactory. The values are likely to be subjective,
and different analysts might pick different numbers. Another approach is to use quali-
tative descriptions of the possible impact and the likelihood of each risk – see Tables
7.3 and 7.4 for examples. Consistency between assessors is facilitated by associating
each qualitative description with a range of values.

TABLE 7.3 Qualita ve descriptors of risk probability and associated range values

Probability level Range

High Greater than 50% chance of happening

Signifi cant 30–50% chance of happening

Moderate 10–29% chance of happening

Low Less than 10% chance of happening

See P. Goodwin and
G. Wright (2004)
Decision Analysis
for Management
Judgement, Wiley, for
further discussion of
this issue.

Risk Management 163

TABLE 7.4 Qualita ve descriptors of impact on cost and associated range values

Impact level Range

High More than 30% above budgeted expenditure

Signifi cant 20 to 29% above budgeted expenditure

Moderate 10 to 19% above budgeted expenditure

Low Within 10% of budgeted expenditure.

In Table 7.4, the potential amount of damage has been categorized in terms of its impact on project costs.
Other tables could show the impact of risks on project duration or on the quality of the project deliverables.

FIGURE 7.4 A probability impact matrix

To some extent, the project manager, in conjunction with the project sponsor, can choose whether the damage
infl icted by a risk affects cost, duration or the quality of deliverables. In Amanda’s list of risks in Table 7.2, R5
refers to the coding of modules taking longer than planned. This would have an impact on both the duration
of the project and the costs, as more staff time would be needed. A response might be adding software devel-
opers and splitting the remaining development work between them. This will increase costs, but could save
the planned completion date. Another option is to save both duration and staff costs by reducing software
testing before the software is released. This is likely to be at the price of decreased quality in the project
deliverable.

Where the potential damage and likelihood of a risk are defi ned by qualitative descriptors, the risk exposure
cannot be calculated by multiplying the two factors together. In this case, the risk exposure is indicated by the

164 So ware Project Management

position of the risk in a matrix – see Figure 7.4. These matrices have variously been called probability impact
grids or summary risk profi les.

In Figure 7.4 some of the cells in the top right of the matrix have been zoned off by a tolerance line. Risks
that appear within this zone have a degree of seriousness that calls for particular attention.

Chapter 5 stressed the need for frequent reassessment of effort and duration estimates
during a project. This applies to risk exposure as well, as some risks apply only at
certain stages. A risk might be that key users are unavailable when needed to supply
details of their requirements. As requirements are gathered, so this risk will diminish

until it is no longer signifi cant. In general, the element of uncertainty will lessen as a project progresses and
more is learnt by the developers about user requirements and any new technology. This would be refl ected in
lower risk probabilities. On the other hand, the potential damage will tend to increase as the amount invested
in the project grows. If you type a substantial report using a word processor and neglect to take back-ups, as
each day adds more text to the report, it also adds to the number of days needed to re-key the report in the
event of fi le loss.

7.7 Risk Planning
Having identifi ed the major risks and allocated priorities, the task is to decide how to deal with them. The
choices discussed will be:

 ● risk acceptance;

 ● risk avoidance;

 ● risk reduction and mitigation;

 ● risk transfer.

Risk acceptance
This is the do-nothing option. We will already, in the risk prioritization process, have decided to ignore some
risks in order to concentrate on the more likely or damaging. We could decide that the damage infl icted by
some risks would be less than the costs of action that might reduce the probability of a risk happening.

Risk avoidance
Some activities may be so prone to accident that it is best to avoid them altogether. If you are worried about
sharks then don’t go into the water. For example, given all the problems with developing software solutions
from scratch, managers might decide to retain existing clerical methods, or to buy an off-the-shelf solution.

Risk reduction
Here we decide to go ahead with a course of action despite the risks, but take precau-
tions that reduce the probability of the risk.

This chapter started with a scenario where two of the staff scheduled to work on
Amanda’s development project at IOE departed for other jobs. If this has been
identifi ed as a risk, steps might have been taken to reduce possible departures of staff.

The term risk proximity
is used to describe this
attribute of risk.

It must be appreciated
that each risk reduction
action is likely to in-
volve some cost. This
is discussed in the next
section.

Risk Management 165

For instance, the developers might have been promised generous bonuses to be paid on successful completion
of the project.

Recall that Brigette had a problem at Brightmouth College: after the purchase of the payroll package, a
requirement for the payroll database to be accessed by another application was identifi ed. Unfortunately,
the application that had been bought did not allow such access. An alternative scenario might have been that
Brigette identifi ed this as a possible risk early on in the project. She might have come across Richard Fairley’s
four COTS (commercial off-the-shelf) software acquisition risks – see Table 7.5 – where one risk is diffi culty
in integrating the data formats and communication protocols of different applications. Brigette might have
specifi ed that the selected package must use a widely accepted data management system like Oracle that
allows easier integration.

TABLE 7.5 Fairley’s four commercial o -the-shelf (COTS) so ware acquisi on risks

Integration Diffi culties in integrating the data formats and communication
protocols of different applications.

Upgrading When the supplier upgrades the package, the package might no
longer meet the users’ precise requirements. Sticking with the old
version could mean losing the supplier’s support for the package.

No source code If you want to enhance the system, you might not be able to do so
as you do not have access to the source code.

Supplier failures
or buyouts

The supplier of the application might go out of business or be
bought out by a rival supplier.

Risk mitigation can sometimes be distinguished from risk reduction. Risk reduction attempts to reduce
the likelihood of the risk occurring. Risk mitigation is action taken to ensure that the impact of the risk is
lessened when it occurs. For example, taking regular back-ups of data storage would reduce the impact of
data corruption but not its likelihood. Mitigation is closely associated with contingency planning which is
discussed presently.

Risk transfer
In this case the risk is transferred to another person or organization. With software
projects, an example of this would be where a software development task is outsourced
to an outside agency for a fi xed fee. You might expect the supplier to quote a higher
fi gure to cover the risk that the project takes longer than the ‘average’ expected time.
On the other hand, a well-established external organization might have productivity
advantages as its developers are experienced in the type of development to be carried out. The need to
compete with other software development specialists would also tend to drive prices down.

7.8 Risk Management
Contingency
Risk reduction activities would appear to have only a small impact on reducing the probability of some

See R. Fairley (1994)
‘Risk management for
software projects’ IEEE
Software 11(3) 57–67.

Risk transfer is what
effectively hap-
pens when you buy
insurance.

166 So ware Project Management

risks, for example staff absence through illness. While some employers encourage their employees to adopt
a healthy lifestyle, it remains likely that some project team members will at some point be brought down by
minor illnesses such as fl u. These kinds of risk need a contingency plan. This is a planned action to be carried
out if the particular risk materializes. If a team member involved in urgent work were ill then the project
manager might draft in another member of staff to cover that work.

The preventative measures that were discussed under the ‘Risk reduction’ heading above will usually incur
some cost regardless of the risk materializing or not. The cost of a contingency measure will only be incurred
if the risk actually materializes. However, there may be some things that have to be done in order for the
contingency action to be feasible. An obvious example is that back-ups of a database have to be taken if
the contingency action when the database is corrupted is to restore it from back-ups. There would be a cost
associated with taking the back-ups.

 EXERCISE 7.4

In the case above where staff could be absent through illness, what preconditions could facilitate contin-
gency actions such as getting other team members to cover on urgent tasks? What factors would you
consider in deciding whether these preparatory measures would be worthwhile?

Deciding on the risk actions
Five generic responses to a risk have been discussed above. For each actual risk, however, specifi c actions
have to be planned. In many cases experts have produced lists recommending practical steps to cope with the
likelihood of particular risks; see, for example, Boehm’s ‘top ten’ software engineering risks in Table 7.1.

Whatever the countermeasures that are considered, they must be cost-effective. On those occasions where
a risk exposure value can be calculated as a fi nancial value using the (value of damage) 3 (probability of
occurrence) formula – recall Section 7.6 – the cost-effectiveness of a risk reduction action can be assessed by
calculating the risk reduction leverage (RRL).

risk reduction leverage = (REbefore – REafter)/(cost of risk reduction)

REbefore is the risk exposure, as explained in Section 7.6, before risk reduction actions have been taken. REafter
is the risk exposure after taking the risk reduction action. An RRL above 1.00 indicates that the reduction
in risk exposure achieved by a measure is greater than its cost. To take a rather unrealistic example, it might
cost £200,000 to replace a hardware confi guration used to develop a software application. There is a 1%
chance of a fi re (because of the particular location of the installation, say). The risk exposure would be 1%
of £200,000, that is £2,000. Installing fi re alarms at a cost of £500 would reduce the chance of fi re to 0.5%.
The new risk exposure would be £1,000, a reduction of £1,000 on the previous exposure. The RRL would be
(2000 – 1000)/500, that is 2.0, and the action would therefore be deemed worthwhile.

Earlier in this chapter, we likened risk exposure to the amount you might pay to an insurance company to
cover a risk. To continue the analogy, an insurance company in the above example might be willing to reduce
the premium you pay to have cover against fi re from £2,000 to £1,000 if you installed fi re alarms. As the fi re
alarms would cost you only £500 and save £1,000, the cost would clearly be worthwhile.

Risk Management 167

 EXERCISE 7.5

Assume that the likelihood of one of your valuable team members leaving the project midway is 0.5. In
case the member actually leaves, there is a 25% chance that the project would miss the delivery date.
You consider the customer’s consequent displeasure to be equivalent to £50,000 in monetary terms.
To counter the risk, you can recruit a fresh engineer at a salary of £2000 per month for six months, to
essentially act as a back-up for the valuable team member. Also, assume that the contribution of the
back-up engineer to the project, if the regular engineer does not leave, would be 0.2 of the employment
duration. After employing the back-up engineer, the probability of missing the project deadline is
expected to be only about 10%. Would it be a good idea to employ the back-up engineer?

Creating and maintaining the risk register
When the project planners have picked out and examined what appear to be the most threatening risks to the
project, they need to record their fi ndings in a risk register. The typical content of such a register is shown
in Figure 7.5. After work starts on the project more risks will emerge and be added to the register. At regular
intervals, probably as part of the project control life cycle described in Chapter 9, the risk register should
be reviewed and amended. Many risks threaten just one or two activities, and when the project staff have
completed these the risk can then be ‘closed’ as no longer relevant. In any case, as noted earlier, the proba-
bility and impact of a risk are likely to change during the course of the project.

7.9 Evaluating Risks to the Schedule
In Section 7.6 we showed a probability chart – Figure 7.3. This illustrated the point that a forecast of the time
needed to do a job is most realistically presented as a graph of likelihood of a range of fi gures, with the most
likely duration as the peak and the chances of the job taking longer or shorter shown as curves sloping down
on either side of the peak. Thus we can show that a job might take fi ve days but that there is a small chance
it might need four or six days, and a smaller chance of three or seven days, and so on. If a task in a project
takes longer than planned, we might hope that some other task might take less and thus compensate for this
delay. In the following sections we will examine PERT, a technique which takes account of the uncertainties
in the durations of activities within a project. We will also touch upon Monte Carlo simulation, which is a
more powerful and fl exible tool that tackles the same problem.

A drawback to the application of methods like PERT is that in practice there is a tendency for developers
to work to the schedule even if a task could be completed more quickly. Even if tasks are completed earlier
than planned, project managers are not always quick to exploit the opportunities to start subsequent activities
earlier than scheduled. Critical chain management will be explored as a way of tackling this problem.

7.10 Applying the PERT Technique
Using PERT to evaluate the eff ects of uncertainty
PERT was developed to take account of the uncertainty surrounding estimates of task durations. It was
developed in an environment of expensive, high-risk and state-of-the-art projects – not that dissimilar to
many of today’s large software projects.

168 So ware Project Management

The method is very similar to the CPM technique (indeed many practitioners use the
terms PERT and CPM interchangeably) but, instead of using a single estimate for the
duration of each task, PERT requires three estimates.

 ● Most likely time: the time we would expect the task to take under normal circum-
stances. We shall identify this by the letter m.

 ● Optimistic time: the shortest time in which we could expect to complete the
activity, barring outright miracles. We shall use the letter a for this.

 ● Pessimistic time: the worst possible time, allowing for all reasonable eventualities
but excluding ‘acts of God and warfare’ (as they say in most insurance exclusion
clauses). We shall call this b.

FIGURE 7.5 Risk register page

PERT (Program
Evaluation and Review
Technique) was pub-
lished in the same year
as CPM. Developed
for the Fleet Ballistic
Missiles Program, it
is said to have saved
considerable time in
development of the
Polaris missile.

Risk Management 169

PERT then combines these three estimates to form a single expected duration, te, using the formula

te =
+ +4

6

a m b

 EXERCISE 7.6

Table 7.6 provides additional activity duration estimates for the network shown in Figure 6.29. There
are new estimates for a and b and the original activity duration estimates have been used as the most
likely times, m. Calculate the expected duration, te, for each activity.

TABLE 7.6 PERT ac vity me es mates

Activity Optimistic (a) Activity durations
(weeks). Most likely (m)

Pessimistic (b)

A 5 6 8

B 3 4 5

C 2 3 3

D 3.5 4 5

E 1 3 4

F 8 10 15

G 2 3 4

H 2 2 2.5

Using expected durations
The expected durations are used to carry out a forward pass through a network, using the same method as the
CPM technique. In this case, however, the calculated event dates are not the earliest possible dates but the
dates by which we expect to achieve those events.

 EXERCISE 7.7

Before reading further, use your calculated expected activity durations to carry out a forward pass
through the network (Figure 6.29) and verify that the project duration is 13.5 weeks. What does an
expected duration of 13.5 weeks mean in terms of the completion date for the project?

The PERT network illustrated in Figure 7.6 indicates that we expect the project to take 13.5 weeks. In Figure
7.6 we have used an activity-on-arrow network as this form of presentation makes it easier to separate visually
the estimated activity data (expected durations and, later, their standard deviations) from the calculated data

170 So ware Project Management

(expected completion dates and target completion dates). The method can, of course,
be equally well supported by activity-on-node diagrams.

Unlike the CPM approach, the PERT method does not indicate the earliest date
by which we could complete the project but the expected (or most likely) date. An
advantage of this approach is that it places an emphasis on the uncertainty of the real
world. Rather than being tempted to say ‘the completion date for the project is. . .’ we
are led to say ‘we expect to complete the project by. . .’.

It also focuses attention on the uncertainty of the estimation of activity durations.
Requesting three estimates for each activity emphasizes the fact that we are not
certain what will happen – we are forced to take into account the fact that estimates
are approximate.

Activity standard deviations
A quantitative measure of the degree of uncertainty of an activity duration estimate may be obtained by calcu-
lating the standard deviation s of an activity time, using the formula

s =
-
6

b a

The activity standard deviation is proportional to the difference between the optimistic
and pessimistic estimates, and can be used as a ranking measure of the degree of
uncertainty or risk for each activity. The activity expected durations and standard
deviations for our sample project are shown in Table 7.7.

Th e likelihood of meeting targets
The main advantage of the PERT technique is that it provides a method for estimating the probability of
meeting or missing target dates. There might be only a single target date – the project completion – but we
might wish to set additional intermediate targets.

FIGURE 7.6 The PERT network a er the forward pass

Even
number

Target
date

Expected
date

Standard
deviation

The PERT event
labelling convention
adopted here indicates
event number and its
target date along with
the calculated values
for expected time and
standard deviation.

This standard deviation
formula is based on
the rationale that there
are approximately six
standard deviations
between the extreme
tails of many statistical
distributions.

Risk Management 171

TABLE 7.7 Expected mes and standard devia ons

Activity Activity durations (weeks)

Optimistic (a) Most likely (m) Pessimistic (b) Expected (te) Standard
deviation (s)

A 5 6 8 6.17 0.50

B 3 4 5 4.00 0.33

C 2 3 3 2.83 0.17

D 3.5 4 5 4.08 0.25

E 1 3 4 2.83 0.50

F 8 10 15 10.50 1.17

G 2 3 4 3.00 0.33

H 2 2 2.5 2.08 0.08

Suppose that we must complete the project within 15 weeks at the outside. We expect it will take 13.5 weeks
but it could take more or, perhaps, less. In addition, suppose that activity C must be completed by week 10, as
it is to be carried out by a member of staff who is scheduled to be working on another project, and that event
5 represents the delivery of intermediate products to the customer, which must take place by week 10. These
three target dates are shown on the PERT network in Figure 7.7.

FIGURE 7.7 The PERT network with three target dates and calculated event standard devia ons

The PERT technique uses the following three-step method for calculating the probability of meeting or
missing a target date:

 ● calculate the standard deviation of each project event;

 ● calculate the z value for each event that has a target date;

 ● convert z values to a probabilities.

172 So ware Project Management

Calculating the standard deviation of each project event
Standard deviations for the project events can be calculated by carrying out a forward
pass using the activity standard deviations in a manner similar to that used with
expected durations. There is, however, one small difference – to add two standard
deviations we must add their squares and then fi nd the square root of the sum. Exercise
7.8 illustrates the technique. One practical outcome of this is that the contingency time
to be allocated to a sequence of activities as a whole would be less than the sum of the

contingency allowances for each of the component activities. This has implications that can be exploited in
critical chain project management, which are discussed in the next section.

 EXERCISE 7.8

The standard deviation for event 3 depends solely on that of activity B. The standard deviation for event
3 is therefore 0.33.

For event 5 there are two possible paths, B + E or F. The total standard deviation for path B + E is
√(0.332 + 0.502) = 0.6 and that for path F is 1.17; the standard deviation for event 5 is therefore the
greater of the two, 1.17.

Verify that the standard deviations for each of the other events in the project are as shown in Figure
7.7.

Calculating the z values
The z value is calculated for each node that has a target date. It is equivalent to the number of standard devia-
tions between the node’s expected and target dates. It is calculated using the formula

z = eT t

s

-

where t e is the expected date and T the target date.

 EXERCISE 7.9

The z value for event 4 is (10 – 9.00)/0.53 = 1.8867.

Calculate the z values for the other events with target dates in the network shown in Figure 7.7.

Converting z values to probabilities
Az value may be converted to the probability of not meeting the target date by using the graph in Figure 7.8.

 EXERCISE 7.10

The z value for the project completion (event 6) is 1.23. Using Figure 7.8 we can see that this equates
to a probability of approximately 11%, that is, there is an 11% risk of not meeting the target date of the
end of week 15.

The square of the
standard deviation is
known as the variance.
Standard deviations
may not be added
together but variances
may.

Risk Management 173

Find the probabilities of not achieving events 4 or 5 by their target dates of the end of week 10.

What is the likelihood of completing the project by week 14?

Th e advantages of PERT
We have seen that by requesting multi-valued activity duration estimates and calculating expected dates,
PERT focuses attention on the uncertainty of forecasting. We can use the technique to calculate the standard
deviation for each task and use this to rank them according to their degree of risk. Using this ranking, we can
see, for example, that activity F is the one regarding which we have greatest uncertainty, whereas activity C
should, in principle, give us relatively little cause for concern.

If we use the expected times and standard deviations for forward passes through the network we can, for
any event or activity completion, estimate the probability of meeting any set target. In particular, by setting
target dates along the critical path, we can focus on those activities posing the greatest risk to the project’s
schedule.

7.11 Monte Carlo Simulation
As an alternative to the PERT technique, we can use Monte Carlo simulation approach. Monte Carlo simulation
are a class of general analysis techniques that are valuable to solve any problem that is complex, nonlinear, or
involves more than just a couple of uncertain parameters. Monte Carlo simulations involve repeated random
sampling to compute the results. Since this technique is based on repeated computation of random numbers,
it becomes easier to use this technique when available as a computer program.

FIGURE 7.8 The probability of obtaining a value within z standard devia ons of the mean for a normal
distribu on

This graph is the
equivalent of tables of
z values, also known
as standard normal de-
viates, which may be
found in most statistics
textbooks.

174 So ware Project Management

When Monte Carlo simulation is used to analyse the risk of not meeting the project deadline, the project
completion time is fi rst modelled as a mathematical expression involving the probability distributions of the
completion times of various project activities and their precedence relationships. Activity durations can be
specifi ed in a variety of forms, depending upon the information available. If, for example, we have historic
data available about the durations of similar activities as shown in the probability chart in Figure 7.4, we
might be able to specify durations as pertinent probability distributions. With less information available, we
should, at least, be able to provide three time estimates as used by PERT.

Monte Carlo simulation essentially evaluates a range of input values generated from the specifi ed probability
distributions of the activity durations. It then calculates the results repeatedly; each time using a different set
of random values generated from the given probability functions. Depending upon the number of probabi-
listic parameters and the ranges specifi ed for them, a Monte Carlo simulation could involve thousands or even
millions of calculations to complete. After the simulation results are available, these are analysed, summa-
rized and represented graphically, possibly using a histogram as shown in Figure 7.9. The main steps involved
in carrying out Monte Carlo simulation for a project consisting of n activities are as follows:

 ● Step 1: Express the project completion time in terms of the duration of the n activities (xi, i=1, n and their
dependences as a precedence graph, d = f(x1, x2, ... , xn).

 ● Step 2: Generate a set of random inputs, xi1, xi2, , xin using specifi ed probability distributions.

 ● Step 3: Evaluate the project completion time expression and store the result in di.

 ● Step 4: Repeat Steps 2 and 3 for the specifi ed number of times.

 ● Step 5: Analyze the results di, i=1,n ; summarize and display using a histogram as the one shown in
Figure 7.9.

FIGURE 7.9 Risk profi le for an ac vity generated using Monte Carlo simula on

To appreciate the advantage of Monte Carlo simulations over a manual approach, consider the following.
In the manual approach, a few combinations of each project duration are chosen (such as best case, worst
case, and most likely case), and the results recorded for each selected scenario. In contrast, in Monte Carlo
simulation, hundreds or thousands of possible random sampling of probability distribution functions of the

Risk Management 175

activity durations are considered as samples for evaluation of the project completion time expression to
produce outcomes. Monte Carlo simulation is expected to give a more realistic result than manual analysis of
a few cases, especially because manual analysis implicitly gives equal weights to all scenarios.

7.12 Critical Chain Concepts
This chapter has stressed the idea that the forecast for the duration of an activity cannot in reality be a single
number, but must be a range of durations that can be displayed on a graph such as Figure 7.3. However, we
would want to pick one value in that range which would be the target.

The duration chosen as the target might be the one that seems to be the most likely. Imagine someone who
cycles to work each day. It may be that on average it takes them about 45 minutes to complete the journey, but
on some days it could be more and on others it could be less. These journey times could be plotted on a graph
like the one in Figure 7.3. If the cyclist had a very important meeting at work, it is likely that they would give
themselves more time – say an extra 15 minutes – than the average 45 minutes to make sure that they arrived
in time. In the discussion above on the PERT risk technique the most likely duration was the middle value
and the pessimistic estimate was the equivalent of the 45 + 15 = 60 minutes.

Of course, there will be some days when the cyclist will beat the average of 45 minutes. When a project
is actually being executed, the project manager will be forced to focus on the activities where the actual
durations exceed the target. Activities which are actually completed before the target date are likely to be
overlooked. These early completions, properly handled, could put some time in hand that might still allow
the project to meet its target completion date if the later activities are delayed.

Figure 7.10 shows the fi ndings of Michiel van Genuchten, a researcher who analysed the reasons for delays in
the completion of software development tasks. This bar chart shows that about 30% of activities were fi nished
on time, while 9% were a week early and 17% were a week late. The big jump of 21 percentage points
between being a week early and being on time is compatible with the ‘Parkinson’s Law’ principle that ‘work
expands to fi ll the time available’. This tendency should not be blamed on inherent laziness. van Genuchten
found that the most common reason for delay was the time that had to be spent on non-project work. It seems
that developers used spare time provided by generous estimates to get on with other urgent work.

FIGURE 7.10 Percentage of ac vi es early or late (a er van Genuchten, 1991)

Michiel van Genuchten
(1991) ‘Why is soft-
ware late? An empirical
study of reasons for
delay in software
development’, IEEE
Transactions in
Software Engineering
17(6) 582–90.

176 So ware Project Management

One approach which attempts to solve some of these problems is the application
of the critical chain concept originally developed by Eliyahu Goldratt. In order to
demonstrate the principles of this approach, the example shown in Figure 7.7 will
be reworked as a Gantt chart. Figure 7.11 shows what the Gantt chart for this project
might look like if a ‘traditional approach’ were adopted, but we have already adopted
the most likely durations.

The general steps in the Critical Chain approach are explained in the following sections.

A good introduction
is L. P. Leach (1999)
‘Critical chain project
management improves
project performance’
Project Management
Journal 30(2) 39–51.

FIGURE 7.11 Gan chart – ‘tradi onal’ planning approach

Deriving ‘most likely’ activity durations
The target date generated by critical chain planning is one where it is estimated that there is a 50% chance of
success – this approximates to the expected time identifi ed in the PERT risk method. In some explanations
of critical chain project planning it is suggested that the most likely activity duration can be identifi ed by
halving the estimates provided. This is based on the assumption that the estimates given to the planner will be
‘safe’ ones based on a 95% probability of them being achieved. If you look at Figure 7.3, the 95% estimate
would be 9 days and half of that (4.5 days) would not be a reasonable target as it would have a probability of

Risk Management 177

only 10% of success. It also assumes that a probability profi le has a bell-shaped normal distribution (like the
example in Figure 7.3). If you look at the distribution which resulted from van Genuchten’s research – see
Figure 7.10 – you can see that it is certainly not bell-shaped. Other critical chain experts suggest deducting
33% from the safe estimate to get the target estimate – which seems less unreasonable.

However, what appear to be arbitrary managerial reductions in the estimates may not be a good way to
motivate developers, especially if these staff supplied the estimates in the fi rst place. A better approach would
be to ask developers to supply two estimates. One of these would be a ‘most likely’ estimate and the other
would include a safety margin or comfort zone. From now on we are going to assume that this is what has
happened. In fact we will use the fi gures already presented in Table 7.6 in this new role (Table 7.8).

TABLE 7.8 Most likely and comfort zone es mates (days)

Activity Most likely Plus comfort zone Comfort zone

A 6 8 2

B 4 5 1

C 3 3 0

D 4 5 1

E 3 4 1

F 10 15 5

G 3 4 1

H 2 2.5 0.5

Using latest start dates for activities
Working backwards from the target completion date, each activity is scheduled to start as late as possible.
Among other things, this should reduce the chance of staff being pulled off the project on to other work. It
is also argued – with some justifi cation according to van Genuchten’s research above – that most developers
would tend to start work on the task at the latest start time anyway. However, it does make every activity
‘critical’. If one is late the whole project is late. That is why the next steps are needed.

Inserting project and feeder buff ers
To cope with activity overruns, a project buffer is inserted at the end of the project before the target completion
date. One way of calculating this buffer is as the equivalent of 50% of the sum of lengths of the ‘comfort
zones’ that have been removed from the critical chain. The critical chain is the longest chain of activities in
the project, taking account of both task and resource dependencies. This is different from the critical path as
the latter only takes account of task dependencies. A resource dependency is where one activity has to wait
for a resource (usually a person in software development) which is being used by another activity to become
available. If an activity on this critical chain is late it will push the project completion date further into the
project buffer. That the buffer should be 50% of the total comfort zones for critical chain activities is based

178 So ware Project Management

on the grounds that if the estimate for an activity was calculated as having a 50% chance of being correct, the
buffer would only need to be called upon by the 50% of cases where the estimate was not correct.

An alternative proposal is to sum the squares of the comfort zones and then take the square root of the total.
This is based on the idea that each comfort zone is the equivalent to the standard deviation of the activity – go
back and look at the section headed Calculating the standard deviation of each project event in Section 7.10.
This method of calculation still produces a fi gure which is less than simply summing all the comfort zones.
This is justifi ed on the grounds that the contingency time needed for a group of activities is less than the sum
of the individual contingency allowances as the success of some activities will compensate for the shortfalls
in others.

Buffers are also inserted into the project schedule where a subsidiary chain of activities feeds into the critical
chain. These feeding buffers could once again be set at 50% of the length of the ‘comfort zone’ removed from
the subsidiary or feeding chain.

A worked example
Figure 7.12 shows the results of this process. The critical chain in this example happens to be the same as the
critical path, that is activities F and G which have comfort zones of 5 weeks and 1 week respectively, making
a total of 6 weeks. The project buffer is therefore 3 weeks.

Subsidiary chains feed into the critical chain where activity H links into the project buffer and where activity
E links into G which is part of the critical chain. Feeding buffers are inserted at these points. For the fi rst
buffer the duration would be 50% of the saved comfort zones of A, C and H, that is (2 + 0 + 0.5)/2 = 1.25
weeks. It could be argued that B, D and H could form a feeder chain which also has a combined comfort
zone of (1 + 1 + 0.5)/2 = 1.25 weeks. In the situations where there are parallel alternative paths on a feeder
chain, the practice is to base the feeding buffer on whichever comfort zone total is greater. This because if
one or other or both parallel paths were late they could still use the same buffer. (Imagine that in the example
above there are two cyclists who live 45 minutes away from work and they both have the same important
meeting – they might each add a 15-minute comfort zone to the ride on that day but that 15 minutes could
effectively be the same 15 minutes between 7.45 and 8.00 a.m. in the morning). It could be argued that the
feeding buffer and the fi nal project buffer could also be merged, but explanations of critical chain planning,
such as that of Larry Leach (see above), make clear that this is not to be done. This could be because a delay
penetrating the feeding buffer time does not affect the completion date of the project, while penetrating the
project buffer does.

In the second place, where a feeder chain of activities joins the critical chain, the feeder buffer would be 50%
of the comfort zones of activities B and E, that is 1 week.

Project execution
When the project is executed, the following principles are followed:

 ● No chain of tasks should be started earlier than scheduled, but once it has been started it should be
fi nished as soon as possible – this invokes the relay race principle, where developers should be ready
to start their tasks as soon as the previous, dependent, tasks are completed.

 ● Buffers are divided into three zones: green, amber and red, each of an even (33%) size:

 ■ green, where no action is required if the project completion date creeps into this zone;

Risk Management 179

 ■ amber, where an action plan is formulated if the project completion dates
moves into this zone;

 ■ red, where the action plan above is executed if the project penetrates this zone.

Critical chain planning concepts have the support of a dedicated group of enthu-
siasts. However, the full application of the model has attracted controversy on various
grounds. Our personal view is that the ideas of:

 ● requiring two estimates: the most likely duration/effort and the safety estimate
which includes additional time to deal with problems that could arise with the
task, and

FIGURE 7.12 Gan chart – cri cal chain planning approach
See, for example, D.
Trietsch (2005) ‘Why
a critical path by any
other name would
smell less sweet’
Project Management
Journal 36(1) 27–36
and T. Raz et al.
(2003) ‘A critical look
at critical chain project
management’ Project
Management Journal
34(4) 24–32.

180 So ware Project Management

 ● placing the contingency time, based on the ‘comfort zone’ which is the difference between the most
likely and safety estimates, in common buffers rather than associating it with individual activities

are sound ones that could usefully be absorbed into software project management practice.

CONCLUSION

In this chapter, we have seen how to identify and manage the risks that might affect the success of a project.
Risk management is concerned with assessing and prioritizing risks and drawing up plans for addressing
those risks before they become problems.

This chapter has also described techniques for estimating the effect of risk on the project’s activity network
and schedule.

Many of the risks affecting software projects can be reduced by allocating more experienced staff to those
activities that are affected. In the next chapter we consider the allocation of staff to activities in more detail.

FURTHER EXERCISES

 1. Fiona is a fi nal-year computing undergraduate student who in her third year undertook a placement with
the ICT department of an insurance company as a support analyst and then a network manager. The
placement year was very busy and rewarding as the company saw ICT as providing business advantage
in what was a very dynamic and aggressively competitive sector. The project that Fiona proposes to do
in her fi nal year will use the insurance company as a client. The proposed project involves gathering
requirements for an application that records details of change requests for operational systems made by
users and then tracks the subsequent progress of the change. Having gathered the requirements she is
to design the application, then build and implement it. Identify possible risks in the proposed project of
which Fiona should take account.

 2. Mo is a systems analyst who is gathering requirements for an application which will record details of
the training undertaken by fi re-fi ghters in the client fi re brigade. Details of the training units success-
fully completed by fi re-fi ghters are to be input to the application by trainers who are themselves senior
and active fi re-fi ghters. Mo needs to interview a trainer to obtain his/her requirements. Because of the
senior fi re-fi ghters’ other duties the interview has to be arranged two weeks in advance. There is then a
20% chance of the fi re-fi ghter being unable to attend the interview because of an emergency call-out.
Each week that the project is delayed costs the fi re brigade approximately £1,000.

 (a) Provide an estimate of the risk exposure (as a fi nancial value) for the risk that the senior fi re-
fi ghter might not be able to attend at the times needed.

 (b) Suggest possible risk mitigation actions.

 3. In Exercise 7.2 you were asked to identify risks under the four headings of Actors, Technology, Structure
and Tasks for the IOE annual maintenance contracts and the Brightmouth College payroll scenarios.
Now identify risks for each scenario that relate to pairs of domains, for example Actors–Technology,
Actors–Tasks, and so on.

 4. The Wet Holiday Company specializes in the provision of holidays which involve water sports of
various types. There are three major divisions with the following lines of business:

 ■ boat holidays on canals;

Risk Management 181

 ■ villa holidays in various parts of the Mediterranean which involve sailing in some way;

 ■ canoeing holidays in France.

 Wet Holiday feel that they are particularly appealing to a young active market and that having the
facility for customers to book via the web is essential. They call in ICT consultants to advise them on
their IT strategy. The consultants advise them that before they can have a web presence, they need to
have a conventional ICT-based booking system to support their telesales operation fi rst. Because of the
specialized nature of their business, an off-the-shelf application would not be suitable and they would
need to have a specially written software application, based on a client–server architecture. The top
priority needs to be given to a system to support villa holiday bookings because this has the largest
number of customers and generates the most revenue.

 Wet Holiday have some in-house IT development staff, but these are inexperienced in client–server
technology. To meet this shortfall, contractors are employed.

 It turns out that development takes much longer than planned. Much of this delay occurs at accep-
tance testing when the users fi nd many errors and performance shortcomings, which require extensive
rework. Part of the problem relates to getting the best performance out of the new architecture; this has
a particular impact on response times which are initially unacceptable to staff who are dealing with
customers over the phone. The contractors are not closely monitored and some of the code that they
produce is found to have many careless mistakes and to be poorly structured and documented. This
makes it diffi cult to make changes to the software after the contractors have left on the expiry of their
contracts.

 The villa booking system can only be implemented at the beginning of a holiday season and the deadline
for the beginning of the 2002 to 2003 season is missed, leading to a 12-month delay in the implemen-
tation. The delay in implementation seems to encourage the users to ask for further modifi cations to the
original requirements, which adds even more to development costs.

 The delays in implementing this application mean that the other scheduled IT development, for other
lines of business, have to be put back. Managers of customer-facing business functions at Wet Holiday
are suggesting that the whole IT function should be completely outsourced.

 (a) Identify the problems that were faced by Wet Holiday, and describe actions that could have been
taken to avoid or reduce them.

 (b) Use your fi ndings in (a) to create a risk checklist for future projects.

 5. Below are details of a project. All times are in days.

Activity Depends on Optimistic time Most likely Pessimistic

A – 8 10 12

B A 10 15 20

C B 5 7 9

D – 8 10 12

E D,C 3 6 9

182 So ware Project Management

 Using the activity times above:

 ■ Calculate the expected duration and standard deviation for each activity.

 ■ Identify the critical path.

 ■ Draw up an activity diagram applying critical chain principles for this project:

 l Locate the places where buffers will need to be located.

 l Assess the size of the buffers.

 l Start all activities as late as possible.

 6. Below are details of a project. All times are in days.

Activity Depends on Most likely Plus safety

A 10 14

B A 5 7

C B 15 21

D A 3 5

E A 8 12

F E 20 22

G D 6 8

H C,F,G 10 14

 (a) Using (i) the most likely and then (ii) the safety estimates:

 l Calculate the earliest and latest start and end days and fl oat for each activity.

 l Identify the critical path.

 (b) Draw up an activity diagram applying critical chain principles for this project:

l Locate the places where buffers will need to be located.

l Assess the size of the buffers.

l Start all activities as late as possible.

 7. In this chapter the application of risk management to software development projects has been strongly
advocated. In practice, however, managers are often reluctant to apply the techniques. What do you
think might be the reasons for this?

 8. Suppose you are the project manager of a large software development project. List three common types
of risks that your project might suffer. Point out the main steps that you would follow to effectively
manage risks in your project.

 9. Schedule slippage is a very common form of risk that almost every project manager has to deal with.
Suppose you are the project manager of a medium-sized project. Explain how you would manage the
risk of schedule slippage.

8

OBJECTIVES

When you have completed this chapter you will be able to:
identify the resources required for a project;•
make the demand for resources more even throughout the life of a project;•
produce a work plan and resource schedule.•

8.1 Introduction
In Chapter 6, we saw how to use activity network analysis techniques to plan when activities should take
place. This was calculated as a time span during which an activity should take place – bounded by the earliest
start and latest fi nish dates. In Chapter 7 we used the PERT technique to forecast a range of expected dates
by which activities would be completed. In both cases these plans took no account of the availability of
resources.

In this chapter we shall see how to match the activity plan to available resources and, where necessary, assess
the effi cacy of changing the plan to fi t the resources. Figure 8.1 shows where resource allocation is applied
in Step Wise.

In general, the allocation of resources to activities will lead us to review and modify the ideal activity plan.
It may cause us to revise stage or project completion dates. In any event, it is likely to lead to a narrowing of
the time spans within which activities may be scheduled.

The fi nal result of resource allocation will normally be a number of schedules,
including:

 ● an activity schedule indicating the planned start and completion dates for each
activity;

These schedules will
provide the basis for
the day-to-day control
and management of
the project. These are
described in Chapter 9.

184 So ware Project Management

 ● a resource schedule showing the dates on which each resource will be required and the level of that
requirement;

 ● a cost schedule showing the planned cumulative expenditure incurred by the use of resources over
time.

8.2 Th e Nature of Resources
A resource is any item or person required for the execution of the project. This covers many things – from
paper clips to key personnel – and it is unlikely that we would wish to itemize every resource required, let

FIGURE 8.1 Resource alloca on is carried out as Step 7

Resource Allocation 185

alone draw up a schedule for their use. Stationery and other standard offi ce supplies, for example, need
not normally be the concern of the project manager – ensuring an adequate supply is the role of the offi ce
manager. The project manager must concentrate on those resources which, without planning, might not be
available when required.

Some resources, such as a project manager, will be required for the duration of the project whereas others,
such as a specifi c software developer, might be required for a single activity. The former, while vital to the
success of the project, does not require the same level of scheduling as the latter. As we saw in Chapter 2, a
project manager may not have unrestricted control over a developer who may be needed to work on a range
of projects. The manager may have to request the use of a developer who belongs to a pool of resources
controlled at programme level.

In general, resources will fall into one of seven categories.

 ● Labour The main items in this category will be members of the development project team such as
the project manager, systems analysts and software developers. Equally important will be the quality
assurance team and other support staff and any employees of the client organization who might be
required to undertake or participate in specifi c activities.

 ● Equipment Obvious items will include workstations and other computing and offi ce equipment. We
must not forget that staff also need basic equipment such as desks and chairs.

 ● Materials Materials are items that are consumed, rather than equipment that is used. They are of little
consequence in most software projects but can be important for some – software that is to be widely
distributed might, for example, require supplies of disks to be specially obtained.

 ● Space For projects that are undertaken with existing staff, space is normally readily available. If any
additional staff (recruited or contracted) should be needed then offi ce space will need to be found.

 ● Services Some projects will require procurement of specialist services – development of a wide area
distributed system, for example, requires scheduling of telecommunications services.

 ● Time Time is the resource that is being offset against the other primary resources
– project timescales can sometimes be reduced by increasing other resources
and will almost certainly be extended if they are unexpectedly reduced.

 ● Money Money is a secondary resource – it is used to buy other resources and
will be consumed as other resources are used. It is similar to other resources in
that it is available at a cost – in this case interest charges.

8.3 Identifying Resource Requirements
The fi rst step in producing a resource allocation plan is to list the resources that will be required along with
the expected level of demand. This will normally be done by considering each activity in turn and identifying
the resources required. It is likely, however, that there will also be resources required that are not activity
specifi c but are part of the project’s infrastructure (such as the project manager) or required to support other
resources (offi ce space, for example, might be required to house contract software developers).

CASE STUDY EXAMPLES

Amanda has produced a precedence network for the IOE project (Figure 8.2) and used this as a basis
for a resource requirements list, part of which is shown in Table 8.1.

The cost of money as
a resource is a factor
taken into account in
DCF evaluation.

186 So ware Project Management

Notice that, at this stage, she has not allocated individuals to tasks but has decided on the type of staff
that will be required. The activity durations assume that they will be carried out by ‘standard’ analysts
or software developers.

FIGURE 8.2 Amanda’s IOE precedence network

TABLE 8.1 Part of Amanda’s resource requirements list

Stage Activity Resource Days Quantity Notes

ALL Project manager 104 F/T

1 All Workstation – 34 Check software availability

IoE/P/1 Senior analyst 34 F/T

2 All Workstation – 3 One per person essential

IoE/P/2 Analyst/designer 20 F/T

IoE/P/3 Analyst/designer 15 F/T

(Contd)

Resource Allocation 187

IoE/P/4 Analyst/designer 25 F/T

IoE/P/5 Analyst/designer 15 F/T Could use analyst/
programmer

3 All Workstation – 2

IoE/P/6 Senior analyst* 2 F/T

4 All Workstation – 3 As stage 2

IoE/P/7 Analyst/designer 7 F/T

IoE/P/8 Analyst/designer 6 F/T

IoE/P/9 Analyst/designer 4 F/T

IoE/P/10 Analyst/designer 4 F/T

5 All Workstation – 4 One per programmer

All Offi ce space – If contract programmers
used

IoE/P/11 Programmer 30 F/T

IoE/P/12 Programmer 28 F/T

IoE/P/13 Programmer 15 F/T

IoE/P/14 Programmer 25 F/T

6 All Full system access – Approx. 16 hours for full
system test

IoE/P/15 Analyst/designer 6 F/T

* In reality, this would normally be done by a review involving all the analysts working on stage 2.

At this stage, it is necessary that the resource requirements list be as comprehensive as possible – it
is better that something is included that may later be deleted as unnecessary than to omit something
essential. Amanda has therefore included additional offi ce space as a possible requirement, should
contract software development staff be recruited.

8.4 Scheduling Resources
Having produced the resource requirements list, the next stage is to map this on to the activity plan to assess
the distribution of resources required over the duration of the project. This is best done by representing the
activity plan as a bar chart and using this to produce a resource histogram for each resource.

188 So ware Project Management

Figure 8.3 illustrates Amanda’s activity plan as a bar chart and a resource histogram
for analyst/designers. Each activity has been scheduled to start at its earliest start date
– a sensible initial strategy, since we would, other things being equal, wish to save
any fl oat to allow for contingencies. Earliest start date scheduling, as is the case with
Amanda’s project, frequently creates resource histograms that start with a peak and
then tail off.

Note that in Section
7.12 an argument
for starting activities
as late as possible
was presented. The
resource allocation
process is similar re-
gardless of the policy
adopted in this respect.

FIGURE 8.3 Part of Amanda’s bar chart and resource histogram for analyst/designers

White rectangles indi-
cate when an activity is
scheduled and shaded
rectangles the total
fl oat.

Changing the level of resources on a project over time, particularly personnel, generally adds to the cost of
a project. Recruiting staff has costs and, even where staff are transferred internally, time will be needed for
familiarization with the new project environment.

The resource histogram in Figure 8.3 poses particular problems in that it calls for two analyst/designers to
be idle for twelve days, one for seven days and one for two days between the specifi cation and design stage.
It is unlikely that IOE would have another project requiring their skills for exactly those periods of time.
This raises the question whether this idle time should be charged to Amanda’s project. The ideal resource
histogram will be smooth with, perhaps, an initial build-up and a staged run-down.

Resource Allocation 189

An additional problem with an uneven resource histogram is that it is more likely to call for levels of resource
beyond those available. Figure 8.4 illustrates how, by adjusting the start date of some activities and splitting
others, a resource histogram can, subject to constraints such as precedence requirements, be smoothed to
contain resource demand at available levels. The different letters represent staff working on a series of module
testing tasks, that is, one person working on task A, two on tasks B and C etc.

In Figure 8.4, the original histogram was created by scheduling the activities at their earliest start dates. The
resource histogram shows the typical peaked shape caused by earliest start date scheduling and calls for a
total of nine staff where only fi ve are available for the project.

FIGURE 8.4 A resource histogram showing demand for sta before and a er smoothing

By delaying the start of some of the activities, it has been possible to smooth the histogram and reduce the
maximum level of demand for the resource. Notice that some activities, such as C and D, have been split.
Where non-critical activities can be split they can provide a useful way of fi lling troughs in the demand for a
resource, but in software projects it is diffi cult to split tasks without increasing the time they take.

Some of the activities call for more than one unit of the resource at a time – activity F, for example, requires
two programmers, each working for two weeks. It might be possible to reschedule this activity to use one
programmer over four weeks, although that has not been considered in this case.

Some project planning software tools will carry out resource smoothing automatically, although they are
unlikely to take into account all the factors that could be used by a project manager. The majority of project
planning software tools will produce resource histograms based on earliest activity start dates.

190 So ware Project Management

 EXERCISE 8.1

Amanda has already decided to use only three analyst/designers on the project in order to reduce costs.
Her current resource histogram, however, calls for four during both stage 2 and stage 4. Suggest what
she might do to smooth the histogram and reduce the number of analyst/designers required to three.

In practice, resources have to be allocated to a project on an activity-by-activity basis and fi nding the ‘best’
allocation can be time consuming and diffi cult. As soon as a member of the project team is allocated to an
activity, that activity acquires a scheduled start and fi nish date and the team member becomes unavailable for
other activities for that period. Thus, allocating a resource to one activity limits the fl exibility for resource
allocation and scheduling of other activities.

It is therefore helpful to prioritize activities so that resources can be allocated to
competing activities in some rational order. The priority must almost always be to
allocate resources to critical path activities and then to those activities that are most
likely to affect others. In that way, lower-priority activities are made to fi t around the
more critical, already scheduled activities.

Of the various ways of prioritizing activities, two are described below.

 ● Total fl oat priority Activities are ordered according to their total fl oat, those with the smallest total
fl oat having the highest priority. In the simplest application of this method, activities are allocated
resources in ascending order of total fl oat. However, as scheduling proceeds, activities will be delayed
(if resources are not available at their earliest start dates) and total fl oats will be reduced. It is therefore
desirable to recalculate fl oats (and hence reorder the list) each time an activity is delayed.

 EXERCISE 8.2

Amanda considers whether, with only three analyst/designers, the specifi cation of module D (see
Figure 8.3) will have to be deferred until after the specifi cation of module B. This will add fi ve days to
the overall project duration (making 109 in total). She had hoped to have the project completed within
100 days and this is a further disappointment. She therefore decides to have another look at her activity
plan.

You will remember that early on she decided that she should check all of the specifi cations together
(activity IoE/P/6) before allowing design to start. It is now apparent that this is causing a signifi cant
bottleneck and delaying module D will only exacerbate the problem. She therefore decides on a
compromise – she will check the specifi cations for modules A, B and D together but will then go ahead
with their design without waiting for the module C specifi cation. This will be checked against the
others when it is complete.

She redraws her precedence network to refl ect this, inserting the new activity of checking the module
C specifi cation against the others (activity IoE/P/6a). This is shown in Figure 8.5. Draw a new resource
histogram to refl ect this change.

 ● Ordered list priority With this method, activities that can proceed at the same time are ordered according
to a set of simple criteria. An example of this is Burman’s priority list, which takes into account activity
duration as well as total fl oat:

There are some excep-
tional cases where it is
better to favour a small
non-critical activity if
a number of large ac-
tivities are dependent
upon it.

Resource Allocation 191

1. shortest critical activity;

2. critical activities;

3. shortest non-critical activity;

4. non-critical activity with least fl oat;

5. non-critical activities.

Unfortunately, resource smoothing, or even containment of resource demand to available levels, is not always
possible within planned timescales – deferring activities to smooth out resource peaks often puts back project
completion. Where that is the case, we need to consider ways of increasing the available resource levels or
altering working methods.

8.5 Creating Critical Paths
Scheduling resources can create new critical paths. Delaying the start of an activity because of lack of
resources will cause that activity to become critical if this uses up its fl oat. Furthermore, a delay in completing
one activity can delay the availability of a resource required for a later activity. If the later one is already
critical then the earlier one might now have been made critical by linking their resources.

Amanda’s revised schedule, which still calls for four analyst/designers but only for a single day, is illustrated
in the solution to Exercise 8.2 (check it in the back of the book if you have not done so already). Notice that in

FIGURE 8.5 Amanda’s revised precedence network

P. J. Burman (1972)
Precedence Networks
for Planning and
Control, McGraw-Hill.

192 So ware Project Management

rescheduling some of the activities she has introduced additional critical activities. Delaying the specifi cation
of module C has used up all of its fl oat – and that of the subsequent activities along that path! Amanda now
has two critical paths – the one shown on the precedence network and the new one.

In a large project, resource-linked criticalities can be quite complex – a hint of the potential problems may be
appreciated by looking at the next exercise.

 EXERCISE 8.3

Amanda decides to delay the specifi cation of module C for a further day to ensure that only three
analyst/designers will be required. The relevant part of her revised bar chart and resource histogram are
shown in Figure 8.6.

Which activities will now be critical?

FIGURE 8.6 Amanda’s project scheduled to require three analyst/designers

Resource Allocation 193

8.6 Counting the Cost
The discussion so far has concentrated on trying to complete the project by the earliest completion date with
the minimum number of staff. We have seen that doing this places constraints on when activities can be
carried out and increases the risk of not meeting target dates.

Alternatively, Amanda could have considered using additional staff or lengthening the overall duration of
the project. The additional costs of employing extra staff would need to be compared to the costs of delayed
delivery and the increased risk of not meeting the scheduled date. The relationship between these factors is
discussed later in this chapter.

8.7 Being Specifi c
Allocating resources and smoothing resource histograms is relatively straightforward where all resources
of a given type can be considered more or less equivalent. When allocating labourers to activities in a large
building project we need not distinguish among individuals – there are likely to be many labourers and they
may be treated as equals so far as skills and productivity are concerned.

This is seldom the case with software projects. We saw in Chapter 5 that, because of the nature of software
development, skill and experience play a signifi cant part in determining the time taken and, potentially,
the quality of the fi nal product. With the exception of extremely large projects, it makes sense to allocate
individual members of staff to activities as early as possible, as this can lead us to revise our estimate of their
duration.

In allocating individuals to tasks, a number of factors need to be taken into account.

 ● Availability We need to know whether a particular individual will be available when required. Reference
to the departmental work plan determines this but the wise project manager will always investigate the
risks that might be involved – earlier projects might, for example, overrun and affect the availability of
an individual.

 ● Criticality Allocation of more experienced personnel to activities on the critical path often helps in
shortening project durations or at least reduces the risk of overrun.

 ● Risk We saw how to undertake activity risk assessment in the previous chapter.
Identifying those activities posing the greatest risk, and knowing the factors
infl uencing them, helps to allocate staff. Allocating the most experienced staff
to the highest-risk activities is likely to have the greatest effect in reducing
overall project uncertainties. More experienced staff are, however, usually more
expensive.

 ● Training It will benefi t the organization if positive steps are taken to allocate junior staff to appropriate
non-critical activities where there will be suffi cient slack for them to train and develop skills. There
can even be direct benefi ts to the particular project since some costs may be allocated to the training
budget.

 ● Team building The selection of individuals must also take account of the fi nal shape of the project team
and the way they will work together. This and additional aspects of team management are discussed in
Chapter 12.

Reappraisal of the criti-
cal path and PERT or
Monte Carlo risk analy-
sis might need to be
carried out in parallel
with staff allocation.

194 So ware Project Management

 EXERCISE 8.4

Amanda has decided that, where possible, whoever writes the specifi cation for a module should also
produce the design, as she believes this will improve the commitment and motivation of the three
analyst/designers, Belinda, Tom and Daisy.

She has decided that she will use Tom, a trainee analyst/designer, for the
specifi cation and design of module D as both of these activities have a large
fl oat compared to their activity span (6/21 and 9/13 of their span respec-
tively). Since the specifi cation and design of module C are on the critical
path, she decides to allocate both of these tasks to Belinda, a particularly
experienced and capable member of staff.

Having made these decisions, she has almost no fl exibility in how she assigns the other specifi cation and
design activities. Work out from the activity bar chart produced as part of the solution to Exercise 8.2
(shown in Figure 8.6) whom she assigns to which of the remaining specifi cation and design activities.

8.8 Publishing the Resource Schedule
In allocating and scheduling resources we have used the activity plan (a precedence network in the case of
the examples in this chapter), activity bar charts and resource histograms. Although good as planning tools,
they are not the best way of publishing and communicating project schedules. For this we need some form
of work plan. Work plans are commonly published as either lists or charts such as that illustrated in Figure
8.7. In this case Amanda has chosen not to include activity fl oats (which could be indicated by shaded bars)
as she fears that one or two members of the team might work with less urgency if they are aware that their
activities are not critical.

Notice that, somewhat unusually, it is assumed that there are no public holidays or other non-productive
periods during the 100 days of the project and that none of the team has holidays for the periods they are
shown as working.

Amanda has also made no explicit allowance for staff taking sick leave.

Amanda now transfers some of the information from the work schedule to her precedence network. In
particular, she amends the earliest start dates for activities and any other constraints (such as revised latest
fi nish dates where resources need to be made available) that have been introduced. A copy of her revised
precedence network is shown in Figure 8.8 – notice that she has highlighted all critical activities and paths.

8.9 Cost Schedules
It is now time to produce a detailed cost schedule showing weekly or monthly costs over the life of the
project. This will provide a more detailed and accurate estimate of costs and will serve as a plan against which
project progress can be monitored.

Calculating cost is straightforward where the organization has standard cost fi gures for staff and other
resources. Where this is not the case, then the project manager will have to calculate the costs.

‘Span’ in this context
is the period of time
between the earliest
start for an activity and
its latest fi nish.

Resource Allocation 195

FI
G

U
R

E
8.

7
A

m
an

da
’s

 w
or

k
sc

he
du

le

196 So ware Project Management

In general, costs are categorized as follows.

 ● Staff costs These will include staff salaries as well as the other direct costs of employment such as
the employer’s contribution to social security funds, pension scheme contributions, holiday pay and
sickness benefi t. These are commonly charged to projects at hourly rates based on weekly work records
completed by staff. Note that contract staff are usually charged by the week or month – even when they
are idle.

 ● Overheads Overheads represent expenditure that an organization incurs, which cannot be directly
related to individual projects or jobs, including space rental, interest charges and the costs of service
departments (such as human resources). Overhead costs can be recovered by making a fi xed charge
on development departments (in which case they usually appear as a weekly or monthly charge for
a project), or by an additional percentage charge on direct staff employment costs. These additional
charges or on-costs can easily equal or exceed the direct employment costs.

 ● Usage charges In some organizations, projects are charged directly for use of resources such as
computer time (rather than their cost being recovered as an overhead). This will normally be on an ‘as
used’ basis.

FIGURE 8.8 Amanda’s revised precedence network showing scheduled start and comple on dates

Resource Allocation 197

 EXERCISE 8.5

Amanda fi nds that IOE recovers some overheads as on-costs on direct staff costs, although others are
recovered by charging a fi xed £200 per day against projects. Staff costs (including overheads) are as
shown in Table 8.2. Amanda has been working as project leader on the project for its duration. She also
estimates that, in total, she will have spent an additional 10 days planning the project and carrying out
the post-project review.

Calculate the total cost for Amanda’s project on this basis. How is the expenditure spread over the life
of the project?

TABLE 8.2 Sta costs (including on-costs) for Amanda’s project team

Staff member Daily cost (£)

Amanda 300

Belinda 250

Tom 175

Daisy 225

Gavin 150

Purdy 150

Justin 150

Spencer 150

Figure 8.9 shows the weekly costs over the 20 weeks that Amanda expects the project to take. This is a typical
cost profi le – building up slowly to a peak and then tailing off quite rapidly at the end of the project. Figure
8.10 illustrates the cumulative cost of the project and it is generally this that would be used for cost control
purposes.

8.10 Th e Scheduling Sequence
Going from an ideal activity plan to a cost schedule can be represented as a sequence of steps, rather like the
classic waterfall life-cycle model. In the ideal world, we would start with the activity plan and use this as the
basis for our risk assessment. The activity plan and risk assessment would provide the basis for our resource
allocation and schedule from which we would produce cost schedules.

In practice, as we have seen by looking at Amanda’s project, successful resource allocation often necessitates
revisions to the activity plan, which, in turn, will affect our risk assessment. Similarly, the cost schedule
might indicate the need or desirability to reallocate resources or revise activity plans – particularly where that
schedule indicates a higher overall project cost than originally anticipated.

198 So ware Project Management

The interplay between the plans and schedules is complex – any change to any one will affect each of the
others. Some factors can be directly compared in terms of money – the cost of hiring additional staff can be
balanced against the costs of delaying the project’s end date. Some factors, however, are diffi cult to express
in money terms (the cost of an increased risk, for example) and will include an element of subjectivity.

While good project planning software will assist greatly in demonstrating the consequences of change and
keeping the planning synchronized, successful project scheduling is largely dependent upon the skill and
experience of the project manager in juggling the many factors involved (Figure 8.11).

FIGURE 8.9 Weekly project costs for the IOE project

FIGURE 8.10 Cumula ve project costs for the IOE project

Resource Allocation 199

CONCLUSION

In this chapter we have discussed the problems of allocating resources to project activities and the conversion
of an activity plan to a work schedule. In particular, we have seen the importance of the following:

 ● identifying all the resources needed;

 ● arranging activity starts to minimize variations in resource levels over the duration of the project;

 ● allocating resources to competing activities in a rational order of priority;

 ● taking care in allocating the right staff to critical activities.

FURTHER EXERCISES

 1. Burman’s priority ordering for allocating resources to activities takes into account the activity duration
as well as its total fl oat. Why do you think this is advantageous?

 2. If you have access to project planning software, use it to produce an activity plan for Amanda’s project
and include the staff resource requirements for each activity.

 Explore the facilities of your software and answer the following questions.

 ■ Can you set up resource types and ask the application to allocate individuals to tasks?

 ■ Will your software allow you to specify productivity factors for individual members of staff so
that the duration of an activity depends upon who is carrying it out?

 ■ Will your software carry out resource smoothing or provide a minimum cost solution?

 ■ Can you replicate Amanda’s work schedule (see Figure 8.7) – or produce a better one?

 3. On a large project it is often the responsibility of a team leader to allocate tasks to individuals. Why
might it be unsatisfactory to leave such allocations entirely to the discretion of the team leader?

FIGURE 8.11 Successful project scheduling is not a simple sequence

200 So ware Project Management

 4. In scheduling her project, Amanda ignored the risks of absence due to staff sickness. What might she
have done to estimate the likelihood of this occurring and how might she have taken account of the risk
when scheduling the project?

 5. (a) Draw up an activity network and calculate the earliest fi nish for the following project:

Activity Duration Depends on Resource type

A 3 days SA

B 1 day A SD

C 2 days A SD

D 4 days A SD

E 3 days B SC

F 3 days C SC

G 6 days D SC

H 3 days E,F,G SA

SA = systems analyst; SD = systems designer; SC = software coder

 (b) Produce a table showing the number of specialists of each type needed on each day of the project
if every activity was started as soon as possible. How many of each type of resource will need to
be recruited for the project as a whole if the earliest fi nish date is to be preserved?

 (c) What impact would there be on the project if there were only two systems designers?

 (d) What impact would there be on the project if there was only one systems designer, but you had
three software coders?

 (e) Assuming that the systems designers were employed for the duration of the project, what would
be the percentage utilization of the systems designers in the case of both (c) and (d) above?

 6. (a) Draw up an activity network for the activities below, identifying the critical path.

Activity Duration Depends on Resource type

A 2 days SA

B 10 days A SD

C 2 days A SD

D 2 days C SC

E 3 days C SC

F 2 days C SC

G 4 days B,D,E,F SA

SA = systems analyst; SD = systems designer; SC = software coder

Resource Allocation 201

 (b) Draw up a resource table showing the number of each type of resource needed on each day of the
project and assuming that there is only one systems designer.

 (c) Identify the best way of revising the plan to remove resource clashes.

 7. Consider a software development project with seven tasks T1–T7. The estimated duration of these
seven tasks in weeks are 3, 2, 3, 5, 2, 4, and 5 respectively. T2 and T4 can start when T1 is complete. T3
can start when T2 is complete. T5, T6, and T7 can start when both T3 and T4 are complete. If developer
A is available from the start of the project and developer B and C become available after three weeks
of the start of the project. Schedule the project and show your results in the form of a bar chart and
resource histogram.

9

OBJECTIVES

When you have completed this chapter you will be able to:
monitor the progress of projects;•
assess the risk of slippage;•
visualize and assess the state of a project;•
revise targets to correct or counteract drift;•
control changes to a project’s requirements.•

9.1 Introduction
Once work schedules have been published and the project is started, attention must be focused on progress.
This requires monitoring of what is happening, comparison of actual achievement against the schedule and,
where necessary, revision of plans and schedules to bring the project as far as possible back on target.

In earlier chapters we have stressed the importance of producing plans that can be monitored – for example,
ensuring that activities have clearly defi ned and visible completion points. We will discuss how information
about project progress is gathered and what actions must be taken to ensure that a project meets its targets.

The fi nal part of this chapter discusses how we can deal with changes that are imposed from outside – in
particular, changes in requirements.

9.2 Creating the Framework
Exercising control over a project and ensuring that targets are met is a matter of regular monitoring – fi nding
out what is happening and comparing it with targets. There may be a mismatch between the planned outcomes

Monitoring and Control 203

and the actual ones. Replanning may then be needed to bring the project back on target. Alternatively, the
target could have to be revised. Figure 9.1 illustrates a model of the project control cycle and shows how,
once the initial project plan has been published, project control is a continual process of monitoring progress
against that plan and, where necessary, revising the plan to take account of deviations. It also illustrates the
important steps that must be taken after completion of the project so that the experience gained in any one
project can feed into the planning stages of future projects, thus allowing us to learn from past mistakes.

FIGURE 9.1 The project control cycle

In practice we are normally concerned with four types of shortfall – delays in meeting
target dates, shortfalls in quality, inadequate functionality, and costs going over target.
In this chapter we are mainly concerned with the fi rst and last of these.

See Chapter 13 for a
discussion of software
quality.

204 So ware Project Management

Responsibility
The overall responsibility for ensuring satisfactory progress on a project is often the role of the project
steering committee, project management board or, in PRINCE2, Project Board. Day-to-day responsibility
will rest with the project manager and, in all but the smallest of projects, aspects of this can be delegated to
team leaders.

Figure 9.2 illustrates the typical reporting structure found with medium and large
projects. With small projects (employing around half a dozen or fewer staff) individual
team members usually report directly to the project manager, but in most cases team
leaders will collate reports on their section’s progress and forward summaries to the
project manager. These, in turn, will be incorporated into project-level reports for the

steering committee and, via them or directly, progress reports for the client.

The concept of a re-
porting hierarchy was
introduced in Chapter
1.

FIGURE 9.2 Project repor ng structures

Reporting may be oral or written, formal or informal, and regular or ad hoc – see
Table 9.1. Informal communication is necessary and important, but any such informal
reporting of project progress must be complemented by formal reporting procedures
– and it is those we are concerned with in this chapter.

TABLE 9.1 Categories of repor ng

Report type Examples Comment

Oral formal regular Weekly or monthly progress meetings While reports may be oral, formal written
minutes should be kept

Oral formal ad hoc End-of-stage review meetings While largely oral, likely to receive and generate
written reports

Written formal regular Job sheets, progress reports Normally weekly using forms

Written formal ad hoc Exception reports, change reports

Oral informal ad hoc Canteen discussion, social interaction Often provides early warning; must be backed
up by formal reporting

In a PRINCE2 environ-
ment, there may be
a Project Assurance
function reporting to
the Project Board and
independent of the
Project Manager.

Chapter 12 will explore
communication in a
more general project
context.

Monitoring and Control 205

Assessing progress
Some information used to assess project progress will be collected routinely, while other information will be
triggered by specifi c events. Wherever possible, this information should be objective and tangible – whether
or not a particular report has been delivered, for example. Sometimes, however, assessment will have to
depend on estimates of the proportion of the current activity that has been completed.

Setting checkpoints
It is essential to set a series of checkpoints in the initial activity plan. Checkpoints
may be:

 ● regular (monthly, for example);

 ● tied to specifi c events such as the production of a report or other deliverable.

Taking snapshots
The frequency of progress reports will depend upon the size and degree of risk of the project. Team leaders,
for example, may want to assess progress daily (particularly when employing inexperienced staff) whereas
project managers may fi nd weekly or monthly reporting appropriate. In general, the higher the level, the less
frequent and less detailed the reporting needs to be.

At the level of individual developers, however, strong arguments exist for the formal
weekly collection of information. This ensures that information is provided while
memories are still relatively fresh and provides a mechanism for individuals to review
and refl ect upon their progress. If reporting is to be weekly then it makes sense to have
basic units of work that last about a week.

Major, or project-level, progress reviews will generally take place at particular points during the life of a
project – commonly known as review points or control points. PRINCE2, for example, designates a series of
checkpoints where the status of work in a project or for a team is reviewed. At the end of each project Stage,
PRINCE2 provides for an End Stage Assessment where an assessment of the project and consideration of its
future are undertaken.

9.3 Collecting the Data
As a rule, managers will try to break down long activities into more controllable tasks of one or two weeks’
duration. However, it will still be necessary to gather information about partially completed activities and,
in particular, forecasts of how much work is left to be completed. It can be diffi cult to make such forecasts
accurately.

 EXERCISE 9.1

A software developer working on Amanda’s project has written the fi rst 250 lines of a Java program
that is estimated to require 500 lines of code. Explain why it would be unreasonable to assume that the
programming task is 50% complete.

How might you make a reasonable estimate of how near completion it might be?

The PRINCE2 stan-
dard described in
Appendix A has its own
terminology.

Recall that in Chapter
4, Beck recommended
weekly work cycles in
an XP environment.

206 So ware Project Management

Where there is a series of products, partial completion of activities is easier to estimate. Counting the number
of record specifi cations or screen layouts produced, for example, can provide a reasonable measure of
progress.

In some cases, intermediate products can be used as in-activity milestones. The fi rst successful compilation
of a program, for example, might be considered a milestone even though it is not a fi nal product.

Partial completion reporting
Many organizations use standard accounting systems with weekly timesheets to
charge staff time to individual jobs. The staff time booked to a project indicates the
work carried out and the charges to the project. It does not, however, tell the project
manager what has been produced or whether tasks are on schedule.

It is therefore common to adapt or enhance existing accounting data collection systems
to meet the needs of project control. Weekly timesheets, for example, are frequently
adapted by breaking jobs down to activity level and requiring information about work
done in addition to time spent. Figure 9.3 shows an example of a report form, in
this case requesting information about likely slippage of completion dates as well
as estimates of completeness. Other reporting templates are possible. For example,

Weekly timesheets
are a valuable source
of information about
resources used. They
are often used to
provide information
about what has been
achieved. However,
requesting partial
completion estimates
where they cannot be
obtained from objective
measures encourages
the 99%

FIGURE 9.3 A weekly mesheet and progress review form

Monitoring and Control 207

rather than ask for estimates of percentage complete, some managers would prefer to ask for the number of
hours already worked on the task and an estimate of the number of hours needed to fi nish the task off.

Red/amber/green (RAG) reporting
One popular way of overcoming the objections to partial completion reporting is to
avoid asking for estimated completion dates, but to ask instead for the team members’
estimates of the likelihood of meeting the planned target date.

One way of doing this is the traffi c-light method. This consists of the following
steps:

 ● identify the key (fi rst level) elements for assessment in a piece of work;

 ● break these key elements into constituent elements (second level);

 ● assess each of the second-level elements on the scale green for ‘on target’,
amber for ‘not on target but recoverable’, and red for ‘not on target and recov-
erable only with diffi culty’;

 ● review all the second-level assessments to arrive at fi rst-level assessments;

 ● review fi rst- and second-level assessments to produce an overall assessment.

For example, Amanda decides to use a version of the traffi c-light method for reviewing
activities on the IOE project. She breaks each activity into a number of component
parts (deciding, in this case, that a further breakdown is unnecessary) and gets the team members to complete
a return at the end of each week. Figure 9.4 illustrates Justin’s completed assessment at the end of week 16.

complete syndrome –
tasks are reported as
on time until 99% com-
plete, and then stay
at 99% complete until
fi nished.

There are a number
of variations on the
traffi c-light technique.
The version described
here is in use in IBM
and is described in A.
Down, M. Coleman
and P. Absolon (1994)
Risk Management for
Software Projects,
McGraw-Hill.

FIGURE 9.4 A tra c-light assessment of IoE/P/13

Note that this form
refers only to uncom-
pleted activities. Justin
would still need to
report activity comple-
tions and the time
spent on activities.

208 So ware Project Management

Traffi c-light assessment highlights only risk of non-achievement; it is not an attempt to estimate work done
or to quantify expected delays.

Following completion of assessment forms for all activities, the project manager uses these as a basis for
evaluating the overall status of the project. Any critical activity classifi ed as amber or red will require further
consideration and often leads to a revision of the project schedule. Non-critical activities are likely to be
considered as a problem if they are classifi ed as red, especially if all their fl oat is likely to be consumed.

9.4 Review
From a manager’s perspective, review of work products is an important mechanism for monitoring the
progress of a project and ensuring the quality of the work products.

Every project is developed through iterations over a large number of work products such as requirements
document, design document, project plan document, code, etc. Each of these work products can have a large
number of defects in them due to mistakes committed by the development team members. It is necessary
to eliminate as many defects in these work products to realize a product of acceptable quality. Testing is an
effective defect removal mechanism. However, testing is applicable to only executable code. How can the
defects from the non-executable work products such as requirements document and design document be
removed? Review is a very effective technique to remove defects from all work products including code. In
fact, review has been acknowledged to be more cost-effective in removing defects as compared to testing.
Early review techniques focused on code and systematic review techniques were developed for this specifi c
purpose. But over the years, review techniques have become extremely popular and have been generalized
for use with other work products.

Utility of review
Besides being a cost-effective defect removal mechanism, review of any work product has several other
benefi ts including the following mentioned below:

 ● Review usually helps to identify any deviation from standards, including issues that might affect
maintenance of the software.

 ● Reviewers suggest ways to improve the work product such as using algorithms that are more time or
space effi cient, specifi c work simplifi cations, better technology opportunities that can be exploited,
etc.

 ● In addition to defect identifi cation, a review meeting often provides learning opportunities to not only
the author of a work product, but also the other participants of the review meeting. The lessons acquired
from a review meeting allows participants to avoid committing similar defects that were discussed in
the review meeting and also allows them to make use of the best practices that were suggested.

 ● The review participants gain a good understanding of the work product under review, making it easier
for them to interface or use the work product in their work.

 EXERCISE 9.2

For removing bugs from code, would review or testing be more cost-effective? Explain the reason
behind your answer.

Monitoring and Control 209

Candidate work products for review
All interim and fi nal work products are usually candidates for review. Usually, the work products considered
to be suitable candidates for review are as follows:

 ● Requirements specifi cation documents

 ● User interface specifi cation and design documents

 ● Architectural, high-level, and detailed design documents

 ● Test plan and the designed test cases

 ● Project management plan and confi guration management plan

Review roles
In every review meeting, a few key roles need to be assigned to the review team members. These roles are
moderator, recorder and the reviewers. The moderator plays a key role in the review process. The principal
responsibilities of the moderator include scheduling and convening meetings, distributing review materials,
leading and moderating the review sessions, ensuring that the defects are tracked to closure. The main role
of the recorder is to record the defects found, the time, and effort data. The review team members review the
work product and give specifi c suggestions to the author about the existing defects and also point out ways
to improve the work product.

In the following, we will fi rst discuss a generic review process. Subsequently, we shall discuss the importance
of collection of all relevant data to the success of the review process.

Review process
Review of any work product consists of the following four important activities, viz. planning, review prepa-
ration and overview, review meeting, rework and follow-up. A review process model is shown in Figure
9.5. The model in Figure 9.5 captures the sequence of the activities that need to be carried out, the input to
the activities, and the output produced from the activities. In the following, we briefl y discuss these review
activities.

FIGURE 9.5 Review process model

 ● Planning Once the author of a work product is ready for submitting the work for review; the project
manager nominates a moderator. A moderator can be someone who is familiar with the work product.
In consultation with the moderator, the project manager nominates the other members of the review
team. Usually, the review process works best when the number of members is between fi ve and seven.

210 So ware Project Management

The effectiveness of review drastically reduces if there are less than three members. The review team is
usually selected from the following types of project team members.

 ■ The author of the preceding work product based on which the work product under review was
developed

 ■ The member who would use the work product under review

 ■ Peers of the author

 ■ The authors of the work products that would interface with the work product under review

The moderator usually schedules all review meetings.

 ● Preparation To initiate the review process, the moderator convenes a brief preparation meeting. In
the preparation meeting, copies of the work product are distributed to the review team members. The
author presents a brief overview of the work product. The moderator highlights the objectives of the
review. The reviewers then individually carry out review and record their observations in separate
documents called review logs.

 ● Review Meeting In the review meeting the reviewer’s give their comments based on the logs they have
prepared beforehand. The comments may pertain to a defect, work simplifi cation, maintainability, etc.
The author responds to the reviewers’ comments and in this discussion other reviewers may also take
part. The moderator ensures that the discussions remain focused and productive. The recorder scribes
all the defects and points that the author agrees to, as well as the review statistics in the form of a review
log.

 ● Rework The author addresses all the issues raised by the reviewers by carrying out the necessary
modifi cations to the work product and prepares a rejoinder to all the points scribed in the review log.
The rejoinder records the exact ways in which the comments have been taken care of by the author.
The corrected work product along with the author’s rejoinder is circulated among all the review team
members. In a fi nal brief meeting, the review team members check whether all the issues scribed in the
review log have been resolved satisfactorily. At the end of this meeting, a fi nal summary report of the
review is prepared.

Data collection
Since a review meeting is a completely human endeavour, unless the data representing the results of the
meetings is properly recorded, it can get lost. In addition to recording all defects, the data about the time
spent by the reviewers in the review activity must also be captured. A record of the defect data is needed for
tracking defects in the project.

The different reports in which the review data are captured are as follows:

 1. Review Preparation Log Each reviewer prepares a review preparation log. The different items recorded
in it by the reviewer are the data about defects he observes, their locations, their criticality, and the total
time spent in doing the review of the work product.

 2. Review Log In the review log only those defects that are agreed to by the author are logged. Defect logs
are a crucial record since these help in tracking all defects to closure.

 3. Review Summary Report This report summarizes the review data and presents an overall picture of the
review. It contains information regarding the total defects and the amount of time spent on each of the
review process activities.

Monitoring and Control 211

9.5 Project Termination Review
A manager decides when a project should be terminated. As soon as a decision regarding project termination
is taken, it is a good practice to conduct a project review meeting. Project termination reviews are important
for successful, failed, as well as prematurely abandoned projects. The project termination review meeting
marks the offi cial closure of a project. Project termination reviews provide important opportunities to learn
from past mistakes as well as successes. By analysing past mistakes the project teams can learn to do better by
improving their methods and practices. The project termination review summary report is not only benefi cial
to the terminated project, but it can also benefi t of other teams and therefore should be disseminated across
the organization. It is important to note that project termination need not necessarily mean project failure or
premature abandonment. A project may be terminated for a variety of reasons, including successful completion
of the endeavour. When it becomes evident that the project objectives cannot be satisfactorily met, it often
makes sense to reach a negotiated closure. On the other hand, an aborted project generally means a loss
for most stakeholders. According to a report, about 31% of projects are cancelled during the development
phase. Even a failed project should not be viewed negatively. It should be realized that wisdom is required on
the part of the project manager and the stakeholders to determine when it is desirable to terminate a project
otherwise it can only be a drag on the resources without achieving anything substantial.

Reasons for project termination
Here are a few reasons why a project gets terminated before the natural closing date:

 ● Project is completed successfully and handed over to the customer.

 ● Incomplete requirements

 ● Lack of resources

 ● Some key technologies used in the project have become obsolete during project execution.

 ● Economics of the project has changed, for example, because many competing products may have
become available in the market.

Project termination process
The important activities that are carried out as a part of the project termination review process are as
follows:

 ● Project Survey The objective of the project survey activity is to collect various types of information
pertaining to the project, without compromising the confi dentiality of the respondents. An electronic
survey is usually very effective. The information is collected through a set of carefully designed
questionnaire that can bring out the important process and management issues, which have a strong
bearing on the success or failure of the project.

 ● Collection of Objective Information A critical aspect of the postmortem review is to collect various
project metrics. Real data helps to focus discussions on most crucial issues during the postmortem
review. The different types of metrics that are collected include the cost, schedule, and quality
metrics.

 ● Debriefi ng Meeting A debriefi ng meeting is a preparatory meeting that helps to ensure the fi nal project
review meeting focuses on the most relevant aspects. In this meeting, only the senior members of the
team participate. The debriefi ng meeting helps to obtain some direct feedback about the project from
the senior members of the team.

212 So ware Project Management

 ● Final Project Review This meeting usually addresses various issues arising out of project planning
and tracking, preliminary phases (requirements analysis, specifi cation and design), confi guration
management, verifi cation, and validation. Guided by the information collected in the previous steps,
the project leaders determine the focus of the review discussions only on the relevant topics in various
project activities. For example, if the collected data or the debriefi ng meeting data suggest schedule
slippage, discussions on how the schedule slippage could have been avoided are conducted. It should
be remembered that fault fi nding or blaming individuals must be avoided.

 ● Result Publication The project leader summarizes the positive and negative fi ndings arrived at during
the termination review process as well as prescriptions for improvement. The summary is published so
that all the teams can to refer to it and also the management can take initiative for any necessary correc-
tions based on it.

9.6 Visualizing Progress
Having collected data about project progress, a manager needs some way of presenting that data to greatest
effect. In this section, we look at some methods of presenting a picture of the project and its future. Some
of these methods (such as Gantt charts) provide a static picture, a single snapshot, whereas others (such as
timeline charts) try to show how the project has progressed and changed through time.

Th e Gantt chart
One of the simplest and oldest techniques for tracking project progress is the Gantt chart. This is essentially
an activity bar chart indicating scheduled activity dates and durations, frequently augmented with activity

FIGURE 9.6 Part of Amanda’s Gan chart with the ‘today cursor’ in week 17

Monitoring and Control 213

fl oats. Reported progress is recorded on the chart (normally by shading activity bars)
and a ‘today cursor’ provides an immediate visual indication of which activities are
ahead or behind schedule. Figure 9.6 shows part of Amanda’s Gantt chart as at the
end of Tuesday of week 17. ‘Code and test module D’ has been completed ahead of
schedule and ‘Code and test module A’ appears also to be ahead of schedule. The
coding and testing of the other two modules are behind schedule.

Th e slip chart
A slip chart (Figure 9.7) is a very similar alternative favoured by some project managers who believe it
provides a more striking visual indication of those activities that are not progressing to schedule – the more
the slip line bends, the greater the variation from the plan. Additional slip lines are added at intervals and, as
they build up, the project manager will gain an idea as to whether the project is improving (subsequent slip
lines bend less) or not. A very jagged slip line indicates a need for rescheduling.

Henry Gantt (1861–
1919) was an industrial
engineer interested in
the effi cient organiza-
tion of work.

FIGURE 9.7 The slip chart emphasizes the rela ve posi on of each ac vity

Th e timeline
One disadvantage of the charts described so far is that they do not show clearly the slippage of the project
completion date through the life of the project. Analysing and understanding trends in the project so far allows
us to predict the future progress of the project. For example, if a project is behind schedule because so far
productivity has not been as high as assumed at the planning stage, it is likely that the scheduled completion
date will be pushed back even further unless action is taken to compensate for or improve productivity.

214 So ware Project Management

The timeline chart is a method of recording and displaying the way in which targets have changed throughout
the duration of the project.

Figure 9.8 shows a timeline chart for Brigette’s project at the end of the sixth week. Planned time is plotted
along the horizontal axis and elapsed time down the vertical axis. The lines meandering down the chart
represent scheduled activity completion dates – at the start of the project ‘analyse existing system’ is scheduled
to be completed by the Tuesday of week 3, ‘obtain user requirements’ by Thursday of week 5, ‘issue tender’,
the fi nal activity, by Tuesday of week 9, and so on.

FIGURE 9.8 Brige e’s meline chart at the end of week six

Brigette’s timeline
chart contains only the
critical activities for her
project;
l indicates ac-

tual completion of an
activity.

For the sake of clar-
ity, the number of
activities on a timeline
chart must be limited.
Using colour helps to
distinguish
activities, particularly
where lines cross

At the end of the fi rst week Brigette reviews these target dates and leaves them as they are – lines are therefore
drawn vertically downwards from the target dates to the end of week 1 on the actual time axis.

At the end of week 2, Brigette decides that ‘obtain user requirements’ will not be completed until Tuesday
of week 6 – she therefore extends that activity line diagonally to refl ect this. The other activity completion
targets are also delayed correspondingly.

Monitoring and Control 215

By the Tuesday of week 3, ‘analyse existing system’ is completed and Brigette puts a blob on the diagonal
timeline to indicate that this has happened. At the end of week 3 she decides to keep to the existing targets.

At the end of week 4 she adds another three days to ‘draft tender’ and ‘issue tender’.

Note that, by the end of week 6, two activities have been completed and three are still unfi nished. Up to this
point she has revised target dates on three occasions and the project as a whole is running seven days late.

 EXERCISE 9.3

By the end of week 8 Brigette has completed planning the offi ce layout but fi nds that drafting the tender
is going to take one week longer that originally anticipated.

What will Brigette’s timeline chart look like at the end of week 8?

If the rest of the project goes according to plan, what will Brigette’s timeline chart look like when the
project is completed?

The timeline chart is useful both during the execution of a project and as part of the post-implementation
review. Analysis of the timeline chart, and the reasons for the changes, can indicate failures in the estimation
process or other errors that might, with that knowledge, be avoided in future.

9.7 Cost Monitoring
Expenditure monitoring is an important component of project control, not only in
itself, but also because it provides an indication of the effort that has gone into (or at
least been charged to) a project. A project might be on time but only because more
money has been spent on activities than originally budgeted. A cumulative expen-
diture chart such as that shown in Figure 9.9 provides a simple method of comparing
actual and planned expenditure. By itself it is not particularly meaningful –
Figure 9.9 could, for example, illustrate a project that is running late or one that is

Project costs may be
monitored by a com-
pany’s accounting sys-
tem. By themselves,
they provide little infor-
mation about project
status.

FIGURE 9.9 Tracking cumula ve expenditure

216 So ware Project Management

on time but has shown substantial costs savings. We need to take account of the current status of the project
activities before attempting to interpret the meaning of recorded expenditure.

Cost charts become much more useful if we add projected future costs calculated
by adding the estimated costs of uncompleted work to the costs already incurred.
Where a computer-based planning tool is used, revision of cost schedules is generally
provided automatically once actual expenditure has been recorded. Figure 9.10 illus-
trates the additional information available once the revised cost schedule is included

– in this case it is apparent that the project is behind schedule and over budget.

Project costs augment-
ed by project monitor-
ing can be used to
generate forecasts of
future costs.

FIGURE 9.10 The cumula ve expenditure chart can also show revised es mates of cost and comple on
date

9.8 Earned Value Analysis
Earned value analysis has gained in popularity in recent years and may be seen as a
refi nement of the cost monitoring discussed in the previous section. It originated in
the USA’s Department of Defence (DOD) as a part of a set of measures to control
projects being carried out by contractors for the DOD. Earned value analysis is based
on assigning a ‘value’ to each task or work package (as identifi ed in the WBS) based
on the original expenditure forecasts. One way of looking at this is as the equivalent
of the price that might be agreed by a contractor to do the unit of work. The assigned
value is the original budgeted cost for the item and is known as the planned value (PV)
or budgeted cost of work scheduled (BCWS). A task that has not started is assigned an

earned value of zero and when it has been completed, it, and hence the project, is credited with the original
planned value of the task. The total value credited to a project at any point is known as the earned value (EV)
or budgetted cost of work performed (BCWP) and this can be represented as a money value, an amount of
staff time or as a percentage of the PV. EV is thus analogous to the agreed price to be paid to the contractor
once the work is completed.

Earned value analy-
sis, also known as
budgeted cost of work
performed, is recom-
mended by a number
of agencies including
the US and Australian
departments of de-
fence. It is also recom-
mended in BS 6079.

Monitoring and Control 217

Where tasks have been started but are not yet complete, some consistent method of assigning an earned value
must be applied. Common methods in software projects are:

 ● the 0/100 technique: where a task is assigned a value of zero until such time that it is completed when
it is given a value of 100% of the budgeted value;

 ● the 50/50 technique: where a task is assigned a value of 50% of its value as soon as it is started and
then given a value of 100% once it is complete – this matches some contractual arrangements where a
contractor is given half the agreed price when starting the work, perhaps to help pay for raw materials,
and the remainder on successful completion;

 ● the 75/25 technique: where the task is assigned 75% on starting and 25% on completion – this is often
used when a large item of equipment is being bought: 75% is paid when the equipment is actually
delivered and the remainder when installation and testing has been satisfactorily completed;

 ● the milestone technique: where a task is given a value based on the achievement of milestones that have
been assigned values as part of the original budget plan;

 ● percentage complete: in some cases there may be a way of objectively measuring the amount of work
completed – for example, as part of the implementation of an information system, a number of data
records have to be manually typed into a database and the actual number so far completed can be objec-
tively counted.

Of these, we prefer the 0/100 technique for software development. The 50/50 technique can give a false sense
of security by over-valuing the reporting of activity starts. The milestone technique might be appropriate for
activities with a long duration estimate but, in such cases, it is better to break that activity into a number of
smaller ones.

Th e baseline budget
The fi rst stage in setting up an earned value analysis is to create the baseline budget. The baseline budget
is based on the project plan and shows the forecast growth in earned value through time. Earned value may
be measured in monetary values but, in the case of staff-intensive projects such as software development, it

FIGURE 9.11 Amanda’s baseline budget

218 So ware Project Management

is common to measure earned value in person-hours or workdays. Amanda’s baseline budget, based on the
schedule shown in Figure 8.7, is shown in Table 9.2 and diagrammatically in Figure 9.11. Notice that she
has based her baseline budget on workdays and is using the 0/100 technique for crediting earned value to the
project.

TABLE 9.2 Amanda’s baseline budget calcula on

Task Budgeted
workdays

Scheduled
completion

Cumulative
workdays

% cumulative
earned value

Specify overall system 34 34 34 14.35

Specify module B 15 49
64 27.00

Specify module D 15 49

Specify module A 20 54 84 35.44

Check specifi cations 2 56 86 36.28

Design module D 4 60 90 37.97

Design module A 7 63 97 40.93

Design module B 6 66 103 43.46

Specify module C 25 74 128 54.01

Check module C spec 1 75 129 54.43

Design module C 4 79 133 56.12

Code and test module D 25 85 158 66.67

Code and test module A 30 93 188 79.32

Code and test module B 28 94
231 97.47

Code and test module C 15 94

System integration 6 100 237 100.00

Amanda’s project is not expected to be credited with any earned value until day 34, when the activity ‘specify
overall system’ is to be completed. This activity was forecast to consume 34 person-days and it will therefore
be credited with 34 person-days of earned value when it has been completed. The other steps in the baseline
budget chart coincide with the scheduled completion dates of other activities.

Monitoring earned value
Having created the baseline budget, the next task is to monitor earned value as the project progresses. This is
done by monitoring the completion of tasks (or activity starts and milestone achievements in the case of the
other crediting techniques).

6

6

Monitoring and Control 219

 EXERCISE 9.4

Figure 9.12 shows Amanda’s earned value analysis at the start of week 12 of the project. Note that here
both PV and EV are measured in ‘work-days’ and that the 0/100 rule is being applied. The earned value
(EV) is clearly lagging behind the baseline budget, indicating that the project is behind schedule.

By studying Figure 9.13, can you tell exactly what has gone wrong with her project and what the
consequences might be?

FIGURE 9.12 Amanda’s earned value analysis at week 12

As well as recording EV, the actual cost of each task can be collected as actual cost (AC). This is also known
as the actual cost of work performed (ACWP). This is shown in Figure 9.12, which, in this case, records the
values as percentages of the total budgeted cost.

Figure 9.13 also illustrates the following performance statistics, which can be shown directly or derived from
the earned value chart.

Schedule variance (SV)
The schedule variance is measured in cost terms as EV – PV and indicates the degree to which the value of
completed work differs from that planned. Say, for example, that work with a PV of £40,000 should have been
completed by now. In fact, some of that work has not been done so that the EV is only £35,000. The SV would
therefore be £35,000 – £40,000, that is – £5,000. A negative SV means the project is behind schedule.

Time variance (TV)
Figure 9.13 also indicates the time variance (TV). This is the difference between the time when the achievement
of the current earned value was planned to occur and the time now. In this case, the current EV should have

220 So ware Project Management

been achieved in the early part of month 9 and as the time now is the end of month 11, the TV is about –1.75
months.

Cost variance (CV)
This is calculated as EV – AC and indicates the difference between the earned value or budgeted cost and the
actual cost of completed work. Say that when the SV above was calculated as –£5,000, £55,000 had actually
been spent to get the EV. The CV in this case would have been £35,000 – £55,000 or –£20,000. It can also
be an indicator of the accuracy of the original cost estimates. A negative CV means that the project is over
cost.

Performance ratios
Two ratios are commonly tracked: the cost performance index (CPI = EV/AC) and the schedule performance
index (SPI = EV/PV). Using the examples above, CPI would be £35,000/£55,000, that is, 0.64, and SPI
would be £35,000/£40,000, that is, 0.88. The two ratios can be thought of as a ‘value-for-money’ indices. A
value greater than one indicates that work is being completed better than planned, whereas a value of less than
one means that work is costing more than and/or proceeding more slowly than planned.

CPI can be used to produce a revised cost estimate for the project (or estimate at completion – EAC). EAC
is calculated as BAC/CPI where BAC (budget at completion) is the current projected budget for the project.
If the BAC was £100,000 then a revised estimate at completion (EAC) would be £100,000/0.64 or £156,250.
Similarly, the current SPI can be used to project the possible duration of the project given the current rate of
progress. Say the planned total duration for the project is 23 months – in earned value terminology this is the
schedule at completion (SAC). A time estimate at completion (TEAC) can be calculated as SAC/SPI. In this
case it would be 23/0.88, that is, 26.14 months. This is only an approximate guide: where there are several
parallel chains of activities being carried out concurrently – as we saw in Chapter 6 – the project duration will
depend on the degree to which the activities that have been delayed are on the critical path.

FIGURE 9.13 An earned value tracking chart

Monitoring and Control 221

In the same way that the expenditure analysis in Figure 9.9 was augmented to show revised expen-
diture forecasts, we can augment the simple earned value tracking chart with forecasts as illustrated in
Figure 9.14.

FIGURE 9.14 An earned value chart with revised forecasts

Earned value analysis has not yet gained universal acceptance for use with software development projects,
perhaps largely because of the attitude that, whereas a half-built house has a value refl ected by the labour
and materials that have been used, a half-completed software project has virtually no value at all. This is to
misunderstand the purpose of earned value analysis, which, as we have seen, is a method for tracking what
has been achieved on a project – measured in terms of the budgeted costs of completed tasks or products.

 EXERCISE 9.5

Suppose a project is to be completed in one year at the cost of £100,000. After three months, you realize
that the project is 30% complete at a cost of £40,000. Assess the performance of the project.

9.9 Prioritizing Monitoring
So far we have assumed that all aspects of a project will receive equal treatment in terms of the degree of
monitoring applied. We must not forget, however, that monitoring takes time and uses resources that might
sometimes be put to better use!

In this section we list the priorities we might apply in deciding levels of monitoring.

 ● Critical path activities Any delay in an activity on the critical path will cause a delay in the completion
date for the project. Critical path activities are therefore likely to have a very high priority for close
monitoring.

222 So ware Project Management

 ● Activities with no free fl oat A delay in any activity with no free fl oat will delay
at least some subsequent activities even though, if the delay is less than the total
fl oat, it might not delay the project completion date. These subsequent delays can
have serious effects on our resource schedule as a delay in a subsequent activity
could mean that the resources for that activity will become unavailable before that
activity is completed because they are committed elsewhere.

 ● Activities with less than a specifi ed fl oat If any activity has very little fl oat it might use up this fl oat
before the regular activity monitoring brings the problem to the project manager’s attention. It is
common practice to monitor closely those activities with less than, say, one week free fl oat.

 ● High-risk activities A set of high-risk activities should have been identifi ed as
part of the initial risk profi ling exercise. If we are using the PERT three-estimate
approach we will designate as high risk those activities that have a high estimated
duration variance. These activities will be given close attention because they are
most likely to overrun or overspend.

 ● Activities using critical resources Activities can be critical because they are very expensive (as in the
case of specialized contract programmers). Staff or other resources might be available only for a limited
period, especially if they are controlled outside the project team. In any event, an activity that demands
a critical resource requires a high level of monitoring.

9.10 Getting the Project Back to Target
Almost any project will, at one time or another, be subject to delays and unexpected
events. One of the tasks of the project manager is to recognize when this is happening
(or, if possible, about to happen) and, with the minimum delay and disruption to the
project team, attempt to mitigate the effects of the problem. In most cases, the project
manager, at least initially, tries to ensure that the scheduled project end date remains
unaffected. This can be done by shortening remaining activity durations or shortening

the overall duration of the remaining project in the ways described in the next section.

It should be remembered, however, that this might not always be the most appropriate
response to disruptions to a plan. There is little point in spending considerable sums
in overtime payments in order to speed up a project if the customer is not overly
concerned with the delivery date and there is no other valuable work for the team
members once this project is completed.

There are two main strategies to consider when drawing up plans to bring a project back on target – short-
ening the critical path or altering the activity precedence requirements.

Shorten the critical path
The overall duration of a project is determined by the current critical path, so speeding up non-critical path
activities will not bring forward a project completion date. However, there are several ways in which this
might be done.

 ● Adding resources – especially staff Exhorting staff to ‘work harder’ might have some effect, although
frequently a more positive form of action is required, such as increasing the resources available for some
critical activity. Fact-fi nding, for example, might be speeded up by allocating an additional analyst to

Free fl oat is the
amount of time an ac-
tivity may be delayed
without affecting any
subsequent activity.

PERT and the sig-
nifi cance of activity
duration variance was
described in Chapter 7.

A contingency plan
should, of course, al-
ready exist as a result
of the risk analysis
methods described in
Chapter 7.

The schedule is not
sacrosanct – it is a
plan that should be
adhered to so long as
it is relevant and cost-
effective.

Monitoring and Control 223

interviewing users. It is unlikely, however, that the coding of a small module
would be shortened by allocating an additional programmer – indeed, it might
be counterproductive because of the additional time needed for organizing and
allocating tasks and communicating. While adding more staff may be able to
speed up progress, this would be at an additional cost. In EV terms, negative
schedule variance (SV) may be reduced, but at the price of increasing a negative
cost variance (CV).

 ● Increase use of current resources Resource levels can be increased by making them available for longer.
Thus, staff might be asked to work overtime for the duration of an activity and computing resources
might be made available at times (such as evenings and weekends) when they might otherwise be
inaccessible.

 ● Reallocate staff to critical activities The project manager might consider allocating more effi cient staff
to activities on the critical path or swapping resources between critical and non-critical activities. When
a project is actually executed, the critical path may change as the actual durations of activities will vary
from the original estimates and staff allocations may be adjusted to refl ect this.

 ● Reduce scope The amount of work to be done could be reduced by reducing the scope of the function-
ality to be delivered. The client may prefer to have a subset of the promised features on time – especially
if they are the most useful ones – rather than have the delivery of the whole application delayed.

 ● Reduce quality Some quality-related activities such as system testing could be curtailed. This
would probably lead to more corrective work having to be done to the ‘live’ system once it has been
implemented.

By such means we can attempt to shorten the timescale for critical activities until such time as either we have
brought the project back to schedule or further efforts prove unproductive or not cost-effective. Remember,
however, that shortening a critical path often causes some other path, or paths, to become critical (see Section
6.14).

Reconsider the precedence requirements
If attempting to shorten critical activities proves insuffi cient, the next step is to consider the constraints by
which some activities have to be deferred pending completion of others. The original project network would
most probably have been drawn up assuming ‘ideal’ conditions and ‘normal’ working practices. It might be
that, to avoid the project delivering late, it is now worth questioning whether as yet unstarted activities really
do have to await the completion of others. It might, in a particular organization, be ‘normal’ to complete
system testing before commencing user training. In order to avoid late completion of a project it might,
however, be considered acceptable to alter ‘normal’ practice and start training earlier.

One way to overcome precedence constraints is to subdivide an activity into a component that can start
immediately and one that is still constrained as before. For example, a user handbook can be drawn up in a
draft form from the system specifi cation and then be revised later to take account of subsequent changes.

If we do decide to alter the precedence requirements in such a way, it is clearly important to be aware that
quality might be compromised and to make a considered decision to compromise quality where needed. It
is equally important to assess the degree to which changes in work practices increase risk. It is possible, for
example, to start coding a module before its design has been completed. It would normally, however, be
considered foolhardy to do so since, as well as compromising quality, it would increase the risk of having to
redo some of the coding once the fi nal design had been completed and thus delay the project even further.

Time/cost trade-off:
there is a general rule
that timescales can be
shortened by buying
more (or more expen-
sive) resources; some-
times this is true.

224 So ware Project Management

Maintaining the business case
In making decisions about the management of the project, the main concern of the project sponsor, that is, the
stakeholder who is putting up the money for the project, is whether the business case for the project has been
preserved. You may recall from Chapter 2 that the value of the benefi ts of a project must be greater than its
cost for the project to be viable. If costs increase, then this reduces the value of the benefi ts at the end of the
project. If the project is delayed or the amount of functionality in the deliverables is curtailed, it means that
the benefi ts that the project will generate will be reduced. At some point the costs may exceed the benefi ts and
the project then loses its viability. A decision could then be made to cancel the project.

Exception planning
The project manager will normally be allowed to change the detail of a plan as long as the agreed project
outcomes are produced on time and within budget.

In some cases, an operational change may affect other stakeholders. One such case would be where the timing
of acceptance testing by users had to be changed. In such a case the project manager would need to gain the
acceptance of these stakeholders for the change.

Some changes to the plan might have an impact on the delivery date, project scope or costs. These, in turn,
could affect the business case for the project. Here the project manager would need to gain the approval of
the business sponsors of the project. We saw above that the interests of the sponsors could be represented
through a group variously known as a Project Board (in PRINCE2), project management board or steering
committee.

One approach, adopted by PRINCE2, is to require the project manager to write an exception report that
explains the reasons for the deviation from the existing plan. The consequences of the deviation should be
detailed, and if possible a number of options for dealing with the problem. The probable impact of each
option on the business case is projected, and a recommendation on a course of action is presented. The Project
Board, or equivalent, having considered the report and having approved one of the options, may then task
the project manager with producing a more detailed exception plan. If this is then approved it replaces the
existing plan.

9.11 Change Control
So far in this chapter, we have assumed that the nature of the deliverables has not changed. A project leader
like Amanda or Brigette might fi nd, however, that requirements are modifi ed because of changing circum-
stances or because the users get a clearer idea of what is really needed. The payroll system that Brigette is
implementing might, for instance, need to be adjusted if the staffi ng structure at the college is reorganized.

Other, internal, changes will crop up. Amanda might fi nd that there are inconsistencies in the program speci-
fi cations that become apparent only when the programs are coded, and these would result in amendments to
those specifi cations.

When a document such as the user requirements is being developed there may be many different versions
of the document as it undergoes cycles of development and review. Any change control process at this point
would be very informal and fl exible. At some point what is assumed to be the fi nal version will be created.
This is baselined, effectively frozen. Baselined products are the foundation for the development of further
products – for instance interface design documents may be developed from baselined user requirements. Thus

Monitoring and Control 225

any changes to the baselined document could have knock-on effects on other parts of the project. The Product
Flow Diagrams (explained in Chapter 3) indicate relationships between the products of a project where this is
the case. For this reason subsequent changes to baselined documents need to be stringently controlled.

 EXERCISE 9.6

A change in a program specifi cation will normally be carried through into changes to the program
design and then changed code. What other products might need to be modifi ed?

Change control procedures
A simple change control procedure for operational systems might have the following steps:

 1. One or more users might perceive a need for a modifi cation to a system and ask for a change request to
be passed to the development staff.

 2. The user management would consider the change request and, if they approve it, pass it to the devel-
opment management. It is important that there is a single authorized channel for requests for change
(RFCs) between the client community and the management of the developers. There would be some
fi ltering within the client community to ensure that the proposed change does genuinely provide a
benefi t before the RFC is generated.

 3. There would be one person within the development area who would receive and process RFCs. They
would delegate a member of staff to look at the request and to report on the practicality and cost of
carrying out the change. The developer would, as part of this, assess the products that would be affected
by the change.

 4. The development representative would report back to the user management on the fi ndings and the user
management would decide whether, in view of the cost quoted, they wish to go ahead.

 5. There would be some individual or group who represented the major stakeholders, both users and
developers and also the project sponsor, who would have the authority to prioritize the RFCs for action.
Ultimately this should be the Project Board or equivalent. However, the large proportion of RFCs
would be relatively small in scope. This could cause a bureaucratic bottleneck if all these changes
had to be considered at the highest level. A smaller group of active stakeholder representatives might
therefore be delegated the responsibility for considering and approving changes up to a certain level
of expenditure. This group would adopt the role of a change control board, although they might not
actually be called that. A further step is to give the project managers allowances that would allow them
accept minor changes (as long as they are documented with an RFC, etc.) as long as they do not exceed
planned cost and delivery targets. There is thus a general principle that the larger the amendment the
higher in the control hierarchy it would have to be reported. However, this is not simply a matter of size.
A very large number of seemingly small changes could have a serious accumulative effect on project
progress which may call for the attention of higher management. A very large set of changes might
trigger the project manager to produce an exception report – see above.

 6. Once an RFC has been approved for action, one or more developers are authorized to take copies of the
master products that are to be modifi ed. This would need to be done through the confi guration librarian
– see below.

226 So ware Project Management

 7. The copies are modifi ed. In the case of software components this would involve modifying the code and
recompiling and testing it.

 8. When the development of new versions of the product has been completed the user management will
be notifi ed and copies of the software will be released for user acceptance testing.

 9. When the user is satisfi ed that the products are adequate they will authorize their operational release.
The master copies of confi guration items will be replaced.

 EXERCISE 9.7

The above steps relate to changes to operational systems. How could they be modifi ed to deal with
systems under development?

Changes in scope of a system
A common occurrence with IS development projects is for the size of the system
gradually to increase. One cause of this is changes to requirements that are requested
by users.

 EXERCISE 9.8

Think of other reasons why there is a tendency for scope creep.

The scope of a project needs to be carefully monitored and controlled. One way is to re-estimate the system
size in terms of SLOC or function points at key milestones.

Confi guration librarian’s role
Control of changes and documentation ought to be the responsibility of someone who may variously be
named the confi guration librarian, the confi guration manager or the project librarian. Among this person’s
duties would be:

 ● the identifi cation of all items that are subject to change control;

 ● the establishment and maintenance of a central repository of the master copies of
all project documentation and software products;

 ● the setting up and running of a formal set of procedures to deal with changes;

 ● the maintenance of records of who has access to which library items and the status of each library item
(e.g. whether under development, under test or released).

It will be recalled that it was suggested that the setting up of change control procedures might be one of the
fi rst things the Brigette would want to do at Brightmouth College.

9.12 Soft ware Confi guration Management (SCM)
In the previous section, we examined some of the reasons why changes might occur in Amanda’s project.
Though the discussion was restricted to changes due to requirements change, the changes can take place in

This is sometimes
called scope creep.

BS EN ISO 9001:1994
(formerly BS 5750)
requires that a formal
change control proce-
dure be in place.

Monitoring and Control 227

any of the work products and may be due to many reasons such as bug fi x, changes on account of work simpli-
fi cation, effi ciency considerations, etc. We have discussed how change management can be done manually
by a designated confi guration librarian. However, the manual change management process gets overwhelmed
when we consider changes taking place on all work products and when there are multiple variants of the
product. In this situation, a systematic software confi guration management (SCM) process with appropriate
tool support needs to be deployed.

SCM is concerned with tracking and controlling changes to the software. In any systematic development
and maintenance environment, various work products (code, design document, code, etc.) associated with
the software continually change during the development as well as the maintenance phase. In a team devel-
opment environment, each member of the development or maintenance team would be assigned to handle
some modifi cation requests. Therefore every work product would have to be accessed and modifi ed by
several members. In such a situation, unless a proper confi guration management system is deployed, several
problems can appear. We fi rst discuss the context in which these problems appear, and subsequently we
shall investigate the different problems that a development team might face if it does not deploy an effective
confi guration management system. Finally, we discuss the confi guration management process.

Context in which confi guration management is necessary
During the development phase, the work products get modifi ed as development activities are carried out.
During the maintenance phase, the work products change due to various types of enhancements and adapta-
tions that are carried out including bug fi xes. Thus, the state of the work products continually change both
during the development as well as maintenance phase. The state of all work products at any point of time is
called the confi guration of the software product. Software confi guration management deals with effectively
tracking and controlling the confi guration of a software product during its entire life cycle. For effective
confi guration management, it is necessary to deploy a confi guration management tool. Thus, we can say that
the different concepts associated with confi guration management are carried out in a project with the help
of a tool. There are many confi guration management tools available, some are open software that is free of
any licensing fees and others are commercial tools. At the end of this section, we review a few open software
confi guration management tools.

Confi guration management practices include version control and the establishment of baselines. Before we
discuss confi guration management, we must clearly understand terms like version, revision, variant, and
baseline.

Few terminologies
In the following section we defi ne terms like confi guration, version, revision, variant, and baseline.

Confi guration The confi guration of software is the state of various work products that are under confi guration
control. The work products that are under confi guration control are usually referred to as the confi guration
items. It is convenient to think of a confi guration as a set of fi les representing various work products. For
example, the confi guration of a sample software product shown in Fig. 9.15 consists of the confi guration
items (work products) W1, W2, … , Wn.

Version As development and maintenance activities are carried out on a software product, its confi guration
(that is, one or more confi guration items) keeps changing. It often becomes necessary to refer to the confi gu-
ration that existed at certain point of time. For example, we can say that refer to the last week’s confi guration

228 So ware Project Management

of the software. Therefore, a version is a confi guration that existed at certain point in time. More technically,
versioning is a numbering scheme that helps us identify a specifi c confi guration at a certain point in time.
This is achieved by a confi guration management tool by tagging the fi les resenting the confi guration items
with the version name.

Revision A revision system is a numbering scheme that is used to identify the state of a confi guration item
at any time. Each time a work product is updated its state changes. Thus, we can think of a work product
going through a series of updates till it reaches a desired state. The successive states of a work product are its
successive revisions. Thus each time a confi guration item is updated, a new revision gets formed. It becomes
possible to refer to a specifi c state of a work product by using its revision number.

Baseline A baseline is a software confi guration that has been formally reviewed and agreed upon, and serves
as a basis for further development.

Variant Variants are versions that are intended to coexist. Different variants may be needed to run the
software on different operating systems or on different hardware platforms. For example, one variant of
a mathematical computation package might run on Unix-based machines, another on Microsoft Windows
machines. Variants may also be required to be created when the software is intended to be used with different
levels of sophistication of the functionalities (e.g., novice version, enterprise version, professional version,
etc.). Variants are often created during the operation phase during the development phase, and as and when
software products with overlapping functionalities are required. Even the initial delivery of software might
consist of several versions and more variants may be created later.

In the following, we fi rst discuss the necessity of confi guration management and subsequently we discuss the
confi guration management activities and tools.

Purpose of soft ware confi guration management
There are several reasons why proper confi guration management of the work products in a project is essential.
The following are some of the important problems that can occur if a proper confi guration management
system is not used.

 ● Problems Associated with Concurrent Access Possibly the most important reason for confi guration
management is to control the access to the different deliverable objects. Unless strict discipline is
enforced regarding update and storage of different work products, several problems can appear. Let us
assume that only a single copy of a program module is maintained, and several developers are working
on it. Two developers may simultaneously carry out changes to the different functions of the same work
product, and while saving overwrite each other.

 ● Undoing Changes It becomes easy to undo some part of a revision or even rollback development to a
certain version. Unless proper confi guration management system is in place, it becomes very diffi cult
to undo a change.

 ● System Accounting System accounting denotes keeping track of who made a particular change to a
confi guration item, what change was exactly made, and when the change was made. Knowing the
what, who, and when of changes will help in understanding why changes were made and whether
some changes are redundant or for comparing the performance of particular versions. It may at times
be required to rollback to a previous baseline if a change is not justifi ed or is improper. Users may wish
to compare today’s version of some software with yesterday’s version or last year’s version. Since a
confi guration management system keeps track of every version and revision, this becomes a simple
task.

Monitoring and Control 229

 ● Handling Variants As we have already discussed, it often becomes necessary to create variants. In this
situation, without a confi guration management system, keeping track of all variants, their versions and
revisions is a nontrivial task. Further, existence of variants of a software product causes some peculiar
problems. Suppose you have several variants of the same module, and fi nd that a bug exists in one of
them. Then it has to be fi xed in all versions and revisions. To do it effi ciently, you should not have to
fi x it in each and every version and revision of the software separately. Making a change to one program
should be refl ected in all relevant versions and revisions.

 ● Accurate Determination of Project Status Normally, a project manager performs the confi gu-
ration management activity by using a confi guration management tool. In addition, a confi guration
management tool helps to keep track of various deliverable objects so that the project manager can
quickly and unambiguously determine the current state of the project. The confi guration management
tool enables the developer to change the various components in a controlled manner.

 ● Preventing Unauthorized Access to the Work Products Confi guration management helps implement a
controlled change process. It therefore becomes possible to prevent unauthorized changes to the work
products.

Confi guration management process
Confi guration management is carried out through the following two principal activities:

 ● Confi guration Identifi cation: This activity involves deciding which parts of the system should be kept
under confi guration management.

 ● Confi guration Control: This activity is used to ensure that changes to a system occur smoothly.

In the following section, we provide an overview of these two activities.

 ● Confi guration Identifi cation

 Project managers normally classify the work products associated with a software development process
into three main categories, viz., controlled, pre-controlled, and uncontrolled. Controlled work products
are those that are put under confi guration control. The team members must follow some formal proce-
dures to change these. Pre-controlled work products are not yet under confi guration control, but will
eventually be under confi guration control. Uncontrolled work products will not be subject to confi gu-
ration control. Controllable work products include both controlled and pre-controlled work products.

Typical controllable work products include the following:

 ● Requirements specifi cation document

 ● Design documents

 ● Tools used to build the system such as compilers, linkers, lexical analysers, parsers, etc.

 ● Source code for each module

 ● Test cases

 ● Problem reports

 EXERCISE 9.9

What are the advantages and disadvantages of putting all the work products in a project under confi gu-
ration control?

230 So ware Project Management

 ● Confi guration Control

 Confi guration control is part of a confi guration management system that most directly affects the
day-to-day operations of developers. Confi guration control allows only authorized changes to the
controlled objects and prevents unauthorized changes. The project manager can give permission to
some members to be able to change or access specifi c work products.

 In order to change a controlled work product such as a code module, a developer can get a private copy
of the module through a reserve operation (see Fig. 9.15). Confi guration management tools allow only
one team member to reserve a module at any time. Once a work product is reserved, it does not allow
anyone else to reserve this module until the reserved module is restored. Thus, by preventing more than
one developer to simultaneously reserve a module, the problems associated with concurrent access are
taken care of.

FIGURE 9.15 Work product modifi ca ons under confi gura on management

Modifi cations to a work product under confi guration control
When developers need to change a work product they fi rst make a reserve request. A reserve request by a
team member is honoured only if appropriate authorization has been given by the project manager to that
member for the specifi c work product. After the reserve command successfully executes, a private copy of
the work product is created in their local directory. Then, they can carry out all necessary changes to the work
product on their private copy. Once they have satisfactorily completed all necessary changes, the changes
need to be restored in confi guration management repository. However, restoring the changed work product to
the system confi guration requires the permission of a change control board (CCB).

The CCB is usually constituted from among the development team members. For every change that needs to
be carried out, the CCB reviews the changes made to the controlled work product and certifi es certain aspects
about the change such as

 ● Change is well-motivated

 ● Developer has considered and documented the effects of the change

Monitoring and Control 231

 ● Changes interact well with the changes made by other developers

 ● Appropriate people (CCB) have validated the change, e.g., someone has tested the changed code, and
has verifi ed that the change is consistent with the need

The change control board (CCB) is seldom a group of people. Except for very large projects, the functions
of the change control board are normally discharged solely by the project manager or some senior member
of the development team. Once the CCB reviews the changes to the module, the project manager updates the
old confi guration item through a restore operation (see Fig. 9.15). A confi guration control tool does not allow
a developer to replace a work product in the confi guration with his local copy unless he gets an authorization
from the CCB. Therefore, incompletely modifi ed or improperly modifi ed work products cannot be updated
in the confi guration.

Open source confi guration management tools
SCCS and RCS are two popular confi guration management tools available on most UNIX systems. SCCS or
RCS can be used for controlling and managing different versions of text fi les. SCCS and RCS do not handle
binary fi les (i.e., executable fi les, documents, fi les containing diagrams, etc.). SCCS and RCS provide an
effi cient way of storing versions that minimize the amount of occupied disk space. Suppose, a module MOD
is present in three versions MOD1.1, MOD1.2 and MOD1.3, then SCCS and RCS stores the original module
MOD1.1 together with changes needed to transform MOD1.1 into MOD1.2, and MOD1.2 to MOD1.3. The
changes needed to transform each baseline fi le to the next version are stored and are called deltas. The main
reason behind storing the deltas rather than storing the full revision fi les is to save disk space.

The change control facilities provided by SCCS and RCS include the ability to incorporate restrictions on
the set of individuals who can create new versions, and facilities for checking components in and out (i.e.,
reserve and restore operations). Individual developers check out components and modify them. After they
have made all the necessary changes to a component, and after these changes have been reviewed, they check
in the changed module into SCCS or RCS.

CONCLUSION

In this chapter we have discussed the requirements for the continual monitoring of projects and the need for
making progress visible. Among the important points to emerge were:

 ● planning is pointless unless the execution of the plan is monitored;

 ● activities that are too long need to be subdivided to make them more controllable;

 ● ideally, progress should be measured through the delivery of project products;

 ● progress needs to be shown in a visually striking way, such as through bar charts, in order to commu-
nicate information effectively;

 ● costs need to be monitored as well as elapsed time;

 ● delayed projects can often be brought back on track by shortening activity times on the critical path or
by relaxing some of the precedence constraints.

232 So ware Project Management

FURTHER EXERCISES

 1. Take a look at Amanda’s project schedule shown in Figure 8.7. Identify those activities scheduled to last
more than three weeks and describe how she might monitor progress on each of them on a fortnightly
or weekly basis.

 2. Amanda’s Gantt chart at the end of week 17 (Figure 9.5) indicates that two activities are running late.
What effect might this have on the rest of the project? How might Amanda mitigate the effects of this
delay?

 3. Table 9.2 illustrates Amanda’s earned value calculations based on work-days. Revise the table using
monetary values based on the cost fi gures that you used in Exercise 8.5. Think carefully about how to
handle the costs of Amanda as project manager and the recovered overheads and justify your decisions
about how you treat them.

 4. If you have access to project planning software, investigate the extent to which it offers support for
earned value analysis. If it does not do so directly, investigate ways in which it would help you to
generate a baseline budget (PV) and track the earned value (EV).

 5. Describe a set of change control procedures that would be appropriate for Brigette to implement at
Brightmouth College.

 6. Give examples of errors that can be identifi ed in a design review.

 7. Give examples of how project termination review results can change the development process and the
project management process.

 8. Suppose a project is budgeted to cost £150,000. The project is to be completed in 18 months. After two
months, the project is 10% complete at an expense of £25,000. It was planned that after two months,
15% of the project work should have been completed. Compute the cost performance index and the
schedule performance index. Interpret these values to assess the progress of the project.

 9. What problems are you likely to face if you are developing several versions of the same software
product according to a client’s request and are not using any confi guration management tools?

 10. What do you understand by software confi guration? What is meant by software confi guration
management? How can you manage software confi guration (only mention the names of the principal
activities involved)? Why is software confi guration management crucial to the success of large software
product development projects (write only the important reasons)?

 11. What is a baseline in the context of software confi guration management? How do baselines get updated
to form new baselines?

 12. How the following can be prevented while using a confi guration management tool? Explain.

 (a) Two team members overwriting each other’s work

 (b) Accidental deletion of work product

 (c) Unauthorized modifi cations to a work product

10

OBJECTIVES

When you have completed this chapter you will be able to:
distinguish between the different types of contract;•
outline the contents of a contract for goods and services;•
plan the evaluation of a proposal or product;•
administer a contract from its signing until the fi nal acceptance of project completion.•

10.1 Introduction
In the Brightmouth College scenario, the college management have decided to obtain their software exter-
nally. Given their limited capability for developing new and reliable software, this seems sensible. At IOE,
Amanda has a team of software developers employed by IOE. However, the demand for development effort
fl uctuates as projects come and go. The IOE management might therefore decide that
it is more cost-effective to employ outside software developers for new development
while a reduced group of in-house software development staff maintain and support
existing systems.

The buying of goods and services, rather than ‘doing it yourself’, is attractive when
money is available but other, less fl exible, types of resource, especially staff time, are
in short supply. However, there are risks arising from the considerable staff time and
attention still needed to manage a contracted-out project successfully. It is essential
that customer organizations such as Brightmouth College and IOE fi nd time to clarify
their exact requirements at the beginning, and to ensure that the goods and services
delivered are satisfactory.

It is not unusual for
a major organiza-
tion to spend 6 to 12
months and 40% of
the total acquisition
and implementation
budget on package
evaluation with major
customer service and
support applications
(Demian Martinez,
Decision Drivers Inc.,
Computing, 23 July,
1998).

234 So ware Project Management

Potential suppliers are likely to be more accommodating before any contract is
signed than afterwards – especially if the contract is for a fi xed price. Thus, as much
forethought and planning is needed with an acquisition project as with internal
development.

In the remainder of this chapter, the different types of contract that can be used will
be explored. This is followed by the general steps to be followed when placing a
contract. The issues to be considered when drafting a contract are then examined. We
conclude by describing some of the things done while the contract is executed.

The bargaining position of the customer will be stronger if their business is going to
be valuable. If you are buying a cut-price computer game, you are unlikely to be able
to negotiate variations on the supplier’s standard contract of sale. (In fact, because of

the inequality of the parties, such sales are subject to special consumer protection laws.) Potential suppliers
will carefully assess the time and money to be spent responding to a customer’s requests as there is no
guarantee of the fi nal contract.

10.2 Types of Contract
The external resources required could be in the form of services, for example staff on short-term contracts
carrying out some project tasks. At Brightmouth College, Brigette could use temporary staff to input employee
details needed for the new payroll system. IOE might carry out application-building in-house but augment
the permanent staff with contract developers. The contractor might not only supply the new system but also
operate it on the customer’s behalf. For example, Brightmouth College might abandon buying a package and
instead get a payroll services agency to carry out the payroll work.

On the other hand, a contract for a completed software package could be placed. This could be:

 ● a bespoke system created specifi cally for one customer;

 ● an off-the-shelf package bought ‘as is’ – this is sometimes referred to as shrink-
wrapped software;

 ● customized off-the-shelf (COTS) software – where a core system is modifi ed to
meet the needs of the client.

Where equipment is purchased, in English law, this is normally a contract for the supply of goods. With the
supply of software this may be regarded as supplying a service (i.e. to write the software) or the granting of
a licence (i.e. permission) to use the software which remains in the ownership of the supplier. These distinc-
tions will have legal implications.

 EXERCISE 10.1

Which of the three system options (i.e. bespoke, off-the-shelf or COTS) might Amanda consider with
regard to the JOE maintenance group accounts system? What factors would she need to take into
account?

Another way of classifying contracts is by the way that the payment to suppliers is calculated. We will look
at:

It was, for example,
reported that two
consortia led by Sema
and EDS, respectively,
had spent £4 million
over 2 years bidding
for a UK government
project to renew the
ICT infrastructure in
the prison service – the
fi nal job was estimated
as being worth £350
million (Computing, 13
August, 1998).

David Bainbridge
(2007) Introduction
to Computer Law,
Longman, 6th edition,
is highly recommended
as a guide to the legal
aspects of IT contracts.

Managing Contracts 235

 ● fi xed price contracts;

 ● time and materials contracts;

 ● fi xed price per delivered unit contracts.

Fixed price contracts
In this situation a price is fi xed when the contract is signed. The customer knows that,
if there are no changes in the contract terms, this is the price they pay on completion.
For this to be effective, the customer’s requirement has to be fi xed at the outset. In other words, when the
contract is to construct a software system, the detailed requirements analysis must already have been carried
out. Once the development is under way the customer cannot change their requirements without renegotiating
the price of the contract.

The advantages of this method are:

 ● Known customer expenditure As long as the requirements are precise and not changed, the customer
has a known cost.

 ● Supplier motivation The supplier has a motivation to work in a cost-effective manner.

The disadvantages include:

 ● Higher prices to allow for contingency The supplier absorbs the risk for any
errors in the estimates. To reduce the impact of this risk, the supplier will add a
margin to the price quoted.

 ● Diffi culties in modifying requirements The need to change the scope of the
requirements may become apparent during development – this may cause
friction between the supplier and customer.

 ● Upward pressure on the cost of changes When competing against other potential suppliers, the supplier
will try to quote as low a price as possible. Once the contract is signed, if further requirements are put
forward, the supplier is in a strong position to demand a high price for these changes.

 ● Threat to system quality The need to meet a fi xed price could mean that the quality of the software
suffers.

Time and materials contracts
With this type of contract, the customer is charged at a fi xed rate per unit of effort, for example per staff-hour.
The supplier may provide an initial estimate of the cost based on their current understanding of the customer’s
requirements, but this is not the basis for the fi nal payment. The supplier usually invoices the customer for
work done at regular intervals, say each month.

The advantages of this approach are:

 ● Ease of changing requirements Where a project has a research orientation and the direction of the
project may change as options are explored, then this may be an appropriate method of payment.

 ● Lack of price pressure The lack of price pressure may promote better quality deliverables.

The disadvantages of this approach are:

 ● Customer liability The customer absorbs the risks associated with poorly defi ned or changing
requirements.

The section on ways
of assessing supplier
payments draws heav-
ily on material from
Paul Radford and
Robyn Lawrie of
Charismatek Software
Metrics, Melbourne,
Australia.

The cost could still be
lower than in-house
development because
the supplier may be
able to exploit econo-
mies of scale and also
expertise acquired
doing similar jobs in
the past.

236 So ware Project Management

 ● Lack of incentives for supplier The supplier has no incentive to work in a cost-effective manner or to
control the scope of the deliverables.

Because the supplier appears to be given a blank cheque, this approach does not fi nd favour with customers.
However, the employment of contract development staff may in effect involve this type of contract.

Fixed price per unit delivered contracts
This is often associated with function point (FP) counting. The size of the system
to be delivered is calculated or estimated at the outset of the project. The size could
be estimated in lines of code, but FPs can be more easily derived from requirements
documents. A price per unit is also quoted. The fi nal price is then the unit price multi-

plied by the number of units. Table 10.1 shows a typical schedule of prices.

TABLE 10.1 A schedule of charges per func on point

Function point
count

Function design cost
per FP

Implementation cost
per FP

Total cost per FP

Up to 2,000 $242 $725 $967

2,001–2,500 $255 $764 $1,019

2,501–3,000 $265 $793 $1,058

3,001–3,500 $274 $820 $1,094

3,501–4,000 $284 $850 $1,134

The company that produced this table in fact charge a higher fee per FP for larger
systems. For example, a system to be implemented contains 2600 FPs. The overall
charge would be 2000 3 $967, plus 500 3 $1,019, plus 100 3 $1,058.

We have already noted that the scope of the application can grow during development.
It would be unrealistic for a contractor to be asked to quote a single price for all the

stages of a development project: how can they estimate the construction effort needed when the requirements
are not yet established? One approach would be to negotiate a series of contracts, each covering a different
stage of system development.

Alternatively, the software supplier might fi rst carry out the system design. A charge could then be made for
design work based on the fi gures in the ‘Function design cost per FP’ column. This, if the designed system
was counted at 1000 FPs, would be 1000 3 $242, i.e. $242,000. If the design was then implemented, and
the actual software delivered, then the additional 1000 3 $725 would be charged, i.e. $725,000. If the scope
of the system grows because the users fi nd new requirements, these new requirements would be charged at
the combined rate for design and implementation, e.g. if new requirements amounting to 100 extra FPs were
found, then the charge for this extra work would be $967 3 100, i.e. $96,700.

Function point count-
ing was discussed in
Chapter 5.

This table comes
from David Garmus
and David Herron
(1996) Measuring
the software process,
Prentice Hall.

The company in
question was RDI
Technologies in the
USA. These fi gures are
now several years old.

Managing Contracts 237

 EXERCISE 10.2

A system to be designed and implemented is counted as comprising 3200 FPs. What would be the total
charge according to the schedule in Table 10.1?

The advantages of this approach are:

 ● Customer understanding The customer can see how the price is calculated and how it will vary with
changed requirements.

 ● Comparability Pricing schedules can be compared.

 ● Emerging functionality The supplier does not bear the risk of increasing functionality.

 ● Supplier effi ciency The supplier still has an incentive to deliver the required functionality in a cost-
effective manner (unlike with time and materials contracts).

 ● Life-cycle range The requirements do not have to be defi nitively specifi ed at the outset. Thus the devel-
opment contract can cover both the analysis and design stages of the project.

The disadvantages of this approach are:

 ● Diffi culties with software size measurement Lines of code can easily be infl ated by adopting a verbose
coding style. With FPs, there may be disagreements about what the FP count should really be: in some
cases, FP counting rules may be seen as unfairly favouring either the supplier or customer. Users, in
particular, will almost certainly not be familiar with the concept of FPs and special training may be
needed for them. The solution to these problems may be to employ an independent FP counter.

 ● Changing requirements Some requested changes may affect existing code
drastically but not increase the overall FP count. A change made late in the
development cycle will usually require more effort to implement than one made
earlier.

To reduce the last diffi culty, one suggestion from Australia has been to vary the charge
depending on the point at which they have been requested – see Table 10.2.

TABLE 10.2 Examples of addi onal charges for changed func onality

Pre-acceptance testing
handover

Post-acceptance testing
handover

Additional FPs 100% 100%

Changed FPs 130% 150%

Deleted FPs 25% 50%

 EXERCISE 10.3

A contract stipulates that a computer application is to be designed, constructed and delivered at a cost
of $600 per FP. After acceptance testing, the customer asks for changes to some of the functions in the

The impact of late
changes will be further
discussed in Chapter
13 on software quality.

This table comes from
the draft Acquisition of
Customised Software
Policy document,
published by the
Department of State
Development, Victoria,
1996.

238 So ware Project Management

system amounting to 500 FPs and some new functions which amount to 200 additional FPs. Using
Table 10.2, calculate the additional charge.

There are other options and permutations of options for payments. The implementation of a specifi cation
could be at a fi xed price, with any additions or changes to the requirements to be charged per FP. Where the
contractor has buy in equipment, the price of which may fl uctuate, it is possible to negotiate a contract where
the fi nal price contains a fi xed portion for labour plus an amount that depends on the actual cost of purchased
components.

 EXERCISE 10.4

It is easy to see why passing on fl uctuations in equipment costs may be advantageous to the contractor.
However, is there any advantage to the customer in such an arrangement?

Another way of categorizing contracts, at least initially, is according to the approach that is used in contractor
selection, namely

 ● open

 ● restricted

 ● negotiated.

Open tendering process
In this case, any supplier can bid to supply the goods and services. All bids compliant
with the original conditions in the invitation to tender must be considered and
evaluated in the same way. With a major project this evaluation process can be time
consuming and expensive.

There has been a global movement towards removing barriers to businesses in one country supplying goods
and services in another. Examples of this are efforts by the World Trade Organization (WTO) and the European
Union to ensure that public bodies do not unfairly favour local businesses. Among the agreements overseen
by the WTO is one on government procurement which lays down rules on tendering processes. Where the
client is a public body, an open tendering process may be compulsory.

Restricted tendering process
In this case, there are bids only from suppliers who have been invited by the customer. Unlike the open
tendering process, the customer may at any point reduce the number of potential suppliers being considered.
This is usually the best approach to adopt.

Negotiated procedure
There may, however, be some good reasons why the restricted tendering process may not be the most
suitable in some particular sets of circumstances. Say, for example, that there is a fi re that destroys some ICT
equipment. The key concern here may be to get replacement equipment up and running as quickly as possible

This categorization is
based on European
Union regulations.

Invitation to tender
(ITT) and request for
proposal (RFP) are in-
terchangeable terms.

Managing Contracts 239

and there may simply not be the time to embark on a lengthy tendering process. Another situation might be
where a new software application had been successfully built by an outside supplier, but some extensions
are required to the system. As the original supplier has staff familiar with the existing system, it might be
inconvenient to approach other potential suppliers via a full tendering process. In these cases, an approach
to a single supplier may be justifi ed. However, approaching a single supplier could expose the customer to
charges of favouritism and should only be done with a clear justifi cation.

10.3 Stages in Contract Placement
Requirements analysis
Before potential suppliers can be approached, you need to have a clear set of
requirements. It is easy for this step to be skimped where the user management
have day-to-day pressures and little time to think about future developments. In
this situation, an external consultant could draw up a requirements document. Even
here, users and their managers need to look carefully at the resulting requirements
document to ensure that it accurately refl ects their needs. As David Bainbridge has
pointed out: ‘the lack of, or defects in, the specifi cation are probably the heart of most
disputes resulting from the acquisition of computer equipment and software’.

The requirements document might typically have sections with the headings shown in Table 10.3.

TABLE 10.3 Main sec ons in a requirements document

1 Introduction

2 A description of any existing systems and the current environment

3 The customer’s future strategy or plans

4 System requirements

 — mandatory

 — desirable

5 Deadlines

6 Additional information required from potential suppliers

The requirements defi ne carefully the functions of the new application and all the
necessary inputs and outputs for these functions. They also state any standards that
apply, and the existing systems with which the new system should be compatible.
There will also need to be operational and quality requirements, concerning such
matters as the required response times, reliability, usability and maintainability of the
new system.

In general, the requirements document should state needs as accurately as possible and avoid technical speci-
fi cations of possible solutions. The onus should be placed on the potential suppliers to identify the technical

This discussion as-
sumes that a feasibility
study has already pro-
visionally identifi ed the
need for the intended
software.

This requirements doc-
ument is sometimes
called an operational
requirement or OR.

Chapter 13 on soft-
ware quality discusses
how aspects of quality
can be measured.

240 So ware Project Management

solutions judged to meet the customer’s needs as they should be technical experts with access to the most
up-to-date information about current technology.

Each requirement needs to be identifi ed as being either mandatory or desirable.

 ● Mandatory If a proposal does not meet this requirement then the proposal is to be immediately
rejected.

 ● Desirable A proposal may be defi cient in this respect, but other features of the proposal could
compensate for this.

For example, in the case of the Brightmouth College payroll package acquisition
project, Brigette might identify a mandatory requirement that any new system carry
out all the processes carried out by the old system. However, a desirable feature might
be that the new payroll package should be able to produce staff costing details in a
format accessible to the college’s accounting computer system.

The requirements document issued to potential suppliers would also contain requests
for information needed to judge the standing of the organization itself. This could
include fi nancial reports, references from past customers and the CVs of key devel-
opment staff.

Evaluation plan
Having drawn up a list of requirements, we now need a plan of how the proposals are to be evaluated. The
situation will be different if the contract is for a system that is to be specially written rather than an off-the-
shelf package. In the latter case, it is the application itself that is being evaluated while in the former situation
it is a proposal for an application.

Ways of checking that the mandatory requirements are met need to be identifi ed. The next consideration
is how the desirable requirements can be evaluated. The problem here is weighing the value of one quality
against another. The ISO 9126 standard, which is discussed in Chapter 13 on software quality, can assist
in deciding whether one system has more of some quality than another, but if there is a difference in price
between the two, we need to estimate if the increase in quality is worth the additional price. Hence ‘value
for money’ is often the key criterion. For example, a fi nancial value could be placed on a link between the
payroll and accounting applications. If we were to cost clerical effort at £20 an hour and knew that four hours
of clerical effort a month went into inputting staffi ng costs into the accounting computer system, we could
conclude that over a four-year period (£20 an hour 3 4 hours a month 3 48 months), or £3,840, would be
saved. If system A has this feature and costs only £1,000 more than system B which does not, this would give
system A an advantage.

The costs to be taken into account are those for the whole of the lifetime of the proposed system, not just
the costs of acquiring the system. Also, where the relationship with the supplier is likely to be ongoing, the
supplier organization needs to be assessed as well as its products.

 EXERCISE 10.5

One desirable feature sought in the Brightmouth College payroll is the ability to raise staff automati-
cally to the next point in their salary scale at the beginning of each payroll year. At present, the new

One suggestion is that
the weighting between
product criteria and
supplier criteria when
selecting software
ought to be 50:50
(Demian Martinez,
Decision Drivers Inc.,
Computing, 23 July,
1998).`

Managing Contracts 241

scale points are entered clerically and then checked. This takes about 20 hours of staff effort each year,
which costs £20 an hour. System X has this feature, but system Y does not. System X also has a feature
which can automatically produce bar charts showing payroll expenditure per department. Such a report
currently is produced twice a year by hand and on each occasion takes about 12 hours’ effort. With
system Y, changes to department names can be carried out without any coding effort whereas in the case
of system X, the supplier would charge a minimum of £300 to do this. The college authorities estimate
there is a 50% chance that this could occur during the expected four-year lifetime of the system. System
X costs £500 more than system Y. Given this information, which system appears to give better value
for money?

Invitation to tender
Having produced the requirements and the evaluation plan, it is now possible to issue the invitation to tender
to prospective suppliers. Essentially, this will be the requirement document with a supporting letter containing
information about how responses to the invitation are to be lodged. A deadline will be specifi ed and it is
hoped that by then a number of proposals with price quotations will have been received.

In English law, for a contract to exist there must be an offer on one side which is
accepted by the other. The invitation to tender is not an offer itself, but an invitation
for prospective suppliers to make an offer.

Certain problems might now emerge. The requirements specifi ed could be satisfi ed in
a various ways. The customer not only needs to know a potential supplier’s price but
also how they intend to satisfy the requirements – this will be particularly important
where the contract is to build a completely new system.

In relatively straightforward cases, it would be enough to have post-tender clarifi cation and negotiation to
resolve issues in the supplier’s proposal. With more complex projects a more sophisticated approach may be
needed. One way of getting the detail of the suppliers’ proposals elaborated is to have a two-stage tendering
process.

In the fi rst stage, technical proposals are requested from potential suppliers who do not necessarily quote any
prices. Some of these proposals can be dismissed as not meeting mandatory requirements. The remaining
ones could be discussed with representatives of the suppliers in order to clarify and validate the technical
proposals. The suppliers might be asked to demonstrate certain aspects of their proposals. Where short-
comings in the proposal are detected, the supplier could be given the opportunity to remedy these.

These discussions could result in a Memorandum of Agreement (MoA) with each
prospective supplier. This is an acceptance by the customer that the proposed solution
(which might have been modifi ed during discussions) offered by the supplier satisfac-
torily meets the customer’s requirement.

Tenders are then invited from the suppliers who have signed individual Memoranda of Agreement. The tender
would incorporate the MoA and would be concerned with the fi nancial terms of a potential contract.

If a design has to be produced as part of the proposal made by a supplier in response to an invitation to tender
then the supplier would have to do a considerable amount of work with only a limited prospect of being paid
for it. One way of reducing this burden is for the customer to choose a small number of likely candidates
who will be paid a fee to produce design proposals. These can then be compared and the fi nal contract for
construction awarded to the most attractive proposal.

In English law, with
certain exceptions, a
contract does not have
to be in writing. Clearly
it is desirable that it
should be.

This approach has
been recommended
for government ICT
contracts in the United
Kingdom.

242 So ware Project Management

Evaluation of proposals
We have already mentioned the need to produce an evaluation plan describing how each proposal will be
checked against the selection criteria. This reduces risks of requirements being missed and ensures that all
proposals are treated consistently. It would be unfair to favour a proposal because of the presence of a feature
not requested in the original requirement.

We noted earlier that an application could be bespoke, off-the-shelf, or customized. In the case of off-the-shelf
packages the software itself could be evaluated and it might be possible to combine some of the evaluation
with acceptance testing. With bespoke development it would be a proposal that is evaluated, while COTS may
involve elements of both. Thus different approaches would be needed.

The process of evaluation may include:

 ● scrutiny of the proposal documents;

 ● interviewing suppliers’ representatives;

 ● demonstrations;

 ● site visits;

 ● practical tests.

The proposal documents provided by the suppliers can be scrutinized to see if they contain features satisfying
all the original requirements. Clarifi cation might be sought over certain points. Factual statements made by
a supplier have a legal commitment if they infl uence the customer to offer the contract to that supplier. It
is therefore important to get a written, agreed, record of these clarifi cations. The customer might take the
initiative here by taking minutes of meetings and then writing afterwards to the suppliers to get them to
confi rm their accuracy. A supplier could, in the fi nal contract document, attempt to exclude any commitment
to any representations made in pre-contract negotiations – the terms of the contract need to be scrutinized
for this.

Where there is an existing product there could be a demonstration. A danger is that demonstrations can be
controlled by the supplier and as a passive observer it may be diffi cult to maintain full attention for more than,
say, half an hour. Because of this, the customer organization should have their own schedule of what needs to
be demonstrated, ensuring that all the important features are seen in operation.

With off-the-shelf software, the customer could actually try out the package. For example, a demonstration
version could be made available which closes itself down after 30 days. Once again a test plan is needed to
ensure that all the important features are evaluated in a complete and consistent manner. Once a package is
identifi ed as the most likely candidate, it needs to be examined for any previously unforeseen factors that
might invalidate this choice.

A frequent problem is that while an existing application works well on one platform with a certain level of
transactions, it does not work satisfactorily with the customer’s ICT confi guration or level of throughput.
Demonstrations might not reveal this problem. Visits to operational sites already using the system could be
more informative. In the last resort a special volume test could be conducted.

Managing Contracts 243

 EXERCISE 10.6

How would you evaluate the following aspects of a proposal?

 (i) The usability of an existing software application.

 (ii) The usability of a software application which is yet to be designed and constructed.

 (iii) The maintenance costs of hardware to be supplied.

 (iv) The time taken to respond to requests for software support.

 (v) Training.

A decision is made to award the contract to a supplier. One reason for a structured
and, as far as possible, objective approach to evaluation is to demonstrate that the
decision has been made impartially. In most large organizations, placing a contract
involves the participation of a second party within the organization, such as a contracts
department, who can check that the correct procedures have been carried out. Also,
the fi nal legal format of a contract will almost certainly require some legal expertise.
Not only should the successful candidate be notifi ed but the unsuccessful candidates should also be told of the
decision. This might not be simply a matter of courtesy: under WTO or EU rules, there is a legal requirement
to do this in certain circumstances. It makes dealing with unsuccessful bidders easier if they can be given
clear and objective reasons why their proposals did not fi nd favour.

10.4 Typical Terms of a Contract
In a textbook such as this, it is not possible to describe the all necessary content of contracts for ICT goods
or services. It is possible, however, to outline some of the major areas of concern.

Defi nitions
The terminology used in the contract document may need to be defi ned, e.g. who is meant by the words
‘client’ and ‘supplier’.

Form of agreement
For example, is it a contact of sale, a lease, or a licence? Also, can the subject of the contract, such as a licence
to use a software package, be transferred to another party?

Goods and services to be supplied
Equipment and software to be supplied This should include an actual list of the individual pieces of equipment
to be delivered, complete with the specifi c model numbers.

Services to be provided This would cover such things as:

 ● training;

 ● documentation;

Where substantial
sums of money are
involved, legal advice
on the terms of the
contract is essential.

244 So ware Project Management

 ● installation;

 ● conversion of existing fi les;

 ● maintenance agreements;

 ● transitional insurance arrangements.

Ownership of the soft ware
Who has ownership of the software? There may be two key issues here: fi rst, whether the customer can sell
the software to others and, second, whether the supplier can sell the software to others. Where an off-the-shelf
package is concerned, the supplier often simply grants a licence for the customer to use the software. Where
the software is written for a specifi c customer then that customer may want exclusive use of the software –
they might object to software which they hoped would provide a competitive edge being sold to rivals. They
could ensure this by acquiring the copyright to the software outright or by specifying in a contract that they
should have exclusive use of the software. Where a core system has been customized by a supplier then there
is less scope for the customer to insist on exclusive use.

Where software is written by an employee as part of their normal job, it is assumed
that the copyright belongs to the employer. Where the customer organization has
contracted an external supplier to write software for them, the contract needs to make
clear who is going to retain the copyright – it cannot, in this case, be automatically

assumed that it is the customer. The customer may decide to take responsibility for maintenance and devel-
opment once the software is delivered and would need the source code. In other cases, where the customer
does not have an adequate in-house maintenance function, the supplier may retain the source code, and
the customer may have to approach the supplier for any further changes. There are dangers with this, for
example that the supplier could go out of business. An escrow agreement can be included in the contract so
that up-to-date copies of the source code are deposited with a third party. In the United Kingdom, the NCC
Group provides an escrow service.

Environment
Where physical equipment is to be installed, the demarcation line between the supplier’s and customer’s
responsibilities with regard to such matters as accommodation and electrical supply needs to be specifi ed.
Where software is being supplied, the compatibility of the software with the existing hardware and operating
system platforms would need to be confi rmed.

Customer commitments
Even when work is carried out by external contractors, a development project still needs the participation of

the customer. The customer may have to provide accommodation for the suppliers
and perhaps other facilities such as telephone lines.

Acceptance procedures
Good practice is to accept a delivered system only after user acceptance tests. Part
of the contract would specify such details as the time that the customer will have
to conduct the tests, deliverables upon which the acceptance tests depend and the
procedure for signing off the testing as completed.

Any assignment of
copyright would need
to be in writing.

Some customers fi nd
that specially written
or modifi ed software is
not thoroughly tested
by the supplier before
delivery. Some suppli-
ers seem to think that
it is cheaper to get the
customer to do the
testing for them!

Managing Contracts 245

Standards
This covers the standards with which the goods and services should comply. For example, a customer could
require the supplier to conform to the ISO 12207 standard relating to the software life cycle and its documen-
tation (or, more likely, a customized sub-set of the standard). Within the European Union, government
customers with contracts for projects above a certain threshold value must, by law, ensure that the work
conforms to certain standards.

Project and quality management
The arrangements for the management of the project must be agreed. These include the frequency and nature
of progress meetings and the progress information to be supplied to the customer. The contract could require
that appropriate ISO 9001 standards are followed.

Timetable
This provides a schedule of when the key parts of the project should be completed. This timetable will
commit both the supplier and the customer. For example, the supplier may only be able to instal the software
on the agreed date if the customer makes the hardware platform available at that time.

Price and payment method
Obviously the price is very important. What also needs to be agreed is when the payments are to be made.
The supplier’s desire to be able to meet costs as they are incurred needs to be balanced by the customer’s
requirement to ensure that goods and services are satisfactory before parting with their money.

Miscellaneous legal requirements
This is the legal small print. A contract may require clauses which deal with such matters as the defi nition of
terms used in the contract, the legal jurisdiction that will apply to the contract, what conditions would apply
to the subcontracting of the work, liability for damage to third parties, and liquidated damages. Liquidated
damages are estimates of the fi nancial losses that the customer would suffer if the supplier were to fall short
of their obligations. It is worth noting that under English law, the penalties laid down in penalty clauses
must refl ect the actual losses the customer would suffer and cannot be unrealistic and merely punitive. Even
this limitation may not be enough in some cases as far as the supplier is concerned. As computer systems
assume increasingly critical roles and in safety-critical applications can even be life-threatening in the case of
malfunction, consequential damage could be astronomical. Suppliers will try to limit this liability. The courts
(in England and Wales) have tended to look critically at such attempts at limiting liability, so that suppliers
may, in the case of major contracts, take out insurance to cover such liabilities.

If there is a dispute, resorting to litigation, while being lucrative for the lawyers involved, is likely to be time-
consuming and expensive. An alternative is to agree that disputes be settled by arbitration. This requires
disputes to be referred to an expert third party whose decision on the facts of the case is binding. Even this
procedure might not be quick and inexpensive and another option is alternative dispute resolution where a
mediator acts in an advisory capacity only and attempts to broker an agreement between the two sides.

246 So ware Project Management

10.5 Contract Management
We have already noted that forms of communication between the supplier and
customer during the project could be specifi ed in the contract. It would probably suit
all concerned if the contractor is left to get on with the work. However, at certain
decision points (or milestones) the customer might wish to examine work already

done and make decisions about the future direction of the project. The project could require representatives
of the supplier and customer to interact at key points in the development cycle – for example, users may need
to provide information to assist interface design.

One way of identifying the decision points is to divide a large project into increments.
For each increment there could be an interface design phase, and the customer might
need to approve the designs before the increment is built. There could also be decision

points between increments.

For each decision point, the deliverables from the suppliers, the decisions to be made by the customer and the
possible outcomes need to be defi ned. These decision points have added signifi cance if they are the basis for
payment to the contractor. The customer also has responsibilities at these decision points – for example, the
contractor should not be delayed unnecessarily awaiting customer approval of interim deliverables.

There will be concerns about the quality of contracted work. The ISO 12207 standard envisages the possi-
bility of there being agents, independent of both the supplier and customer, who will carry out verifi cation,
validation and quality assurance. It also allows for joint reviews of project processes and products to be
agreed when the contract is negotiated.

We saw earlier that changes to requirements will vary the contract terms. Oral evidence is not normally
admissible to contradict, add to, or vary the terms of a written contract, so that agreed changes need to be
documented. A change control procedure must record requests for changes, the supplier’s agreement to them
and the cost for additional work.

The supplier might not meet a legal obligation. This might not be their fault, if, for example, the customer
causes the delay by lateness in giving the necessary approvals for intermediate products. If no action is taken
when the default occurs, this might imply that the customer in fact condones the failure and could lead to
the loss of legal rights. The customer should protect their legal rights by offi cially notifying the supplier that
the failure has been recognized. It will be recalled that under English law any claim for liquidated damages
should be based on actual losses, so the customer needs to keep an accurate record of the actual losses
incurred as a result of the default.

10.6 Acceptance
When the work has been completed, the customer needs to arrange acceptance testing. The contract may limit
how long acceptance testing can take, so the customer must be organized to carry out this testing before the
time limit for requesting corrections expires.

We have already noted that some software suppliers are rather cursory with their pre-acceptance testing. It
seems that they would rather the users spent their time on testing than them. This imposition can be reduced
by asking to approve the supplier’s internal test plans. An associated pitfall is that once the main devel-
opment work is completed, the supplier not unnaturally wants to reallocate their most productive staff to
other projects. The customer could fi nd that all their problem reports are being dealt with by relatively junior
members of the supplier’s staff, who may not be familiar with all aspects of the delivered system.

ISPL Euromethod of-
fers guidance about
how decision points
may be planned.

Chapter 4 discusses
incremental delivery.

Managing Contracts 247

Part or all of the payment to the supplier should depend on this acceptance testing. Sometimes part of the
fi nal payment is retained for a period of operational running and is paid if the levels of performance are as
contracted for. There may also be a period of warranty during which the supplier should fi x any errors found
for no charge. The supplier might suggest a very short warranty period of, say, 30 days. It may be in the
customer’s interests to negotiate a more realistic period of, say, at least 120 days.

CONCLUSION

Some of the key points in this chapter have been:

 ● the successful contracting out of work requires considerable amounts of management time;

 ● it is easier to gain concessions from a supplier before a contract is signed rather than afterwards;

 ● alternative proposals need to be evaluated as far as possible by comparing costs over the whole lifetime
of the system rather than just the acquisition costs;

 ● a contract will place obligations on the customer as well as the supplier;

 ● contract negotiation should include reaching agreement on the management of the supplier–customer
relationship during the execution of the project.

FURTHER EXERCISES

 1. At IOE, the management are considering ‘outsourcing’ the maintenance accounting system, i.e.
getting an outside specialist organization to take over the operation, maintenance and support activities
associated with the system. Write a short memorandum to management outlining the advantages and
disadvantages of such a reorganization.

 2. Further exercise 4 at the end of Chapter 1 concerned a software house that needed a training course
developed to introduce new users to an order processing application that they had developed. Assume
that you are an independent training consultant who has been approached by the software house to
develop the training package. You have agreed in principle and now a contract is being negotiated for
the work.

 (a) List the points that you would want clarifi ed and included in the contract.

 (b) Having produced the list of points requiring clarifi cation, examine it from the point of view of the
software house. Are there any additional points that they would want clarifi ed?

 3. In each of the following cases, discuss whether the type of application package to be adopted would be
most likely to be bespoke, off-the-shelf or COTS.

 (a) A college requires a student fees application. It is suggested that the processes required in the
application are similar to those of any billing system, with some requirements that are peculiar to
the administration of higher education.

 (b) A computer-based application is needed at IOE to hold personnel details of staff employed.

 (c) A system is required by a national government that calculates, records and notifi es individual
taxpayers about income tax charges.

 (d) An expert system for use in a hospital to diagnose the causes of eye complaints.

248 So ware Project Management

 4. The schedule of charges per function point shown in Table 10.1 has higher rates for larger systems.
Give arguments explaining why this might be justifi ed and also arguments against.

 5. Table 10.2 has a charge of 25% and 50% of the normal rate for deleting transactions from an appli-
cation. This may seem to be rather high for simply removing code. What work would be involved in
deleting functionality that could justify this cost?

 6. Assume that IOE has decided on a COTS solution that will replace the whole of the existing maintenance
accounting system rather than simply plugging in additional modules to deal with annual contracts.
Write a memorandum that Amanda could send to IOE’s legal department outlining the important provi-
sions that a contract to supply this system should have.

11

OBJECTIVES

When you have completed this chapter you will be able to:
identify some of the factors that infl uence people’s behaviour in a project environment;•
select and induct new staff into a project;•
increase staff motivation;•
take steps to reduce unnecessary stress and threats to health and safety.•

11.1 Introduction
We are going to examine some of the problems that Amanda and Brigette could meet when dealing with
members of their teams. Where possible, we want to base any advice on the fi ndings of writers on organi-
zational behaviour (OB). We will pay special attention where the sources refer to software development
environments. Some of these human considerations affect staff as individuals. These will be the subject of
this chapter. Others arise from the need for people involved in ICT system development and implementation
to work in cooperation with others. These team and organizational issues are the topics of the following
chapter. A group is, of course, made up of individuals so despite this division of concerns, the two chapters
will have some overlaps.

There will be four main concerns in the current chapter: staff selection, staff development, staff motivation
and the continued well-being of staff during the course of a project.

The issues raised in this chapter have impacts at all stages of project planning and execution but in particular
at the following points (see also Figure 11.1).

 ● Some objectives can address health and safety during the project (Step 1).

250 So ware Project Management

 ● Although project leaders might have little control over organizational structure, they need to be aware
of its implications (Step 2).

 ● The scope and nature of activities can be set in a way that will enhance staff motivation (Step 4).

 ● Many risks to project success relate to staffi ng (Step 6).

 ● The qualities of individual members of staff should be taken into account when allocating staff to
activities (Step 7).

FIGURE 11.1 Some places in the Step Wise framework where sta ng concerns are important

Managing People in So ware Environments 251

11.2 Understanding Behaviour
People with practical experience of projects invariably identify the handling of people as an important aspect
of project management. People like Amanda and Brigette would want to know whether the effective and
sensitive management of staff comes only from experience or whether expert advice can help. Such advice
may be more convincing if it is based on evidence that has been gathered through some kind of research.

This research into individual and group behaviour in software and ICT development environments needs
to adopt social science research methods. This type of research requires a different mindset to that usually
needed by software developers. Although the development of systems is usually based on user requirements
that can be interpreted in more than one way, the end result is a system that works in a perfectly consistent
way. The developers who produce such systems will inevitably have a tendency to see things in terms of
deterministic systems where once a sequence of inputs is known, the outputs can be forecast with some
certainty.

Such systems are perceived as being governed by mechanistic laws, just as there are in the physical sciences
such as chemistry. This mindset tends to favour experimentation as the means of establishing the relation-
ships between inputs and outputs and is sometimes referred to as a positivist approach. Attempts have been
made to extend this model to social systems. However, because social systems, including business organiza-
tions, are so complex, it is not possible to predict their outcomes with any certainty. What can be done is to
detect statistical relationships within such systems that can be expressed as generalized models or theories.

The discipline of organizational behaviour has evolved theories that try to explain people’s behaviour. These
theories are often structured as ‘If A is the situation then B is likely to result’. Attempts are made to observe
behaviour where variables for A and B are measured and a statistical relationship between the two variables
sought. Unlike physical science it is rarely, if ever, that it can be said that B must always follow A.

An interpretivist school of thought can be contrasted with the positivist one, particularly in relation to the
extension of the quantitative and experimental methods from the physical sciences to people and organiza-
tions. Interpretivists point out that many concepts are not objective but are inter-subjective ones created
by human beings. For example, later in this chapter we will examine whether there are particular personal
characteristics that are associated with successful software developers. Some studies have found personal
characteristics that seem to be strongly associated with ‘software engineers’ while other studies have found
none. One question here would be how ‘software engineer’ is defi ned. Would someone who customizes
and instals off-the-shelf packaged software count as a ‘software engineer’? Would the description ‘software
engineer’ cover the role of the ICT business analyst? Furthermore, how would you defi ne ‘successful’? Is it
someone who can write lots of code very quickly? Or someone who knows where to fi nd the right existing
software to do a job? One way of resolving such questions would be to look closely at specifi c ICT environ-
ments and observe the different types of role that people undertake and the tasks and skills associated with
such roles. The typical way of doing this is an in-depth study of a small number (perhaps only one) of
instances of a particular type of organization which produces a description of how things are done in that
context.

The two viewpoints labelled positivist and interpretivist can both be valid and useful. In the types of research
that underpin the material in the current chapter on individuals in work environments the quantitative (or
‘positivist’) type predominates. In the following chapter on working in teams the research drawn upon tends
to be more qualitative and based on case studies in the interpretivist tradition.

252 So ware Project Management

In the real world there will be a wide range of infl uences on a situation, many invisible
to the observer. It is therefore diffi cult to decide which set of research fi ndings is
relevant. A danger is that we end up with a set of maxims which are little better than
superstitions. However, by examining these issues people can at least become more
sensitive and thoughtful about them.

In what follows we will be making references to workers in the OB fi eld such as
Taylor, McGregor and Herzberg. Rather than overwhelming the reader with references, we recommend the
reader who is interested in exploring this topic further to look at some of the books in the Further Reading
section at the back of the book. Where we have given references these tend to be for works related specifi cally
to an ICT environment.

11.3 Organizational Behaviour: A Background
The roots of studies in OB can be traced back to work done in the late 19th and early
20th centuries by Frederick Taylor. Taylor attempted to analyse the most productive
way of doing manual tasks. The workers were then trained to do the work in this
way.

Taylor had three basic objectives:

 ● to select the best people for the job;

 ● to instruct them in the best methods;

 ● to give incentives in the form of higher wages to the best workers.

‘Taylorism’ is often represented as crude and mechanistic. However, a concern for
identifying best practice is valid. In the more mundane world of software development,
the growth of both structured and agile methods is an example of an emphasis on best
practice. Both Amanda and Brigette will be concerned that tasks are carried out in the
proper way. More contentious is Taylor’s emphasis on the exclusively fi nancial basis
of staff motivation, although Amanda and Brigette will fi nd many colleagues who
hold Taylor’s view on the importance of ‘performance-related pay’. Unfortunately,

Amanda and Brigette are likely to have very little control over the fi nancial rewards of their staff. However,
they should be encouraged by fi ndings that motivation rests not just on such rewards.

During the 1920s, OB researchers discovered, while carrying out a now famous set of tests on the conditions
under which staff worked best, that not only did a group of workers for whom conditions were improved
increase their work-rates, but also a control group for whom conditions were unchanged. Simply showing a
concern for what workers did increased productivity. This illustrated how the state of mind of workers infl u-
enced their productivity.

The cash-oriented, or instrumental, view of work of some managers can thus be contrasted with a more
rounded vision of people in their place of work. The two attitudes were labelled Theory X and Theory Y by
Donald McGregor.

Theory X holds that:

 ● the average human has an innate dislike of work;

 ● there is a need therefore for coercion, direction and control;

 ● people tend to avoid responsibility.

Work Psychology by J.
Arnold, C. L. Cooper
and I. T. Robertson
(2004) 4th edition, FT
Prentice Hall, is a good
general text on these
topics.

Frederick Winslow
Taylor, 1856–1915, is
regarded as the father
of ‘scientifi c manage-
ment’ of which OB is
a part.

The research that
obtained these fi nd-
ings was done at the
Hawthorne Works of
Western Electric in
Chicago, hence the
‘Hawthorne Effect’.

Managing People in So ware Environments 253

Theory Y, on the other hand, holds that:

 ● work is as natural as rest or play;

 ● external control and coercion are not the only ways of bringing about effort directed towards an organi-
zation’s ends;

 ● commitment to objectives is a function of the rewards associated with their
achievement;

 ● the average human can learn to accept and further seek responsibility;

 ● the capacity to exercise imagination and other creative qualities is widely
distributed.

One way of judging whether a manager espouses Theory X or Theory Y is to observe how staff react when
the boss is absent: if there is no discernible change then this is a Theory Y environment; if everyone visibly
relaxes, it is a Theory X environment. McGregor’s distinction between the two theories also draws attention to
the way that expectations infl uence behaviour. If a manager (or teacher) assumes that you are going to work
diligently and create products of good quality then you are likely to try to meet their expectations.

11.4 Selecting the Right Person for the Job
Taylor stressed the need for the right person for the job. Many factors, such as the
use of software tools and methodologies, affect programming productivity. However,
one of the biggest differences in software development performance is between
individuals. As early as 1968 a comparison of experienced professional programmers
working on the same programming task found a ratio, in one case, of 1:25 between
the shortest and longest time to code the program and, more signifi cantly perhaps, of
1:28 for the time taken to debug it. Amanda and Brigette would therefore be rightly
concerned to get the best possible people working for them.

What sort of characteristics should they be looking for? Is an experienced programmer
better than a new graduate with a fi rst-class mathematics degree? It is dangerous to
generalize but, looking at behavioural characteristics, the American researcher Cheney
found that the most important infl uence on programmer productivity seemed to be
experience. This is not surprising as the impact of experience is the most important
factor in software productivity in Boehm’s COCOMO models – see Chapter 5. Cheney
found that mathematical aptitude had quite a weak infl uence in comparison.

Amanda and Brigette will want staff who can communicate well with each other
and with users. Unfortunately, the American researchers Couger and Zawacki found
that information systems (IS) professionals seemed to have much weaker ‘social
needs’ than people in other professions. They quote Gerald Weinberg: ‘If asked, most
programmers probably say they prefer to work alone where they wouldn’t be disturbed
by other people.’ We see many who are attracted to writing software, and are good at
it, but do not make good managers later in their careers.

Later surveys, however, have not found signifi cant differences between IS and other staff. An explanation of
this could be that IS has become broader and less purely technical in recent years.

A ‘reward’ does not
have to be a fi nancial
reward – it could be
something like a sense
of achievement.

P. M. Cheney (1984)
‘Effects of individual
characteristics, orga-
nizational factors and
task characteristics
on computer pro-
grammer productivity
and job satisfaction’
Information and
Management, 7.

J. D. Couger and R. A.
Zawacki (1978) ‘What
motivates
DP Professionals?’
Datamation, 24.

B. W. Boehm consid-
ered the quality of staff
the most important in-
fl uence on productivity
when constructing the
COCOMO software
cost model (Chapter
5).

254 So ware Project Management

Th e recruitment process
It must be stressed that often project leaders have little choice about the people who will make up their team
– they have to make do with the ‘materials that are to hand’. Recruitment is often an organizational responsi-
bility: the person recruited might, over a period of time, work in many different parts of the organization.

Meredith Belbin usefully distinguishes between eligible and suitable candidates.
Eligible candidates have a curriculum vitae (CV) which shows, for example, the ‘right’
number of years in some previous post and the ‘right’ paper qualifi cations. Suitable
candidates can actually do the job well. A mistake is to select an eligible candidate
who is not in fact suitable. Suitable candidates who are not offi cially eligible can, on

the other hand, be ideal candidates as once in post they are more likely to remain loyal. Belbin suggests we
should try to assess actual skills rather than past experience and provide training to make good minor gaps in
expertise. It seems to us to show that policies that avoid discrimination on the grounds of race, gender, age or
irrelevant disabilities can be not just socially responsible but also a shrewd recruitment policy.

A general approach might be the following.

 ● Create a job specifi cation Advice is often needed as there could be legal implications in an offi cial
document. However, formally or informally, the requirements of the job, including the types of task to
be carried out, should be documented and agreed.

 ● Create a job holder profi le The job specifi cation is used to construct a profi le of the person needed to
carry out the job. The qualities, qualifi cations, education and experience required would be listed.

 ● Obtain applicants Typically, an advertisement would be placed, either within the organization or outside
in the trade or local press. The job holder profi le would be examined carefully to identify the medium
most likely to reach the largest number of potential applicants at least cost. For example, if a specialist
is needed it would make sense to advertise in the relevant specialist journal. The other principle is to
give enough information in the advertisement to allow an element of self-elimination. By giving the
salary, location, job scope and any essential qualifi cations, the applicants will be limited to the more
realistic candidates.

 ● Examine CVs These should be read carefully and compared to the job holder profi le – nothing is more
annoying for all concerned than when people have CVs which indicate clearly that they are not eligible
for the job and yet are called for interview.

 ● Interviews, etc. Selection techniques include aptitude tests, personality tests and the examination of
samples of previous work. Any method must test specifi c qualities detailed in the job holder profi le.

Interviews are the most commonly used method. It is better if there is more than
one interview session with an applicant and within each session there should not be
more than two interviewers as a greater number reduces the possibility of follow-up
questions and discussion. Some formal scoring system for the qualities being judged
should be devised and interviewers should then individually decide scores which
are then compared. An interview might be of a technical nature where the practical
expertise of the candidate is assessed, or of a more general nature. In the latter case, a
major part of the interview could be evaluating and confi rming statements in the CV –

for example, time gaps in the education and employment history would be investigated, and the precise
nature of previous jobs would need to be explored.

R. Meredith Belbin
(1996) Team Roles at
Work, 2nd edition,
Butterworth-
Heinemann.

A standard form which
lists each selection cri-
terion and the degree
to which the candi-
date meets it should
be used to ensure a
consistent and fair
approach.

Managing People in So ware Environments 255

 ● Other procedures References will need to be taken up where necessary, and a medical examination
might be needed.

 EXERCISE 11.1

A new analyst/programmer is to be recruited to work in Amanda’s team at JOE. The intention is to
recruit someone who already has some experience. Make a list of the types of activities that the analyst/
programmer should be capable of carrying out that can be used as the basis for a job specifi cation.

11.5 Instruction in the Best Methods
This is the second concern that we have taken from Taylor. When new members of the
team are recruited, the team leader will need to plan their induction into the team very
carefully. Where a project is already well under way, this might not be easy. However,
the effort should be made – it should pay off as the new recruit will become a fully
effective member of the team more quickly.

The team leader should be aware of the need to assess continually the training needs of their team members.
Just as you formulate a user requirement before considering a new system, and a job holder profi le before
recruiting a member of staff, so a training needs profi le ought to be drawn up for each staff member when
considering specifi c courses. Some training might be provided by commercial training companies. Where
money is tight, alternative sources of training should be considered but training should not be abandoned. It
could just be a team member fi nding out about a new software tool and then demonstrating it to colleagues.
Of course, the nice thing about external courses is talking to colleagues from other organizations – but
attending meetings of your local branch of a computer-related professional association, such as the British
Computer Society (BCS) in the United Kingdom, can serve the same purpose.

The methods learnt need, of course, to be actually applied. Reviews and inspections help to ensure this.

In the next chapter we will return to this topic from the point of view of integrating outsiders into a new group
environment.

11.6 Motivation
The third of Taylor’s concerns was that of motivating people to work. We are going to look at some models
of motivation.

Th e Taylorist model
Taylor’s viewpoint is refl ected in the use of piece-rates in manufacturing indus-
tries and sales bonuses amongst sales forces. Piece-rates can cause diffi culties if a
new system will change work practices. If new technology improves productivity,
adjusting piece-rates to refl ect this will be a sensitive issue. Usually, radical changes
in work practices have to be preceded by a move from piece-rates to day-rates. As will
be seen later, the tendency towards dispersed or ‘virtual projects’ where staff work on
their own premises at some distance from the sponsoring organization’s site has seen
a movement away from payment based on time worked.

Decisions will need to
be made about wheth-
er a newcomer can
more effectively pick
up technical expertise
on the job or on formal
training courses.

Piece-rates are where
workers are paid a
fi xed sum for each item
they produce. Day-
rates refer to payment
for time worked.

256 So ware Project Management

Even where work practices are stable and output can be easily related to reward,
people paid by the amount they produce will not automatically maximize their output
in order to maximize their income. The amount of output will often by constrained
by ‘group norms’: informal, even unspoken, agreements among colleagues about the
amount to be produced.

Rewards based on piece-rates need to relate directly to work produced. Where a
computer application is being developed, it is diffi cult to isolate and quantify work
done by an individual, as system development and support is usually a team effort.
As one member of staff in a study of software support work said: ‘This support

department does well because we’re a team, not because we’re all individuals. I think it’s the only way the
support team can work successfully.’

In this kind of environment, a reward system that makes excessive distinctions between co-workers could
damage morale and productivity. Organizations sometimes get around this problem by giving bonuses to
project team members at the end of a successful project, especially if staff have ‘volunteered’ considerable
unpaid overtime to get the project completed.

 EXERCISE 11.2

A software development department want to improve productivity by encouraging the reuse of existing
software components. It has been suggested that this could be encouraged through fi nancial rewards.
To what extent do you think this could be done?

Maslow’s hierarchy of needs
The motivation of individuals varies. Money is a strong motivator when you are broke. However, as the basic
need for cash is satisfi ed, other motivators are likely to emerge. Abraham Maslow, an American psychologist,
suggested a hierarchy of needs. As a lower level of needs is satisfi ed then gradually a higher level of needs
emerges. If these are then satisfi ed then another level will emerge. Basic needs include food, shelter and
personal safety. The highest-level need, according to Maslow, is the need for ‘self-actualization’, the feeling
that you are completely fulfi lling your potential.

In practice, people are likely to be motivated by different things at different stages of
their life. For example, salary increases, while always welcome, probably have less
impact on the more mature employee who is already relatively well paid than on a
lowly paid trainee. Older team-members might place more value on qualities of the
job, such as being given autonomy, which show respect for their judgement and sense
of responsibility.

Some individual differences in motivation relate simply to personality differences. Some staff have ‘growth
needs’ – they are interested in their work and want to develop their work roles – while others simply see the
job as a way of earning a living.

Group norms are dis-
cussed further under
group decision making.

Quoted by Wanda J.
Orlikowski in Group-
ware & Teamwork,
edited by Claudio U.
Ciborra, Wiley and
Sons, 1996.

However, salary level
can be important to
staff approaching
retirement because
the amount of pension
paid can depend on it.

Managing People in So ware Environments 257

 EXERCISE 11.3

Newspapers often report on the vast sums of money that are paid to the top executives of many
companies. Does this mean that these people are at a low level in the Maslow hierarchy of motivation?
Do they really need all this money to be motivated? What do you think the signifi cance of these salaries
really is?

Herzberg’s two-factor theory
Some things about a job can make you dissatisfi ed. If the causes of this dissatisfaction are removed, this does
not necessarily make the job more exciting. Research into job satisfaction by Herzberg and his associates
found two sets of factors about a job:

 ● hygiene or maintenance factors, which can make you dissatisfi ed if they are not right, for example the
level of pay or the working conditions;

 ● motivators, which make you feel that the job is worthwhile, like a sense of achievement or the challenge
of the work itself.

Brigette, at Brightmouth College, might be in an environment where it is diffi cult to compete with the high
level of maintenance factors that can be provided by a large organization like IOE, but the smaller organi-
zation with its closer contact with the users might be able to provide better motivators.

 EXERCISE 11.4

Identify three incidents or times when you felt particularly pleased or happy about something to do with
your work or study. Identify three occasions when you were particularly dissatisfi ed with your work or
study. Compare your fi ndings with those of your colleagues and try to identify any patterns.

Th e expectancy theory of motivation
Amanda and Brigette need to be aware of how the day-to-day ups and downs of system development affect
motivation. A model of motivation developed by Vroom and his colleagues illustrates this. It identifi es three
infl uences on motivation:

 ● expectancy: the belief that working harder will lead to a better performance;

 ● instrumentality: the belief that better performance will be rewarded;

 ● perceived value: of the resulting reward.

Motivation will be high when all three factors are high. A zero level for any one of the factors can remove
motivation.

Imagine trying to get a software package supplied by a third party to work. You realize that you will never get
it to work because of a bug, and you give up. No matter how hard you work you will not be able to succeed
(zero expectancy).

258 So ware Project Management

You are working on a package for a user and, although you think you can get it to work, you discover that the
user has started employing an alternative package and no longer needs this one. You will probably feel you
are wasting your time and give up (zero instrumentality).

Given that the users really do want the package, your reward might simply be the warm feeling of helping
your colleagues and their gratitude. If in fact, when the users employ the package, all they do is complain
and hold you responsible for shortcomings, then you might avoid getting involved if they later ask for help
implementing a different package (low perceived value of reward).

11.7 Th e Oldham–Hackman Job Characteristics Model
Managers should group together the elements of tasks to be carried out so that they form meaningful and
satisfying assignments. Oldham and Hackman suggest that the satisfaction that a job gives is based on fi ve
factors. The fi rst three factors make the job ‘meaningful’ to the person who is doing it:

 ● skill variety: the number of different skills that the job holder has the opportunity to exercise;

 ● task identity: the degree to which your work and its results are identifi able as belonging to you;

 ● task signifi cance: the degree to which your job has an infl uence on others.

The other two factors are:

 ● autonomy: the discretion you have about the way that you do the job;

 ● feedback: the information you get back about the results of your work.

Oldham and Hackman also noted that both the job holders’ personal growth needs and their working
environment infl uenced their perception of the job. Some writers have pointed out that if people are happy
with their work for other reasons, they are likely to rate it higher on the Oldham–Hackman dimensions
anyway. Thus it might be that cause and effect are reversed.

In practical terms, activities should be designed so that, where possible, staff follow the progress of a particular
product and feel personally associated with it.

Methods of improving motivation
To improve motivation the manager might therefore do the following.

 ● Set specifi c goals These goals need to be demanding and yet acceptable to staff. Involving staff in the
setting of goals helps to gain acceptance for them.

 ● Provide feedback Not only do goals have to be set but staff need regular feedback about how they are
progressing.

 ● Consider job design Jobs can be altered to make them more interesting and give staff more feeling of
responsibility.

Two measures are often used to enhance job design – job enlargement and job enrichment.

 ● Job enlargement The person doing the job carries out a wider variety of activities. It is the opposite of
increasing specialization. For example, a software developer in a maintenance group
might be given responsibility for specifying minor amendments as well as carrying
out the actual code changes. Couger and Zawacki found that programmer/analysts
had higher job satisfaction than programmers.

Job enlargement and
job enrichment are
based on the work of
F. Herzberg.

Managing People in So ware Environments 259

 ● Job enrichment The job holder carries out tasks that are normally done at a
managerial or supervisory level. With programmers in a maintenance team,
they might be given authority to accept requests for changes that involve less
than fi ve days’ work without the need for their manager’s approval.

A comprehensive survey of research into the motivation of software developers can
be found in paper published by Sarah Beecham and colleagues in 2008.

11.8 Stress
Projects are about overcoming obstacles and achieving objectives. Almost by
defi nition, both the project manager and team members will be under pressure. An
American project manager is quoted as saying: ‘Once a project gets rolling, you
should expect members to be putting in at least 60 hours a week. . . . The project
leader must expect to put in as many hours as possible. . . .’

Some pressure is actually healthy. Boredom can make many jobs soul-destroying.
Beyond a certain level of pressure, however, the quality of work decreases and health
can be affected. There is good evidence that productivity and the quality of output
go down when more than about 40 hours a week are worked. As long ago as 1960 it
was found in a US study that people under 45 years of age who worked more than 48
hours a week had twice the risk of death from coronary heart disease.

Many software developers are expected to work overtime on projects for no additional payment. In these
cases, a fall in productivity is more than compensated for by the fact that the work is effectively free to the
employer.

Clearly, it is sometimes necessary to put in extra effort to overcome some temporary obstacle or to deal with
an emergency, but if overtime working becomes a way of life then there will be longer-term problems.

Good project management can reduce the reliance on overtime by the more realistic assessment of effort and
elapsed time needed, based on careful recording and analysis of the performance of previous projects. Good
planning and control will also help to reduce ‘unexpected’ problems generating unnecessary crises.

Stress can be caused by role ambiguity when staff do not have a clear idea of the objectives that their work is
supposed to be fulfi lling, what is expected of them by others and the precise scope of their responsibilities.
The project manager could clearly be at fault in these instances.

Role confl ict can also heighten stress. This is where the person is torn between the demands of two different
roles. The parent of young children might be torn between the need to look after a sick child and the need to
attend an important meeting to win new business.

Some managers claim to be successful through the use of essentially bullying tactics to push projects through.
They need to create crises in order to justify the use of such tactics. This, however, is the antithesis of profes-
sional project management which aims at a rational, orderly and careful approach to the creation of complex
products.

Sarah Beecham et
al. (2008) ‘Motivation
in software engineer-
ing’ Information and
software technology 50
860–78.

Quoted in Death March
by Edward Yourdon,
2nd edition, Prentice-
Hall, 2003.

Kent Beck advocates
a maximum 40-hour
working week as an
extreme programming
practice – see Chapter
4.

260 So ware Project Management

11.9 Health and Safety
Health and safety issues are more prominent in construction and other heavy engineering projects than in ICT
development. Sometimes, however, the implementation of offi ce systems requires the creation of physical
infrastructure which can have inherent physical dangers. ICT infrastructure could, for example, be installed
in a building where construction work is still going on.

In this section we are not addressing general concerns relating to the safety of ICT equipment of which any
organization using such equipment would need to be aware. Nor are we discussing the safety of products
created by the software development process. We are focusing briefl y on the health and safety issues that
relate to the conduct of a project.

Various pieces of legislation govern safety policy and the details of these can be consulted in the appropriate
literature. In the United Kingdom, legislation requires organizations employing more than fi ve employees to
have a written safety policy document. A project manager should be aware of the contents of the document
that applies to the environment in which the project is to be undertaken.

As far as the project manager is concerned, safety objectives, where appropriate,
should be treated like any other project objectives, such as the level of reliability of
the completed application or the overall cost of the project. The management of safety
should therefore be embedded in the general management of the project.

Responsibility for safety must be clearly defi ned at all levels. Some points that will
need to be considered include:

 ● top management must be committed to the safety policy;

 ● the delegation of responsibilities for safety must be clear;

 ● job descriptions should include defi nitions of duties related to safety;

 ● those to whom responsibilities are delegated must understand the responsibilities and agree to them;

 ● deployment of a safety offi cer and the support of experts in particular technical areas;

 ● consultation on safety;

 ● an adequate budgeting for safety costs.

Safety procedures must be brought to the attention of employees and appropriate training be given where
needed.

This is a very cursory glimpse at some of the issues in this area. For a fuller treatment, the specialized
literature should be consulted.

11.10 Some Ethical and Professional Concerns
As we saw above, there is now a legal requirement to act to reduce the threats to the health and safety of
employees at work. Yet even if there were no such law, there would be very few who would not at least pay
lip service to the moral obligation to prevent foreseeable injury to those at work. This would be an ethical
judgement. There are bound to be cases where we would agree that people are, unethically, acting in a
way potentially harmful to others even though laws have not – yet – been passed to prohibit that precise
behaviour.

Professional Issues in
Software Engineering
(3rd edition) by M. F.
Bott et al., Taylor and
Francis, 2001, ex-
plores these issues in
greater depth.

Managing People in So ware Environments 261

Some ethical responsibilities are shared by all members of the community, regardless of their position – for
example, to alert the emergency services when a serious motor accident has taken place. Other ethical respon-
sibilities affect particular organizations and the people who belong to them. Further responsibilities relate to
a person’s professional expertise, such as that of the software engineer or IT practitioner.

It might be thought that organizations have greater ethical responsibilities given their
greater power to infl ict damage than individuals, particular when they implement
large development projects of various kinds. However, there is an argument –
associated particularly with the economist Milton Friedman – that those working for
commercial organizations have a contract to safeguard and enhance the assets of the
stockholders of the company. These stockholders are those who have invested money
in the company and are legally its owners – they could include ordinary people who
have invested their retirement savings in the company. It was argued that pursuing
other goals that might benefi t the community as a whole at the expense of the stock-
holders would be dishonest behaviour by the company’s employees.

 EXERCISE 11.5

Identify some of the possible objections and criticisms that can be made of the stockholder business
ethics model described above.

Another argument for the reduced – or at least peculiar – ethical responsibilities of
commercial organizations is that they are competing with other businesses. If my
business wins some aspect of this game, then my competitors must lose: investors
might lose money and employees their jobs. But, it is argued, that is the way the
market works, and as a result consumers benefi t from reduced prices. However, in
the longer term competition which destroys competitors leads to the domination of
monopolies and increased prices.

Most organizations will, however, recognize that they do have ethical responsibilities. This could be purely
out of self-interest. You may, as a potential customer, be wary of entrusting your custom to organizations
which are transparently motivated by pure greed. Organizations often express their objectives and aspirations
– perhaps in the form of a mission statement – and these tend to include some objectives that relate to matters
of the general public good such as concern for the environment.

Despite removing levels of management (delayering) and creating fl atter reporting structures, large organi-
zations will always have some sort of hierarchy. As we saw in Chapter 1, the people at the top will specify
a general strategy, hopefully consistent with the aspirations of the mission statement. Managers at the next
level will take the strategy and devise programmes of work to achieve the strategic goals in their areas of
responsibility. When doing this they are making decisions within their designated areas of responsibility. This
process will be repeated at successively lower levels in the company until we get to the people who actually
implement the decisions.

Any decision that is made will have to satisfy a number of organizational requirements which could appear
to confl ict. For example, a new ICT application may be needed to meet a legal requirement with a fi xed
deadline. A high-quality system where reliability and correctness can be guaranteed would require a large
team to develop it. This would be very costly and require the normal service to customers to be degraded.

See Milton Friedman
(1970) ‘The social
responsibility of busi-
ness is to increase
profi ts’ The New York
Times Magazine 13
September. Available
at: www.umich
edu/~thecore/doc/
Friedman.doc

A rather extreme ar-
gument that normal
ethical rules do not
apply in business can
be found in Alfred
Carr (1968) ‘Is busi-
ness bluffi ng ethical?’
Harvard Business
Review, 46(1) 143–53.

262 So ware Project Management

Some kind of balance would need to be struck between the need for reliability in the
new system and the current quality of customer service. Whatever the fi nal decision,
there would be some risk about the fi nal outcomes.

Among the decisions involving risks will be those allocated to technical experts such
as engineers and ICT practitioners. These will have special ethical responsibilities
as they have knowledge and expertise that others may not fully understand but upon
which they depend. These experts are likely to be entrusted with decisions about the
deployment of new technologies.

ICT practitioners are unlikely to be expert in all areas of ICT and its development, so identifying a person’s
area of expertise is crucial. It would clearly be unethical for an ICT practitioner to pretend to be knowl-
edgeable about some area where they are not. It also follows that if an ICT practitioner has expertise that
would prevent a colleague from doing something harmful, it would be unethical for them to remain silent.

The decisions entrusted to these specialists would not only have to be technically justifi able but be unbiased.
Accepting what amounts to bribes is clearly an example of unacceptable behaviour. However, recommending
a particular technology because it happens to be one that the practitioner is expert in and its adoption would
enhance his or her career might not immediately appear to be unethical to an individual.

As noted above, all decisions involve risks and true professionals would need to identify and warn about
these risks. We also saw above that organizational actions tend to be implemented in a top-down manner,
with the big decisions about strategy being decided fi rst, and then the different elements of the overall
plan being examined and more detailed decisions being made. Sometimes these high-level decisions have
technical fl aws and it would be the responsibility of the software engineer or ICT practitioner to point out
such defi ciencies.

This responsibility for emerging technical risks is not a matter solely for the practitioner. The organization
must have a mechanism whereby such concerns can be communicated to a responsible manager who is
competent to evaluate the issue and to take necessary actions. This might include escalating the issue to a
higher level of management.

Long-established professions, such as medicine, have ways of certifying the competence of practitioners and
enforcing ethical codes of conduct. In the United Kingdom, the British Computer Society (BCS) is a body
which has produced Codes of Conduct and Good Practice (www.bcs.org/upload/pdf/conduct.pdf and www.
bcs.org/upload/pdf/cop.pdf) – as has the IEEE (www.ieee.org/web/aboutus/ethics) and ACM (www.acm.org/
about/se_code) in the United States – and various schemes for certifying the competence of different ICT
specialists. However, BCS membership is still held by only a small minority of ICT practitioners so there is
a long way to go in establishing ICT as a true profession.

CONCLUSION

Some of the important points that have been made in this chapter are:

 ● people may be motivated by money, but they are motivated by other things as well;

 ● both staff selection and the identifi cation of training needs should be done in an orderly, structured, way
where requirements are clearly defi ned fi rst;

 ● thoughtful job design can increase staff motivation;

An excellent detailed
exploration on these
issues is Rosa Lynn
B. Pinkus et al. (1997)
Engineering Ethics,
Cambridge University
Press, which uses
the Challenger space
shuttle disaster as a
case study.

Managing People in So ware Environments 263

 ● undue pressure on staff can have short-term gains, but is harmful to both productivity and personal
health in the longer term;

 ● project objectives should include, where appropriate, those relating health and safety.

FURTHER EXERCISES

 1. An organization has detected low job satisfaction in the following departments:

 ● the system testing group;

 ● the computer applications help desk;

 ● computer batch input.

 How could these jobs be redesigned to give more job satisfaction?

 2. In Exercise 11.1, a job specifi cation was requested.

 (a) Write a job holder profi le of the sort of person who would be able to fulfi l the specifi cation in
terms of qualities, qualifi cations, previous education and experience.

 (b) For each element in the job holder profi le that you have produced in (a) above, describe ways of
fi nding out whether an applicant has met the requirement.

 3. Section 11.8 focuses on the responsibilities of management in relation to staff stress. Evaluate an alter-
native view that individual staff members need themselves to be responsible for reducing their own
stress levels, perhaps through changes in personal working practices.

 4. Job enlargement sounds like a good thing. Explore what the possible disadvantages of job enlargement
might be for both employers and staff.

12

OBJECTIVES

When you have completed this chapter you will be able to:
improve group working;•
analyse the coordination needs of a project;•
select the best communication genres to support the coordination needs of a project;•
draw up a communication plan;•
evaluate the characteristics of the various team structures;•
use the most appropriate leadership styles.•

12.1 Introduction
We associate software development with advanced technologies yet it is a task requiring intense human
mental activity. Software-based systems can be huge – the software to control a telephone switching system
can contain fi ve million lines of code – so that this human effort has to be shared between individual software
developers within teams and between groups of developers. Amanda at IOE wants to get the best out of her
team, but also needs to coordinate the work of her group with other parts of IOE, including the users. At
Brightmouth College, Brigette does not have a big team to manage, but the need to coordinate her efforts with
those of other project stakeholders is probably greater.

This chapter will look enhancing communication between individual developers within teams and across teams.
It will also look at how the efforts of individuals and teams can be coordinated through communication.

By ‘teams’ we usually mean groups of people who are working together. Typically the individuals work in the
same offi ce, that is, are co-located– although we will see that this is not always so. However, the term ‘project
team’ is sometimes used to refer to all the people working on a project. These people may sit in different work

Working in Teams 265

groups at some distance from each other. These groups can also change over time. Thus individual software
developers are likely to transfer between teams as projects start and fi nish.

We will start by looking at the small group environment where the term ‘team’ is perhaps most justifi ed.
We will look at how true teams come to be formed. We will see how, apart from their technical roles, team
members take on social roles that help team effectiveness.

A team is created to carry out a joint assignment. We will see how some tasks contributing to project objec-
tives are best done by an individual. Other tasks, usually those that involve judgement or decision-making,
may be better done by groups.

We will look at how teams can be coordinated. An organization needs to control the allocation of staff to work
assignments. This is one form of coordination needed between groups and individuals within a project and
other types will be outlined.

Communication genres refer to methods of communication. This goes beyond technologies used and includes
the organizational conventions involved in the communication. Communication genres can be selected and
developed to deal with particular need for project coordination. We will see how arrangements for communi-
cation between project stakeholders can be documented in a communication plan.

As well as coordination which reacts to day-to-day problems, but there needs to be proactive central direction.
This introduces issues related to leadership.

The collaborative nature of project work will have an infl uence on nearly all stages of the Step Wise project
planning framework (Figure 12.1).

 1. Identify project scope and objectives. Here stakeholders in the project are identifi ed and communica-
tions channels are established.

 2. Identify project infrastructure. The organization structure within which the project team will exist is
identifi ed.

 3. Analyse project characteristics. Decisions made about how the project is to be executed – for example
buying versus building software functionality – will affect the team structure needed.

 4. Estimate effort for each activity. Individual and group experience will have a key infl uence on developer
productivity.

 5. Identify activity risks. Risks will include those that relate to staff such as continued availability.

 6. Allocate resources.

 7. Review/publicize plan. A communication plan could be produced at this point.

12.2 Becoming a Team
First we look at how small work groups – where the description ‘team’ is perhaps most apt – are formed.
Simply throwing people together will not immediately enable them to work together as a team. It is suggested
that teams go through fi ve basic stages of development:

 ● Forming The members of the group get to know each other and try to set up some ground rules about
behaviour.

 ● Storming Confl icts arise as various members of the group try to exert leadership and the group’s
methods of operation are being established.

266 So ware Project Management

 ● Norming Confl icts are largely settled and a feeling of group identity emerges.

 ● Performing The emphasis is now on the tasks at hand.

 ● Adjourning The group disbands.

Sometimes specifi c team-building exercises can be undertaken. Some organizations, for example, send their
management teams off on outdoor activities. Without going to these lengths, Amanda and Brigette might
devise some training activities which promote team building.

Valuable research has examined the best mix of personalities in a project team. Belbin studied teams working
together on management games. He initially tried putting the most able people into one group. Surprisingly,

FIGURE 12.1 Some places in the Step Wise framework infl uenced by collabora ve working

This classifi cation is
associated with B. W.
Tuckman and M. A.
Jensen.

Working in Teams 267

these élite teams tended to do very badly – they argued a lot and as a result important tasks were often
neglected.

Belbin came to the conclusion that teams needed a balance of different types of
people.

 ● The chair: not necessarily brilliant leaders but they must be good at running
meetings, being calm, strong but tolerant.

 ● The plant: someone who is essentially very good at generating ideas and
potential solutions to problems.

 ● The monitor–evaluator: good at evaluating ideas and potential solutions and
helping to select the best one.

 ● The shaper: rather a worrier, who helps to direct the team’s attention to the
important issues.

 ● The team worker: skilled at creating a good working environment, for example,
by ‘jollying people along’.

 ● The resource investigator: adept at fi nding resources in terms of both physical
resources and information.

 ● The completer–fi nisher: concerned with completing tasks.

 ● The company worker: a good team player who is willing to undertake less
attractive tasks if they are needed for team success.

A person can have elements of more than one type. On the other hand, about 30% of the people examined by
Belbin could not be classifi ed at all.

Problems can occur when there is an imbalance between the role types of people in a group. For example,
if there are two or more shapers within a group and nobody who takes a chair role to moderate confl icting
views, there is likely to be a stormy atmosphere. On the other hand, if a group mainly consists of plants
and specialists with no shapers or completer–fi nishers, the team is likely to have interesting discussions but
may not get around to actually implementing anything. When putting together a team Belbin recommends
selecting the essential technical specialists fi rst. The group roles of these individuals can then be assessed and
any remaining team members can then be allocated with an eye on making the group roles more balanced.

Group performance
Are groups more effective than individuals working alone? Given the preference
of many people attracted to software development for working on their own, this is
an important question. In many projects, judgements are needed about which tasks
are best carried out collectively and which are best delegated to individuals. As one
manager at IBM said: ‘Some work yields better results if carried out as a team while
some things are slowed down if the work is not compartmentalized on an individual
basis.’ Part of the answer lies in the type of task being undertaken.

One way of categorizing group tasks is into:

 ● additive tasks;

 ● compensatory tasks;

R. Meredith Belbin
(2003) Management
Teams: Why They
Succeed or Fail, 2nd
edition, Elsevier,
contains a self-assess-
ment questionnaire
which identifi es the
role a person is best
suited to.

In Team roles at work,
1996, Belbin suggests
that ‘coordinator’ and
‘implementer’ are
better descriptions
than ‘chair’ and ‘team
worker’. A new role is
added: the ‘specialist’,
the ‘techie’ who likes to
acquire knowledge for
its own sake.

The IBM manager was
quoted by Angelo Failla
in ‘Technologies for co-
ordination in a software
factory’ in Groupware
& Teamwork, edited by
C. U. Ciborra, Wiley &
Sons, 1996.

268 So ware Project Management

 ● disjunctive tasks;

 ● conjunctive tasks.

Additive tasks mean that the efforts of each participant are added to get the fi nal result, e.g. a gang clearing
snow. The people involved are interchangeable.

With compensatory tasks the judgements of individual group members are pooled so
that the errors of some are compensated for by the inputs from others. For example,
individual members of a group are asked to provide estimates of the effort needed to
produce a piece of software and the results are then averaged. In these circumstances

group work is generally more effective than the efforts of individuals.

With disjunctive tasks there is only one correct answer. The effectiveness of the group depends on:

 ● someone coming up with the right answer;

 ● the others recognizing it as being correct.

Here the group can only be as good as its best member – and could be worse!

Conjunctive tasks are where progress is governed by the rate of the slowest performer. Software production
where different staff are responsible for different modules is a good example of this. The overall task is not
completed until all participants have completed their part of the work. In this case cooperative attitudes are
productive: the team members who are ahead can help the meeting of group objectives by assisting those who
are behind. As we will see in a moment, this is an example of group heedfulness.

With all types of collective task, but particularly with additive ones, there is a danger
of social loafi ng, where some individuals do not make their proper contribution. This
can certainly occur with student group activities, but is not unknown in ‘real’ work
environments. As one software developer has commented: ‘[The contribution made to
others] is not always recognized. Nor is the lack of any contributions... nobody points

out those who fail to make any contributions. Like when there’s somebody with vital skills and you ask him
for help, but he doesn’t provide it.’

 EXERCISE 12.1

Social loafi ng is a problem that students often encounter when carrying out group assignments. What
steps can participants in a group take to encourage team members to ‘pull their weight’ properly?

12.3 Decision Making
Before we can look more closely at the effectiveness with which groups can make
decisions, we need to look in general terms at the decision-making process.

Decisions can be categorized as being:

 ● structured: generally relatively simple, routine decisions where rules can be
applied in a fairly straightforward way, or

 ● unstructured: more complex and often requiring a degree of creativity.

Another way of categorizing decisions is by the amount of risk and uncertainty that is involved.

Code reviews could be
seen as an example of
a compensatory task.

The source of the
quotation is the paper
by Failla that is cited
above.

Many of the evaluation
techniques in Chapter
2 are attempts to make
decision making more
structured.

Working in Teams 269

Some mental obstacles to good decision making
So far we have rightly stressed a structured, rational, approach to decision making.
Many management decisions in the real world, however, are made under pressure and
based on incomplete information. We have to accept the role of intuition in such cases,
but be aware of some mental obstacles to effective intuitive thinking, for example:

 ● Faulty heuristics Heuristics or ‘rules of thumb’ can be useful but there are
dangers:

 ● they are based only on information that is to hand, which might be misleading;

 ● they are based on stereotypes, such as accepting a Welshman into a male voice choir without an audition
because of the ‘well-known’ fact that the Welsh are a great singing nation.

 ● Escalation of commitment This refers to the way that once you have made a decision it is increasingly
diffi cult to alter it even in the face of evidence that it is wrong.

 ● Information overload It is possible to have too much information so that you ‘cannot see the wood for
the trees’.

Group decision making
There might be occasions where Amanda at IOE, for instance, might want to consult
with her whole project team. With a project team different specialists and points of
view can be brought together. Decisions made by the team as a whole are more likely
to be accepted than those that are imposed.

Assuming that the meetings are genuinely collectively responsible and have been
properly briefed, research would seem to show that groups are better at solving
complex problems when the members of the group have complementary skills and
expertise. The meeting allows them to communicate freely and to get ideas accepted.

Groups deal less effectively with poorly structured problems needing creative
solutions. Brainstorming techniques can help groups in this situation but research
shows that people often come up with more ideas individually than in a group. Where
the aim is to get the involvement of end-users of a computer system, then prototyping
and participatory approaches such as JAD might be adopted.

Obstacles to good group decision making
Amanda could fi nd that group decision making has disadvantages: it is time-
consuming; it can stir up confl icts within the group; and decisions can be unduly
infl uenced by dominant personalities.

Confl ict can, in fact, be less than might be expected. Experiments have shown that
people will modify their personal judgements to conform to group norms, common
attitudes developed by a group over time.

You might think that this would moderate the more extreme views that some in the group might hold. In fact,
people in groups sometimes make decisions that carry more risk than where they make the decision on their
own. This is known as the risky shift.

Many of the techniques
in Chapter 2 on project
selection are based on
the rational-economic
model.

A different type of
participatory decision
making might oc-
cur when end-users
are consulted about
the way a projected
computer system is to
operate.

Joint Application
Development (JAD)
was discussed in
Chapter 4.

Once established,
group norms can sur-
vive many changes
of membership in the
group.

270 So ware Project Management

Measures to reduce the disadvantages of group decision making
One method of making group decision making more effi cient and effective is by training members to follow
a set procedure. The Delphi technique endeavours to collate the judgements of a number of experts without
actually bringing them face to face. Given a problem, the following procedure is carried out:

 ● the cooperation of a number of experts is enlisted;

 ● the problem is presented to the experts;

 ● the experts record their recommendations;

 ● these recommendations are collated and reproduced;

 ● the collected responses are recirculated;

 ● the experts comment on the ideas of others and modify their recommendations if so moved;

 ● if the leader detects a consensus then the process is stopped, otherwise the comments are recirculated
to the experts.

An advantage of this approach is that the experts could be geographically dispersed. However, this means that
the process can be time-consuming.

 EXERCISE 12.2

What developments in information technology would be of particular assistance to use of the Delphi
technique?

Team heedfulness
Sometimes, despite all these problems, teams work well together. To use the inevitable
sporting analogy, a football team does not play at its best when individual players
simply display their skills as individuals but do not support one another. A successful
move can be triggered where one player sees that another is in a position to score a
goal if provided with a ball. This is an example of team heedfulness, where group
members are aware of the activities of others that contribute to overall group success
and can identify ways of supporting that contribution. In these cases there almost
seems to be a ‘collective mind’. Clearly there is no such physical entity in reality, and
the appearance of a ‘collective mind’ comes from shared understanding, familiarity

and good communications. Some attempts have been made actively to promote this in a software devel-
opment environment, such as the concept of egoless programming, chief programmer teams and Scrum.

Egoless programming
In the early days of computer development managers tended to think of the software
developer as communing mysteriously with the machine. The tendency was for
programmers to see programs as being an extension of themselves and to feel over-
protective towards them. The effects of this on the maintainability of programs can be
imagined. Gerald Weinberg made the then revolutionary suggestion that programmers
and programming team leaders should read each others’ programs. Programs would

These ideas are ex-
plored further in K.
Crowston and E. E.
Kammerer (1998)
‘Coordination and
collective mind in
software requirements
development’ IBM
Systems Journal, 37(2)
227–45.

G. M. Weinberg (1998)
The Psychology
of Computer
Programming, Silver
Anniversary Edition,
Dorset House.

Working in Teams 271

become in effect the common property of the programming group and programming would become ‘egoless’.
Peer code reviews are based on this idea where items produced by individual team members are checked by
selected colleagues – see Chapter 13.

Chief programmer teams
The larger the development group the slower it becomes because of the increased
communication. Thus large time-critical projects tend to have a more formalized,
centralized structure. Brooks stressed the need for design consistency when producing
a large complex system and how this is diffi cult where large numbers of people are
involved in development. He suggested reducing this number but making the remaining
programmers as productive as possible by giving them more support.

The result was the chief programmer team. The chief programmer defi nes the specifi cation, and designs,
codes, tests and documents the software. He or she is assisted by a co-pilot, with whom the chief programmer
can discuss problems and who writes some code. They are supported by an editor to write up the documen-
tation drafted by the chief programmer, a program clerk to maintain the actual code, and a tester. The general
idea is that this team is under the control of a single unifying intellect.

The chief programmer concept was used on the infl uential New York Times data bank project where many
aspects of structured programming were tried out. In this case each chief programmer managed a senior-level
programmer and a program librarian. Additional members could be added to the team on a temporary basis
to deal with particular problems or tasks.

The problem with this kind of organization is getting hold of really outstanding programmers to carry out the
chief programmer role. There is also the danger of information overload on the chief programmer. There is
in addition the potential for staff dissatisfaction among those who are there simply to minister to the needs of
the superstar chief programmers.

Extreme programming (XP)
The new extreme programming (XP) concepts have inherited some of these ideas.
Most XP practices can be seen as ways of promoting a ‘collective mind’. In conven-
tional software development projects, a typical approach to improving communication
and coordination is to introduce more documentation. The advocates of XP argue that
this is self-defeating. They suggest other, less formal, methods of communication and coordination. Rather
than creating separate documents, the key software products, software code and test data, are enhanced. For
example, coding is constantly refactored (that is, rewritten) and coding standards are followed to make the
code clearly convey how the system works. Test cases and expected results are produced before the code, and
act effectively as a form of specifi cation. A user representative should be on hand to clarify user needs. The fi t
between software components is ensured by continual integration testing. Software development by pairs of
developers is advocated – this seems to be a new version of the chief programmer/co-pilot relationship.

We will see that while internal group coordination is enhanced, the problem of coordination between teams
remains.

Brooks’ Mythical Man-
Month has already
been referred to. He
was in charge of the
huge team that created
the operating system
for the IBM 360 range.

Extreme program-
ming was discussed in
Chapter 4.

272 So ware Project Management

Scrum
It would be self-defeating if the practices advocated by agile approaches should
themselves become codifi ed, structured and rigid in application. Promoters of agile
methods, such as Kent Beck, are the fi rst to stress that different types of project will
need different approaches.

The Scrum software development process illustrates some of these points as it has
many elements found in agile methods but also has an element of the chief programmer
philosophy. The name ‘Scrum’ comes from rugby scrums and the image of everyone
pushing together in a common undertaking. The process was originally designed for

new software product development for a competitive market rather than as a commission for a single client.
Here, getting something to market before your competitors may be more important than having a compre-
hensive range of non-essential features. There is no precise specifi cation of the requirements of a particular
client, while having a product that is attractive to a number of customers is important. Proposals for features
are likely to evolve as ideas are tried out during development.

The Scrum process starts with a systems architecture and planning phase. This has something of the chief
programmer approach as a chief architect defi nes the overall architecture of the product. The required release
date for the product and a set of the desired features of the product, each with a priority, would be defi ned at
this stage.

This phase is now followed by a number of sprints, each of which typically lasts between one and four weeks.
The features that it is hoped can be developed during a sprint are selected. The tasks needed to implement the
features are lised. Sprints are carried out by groups, ideally with about seven developers and at a maximum
ten. It is possible for Scrum teams to work in parallel on different sprints, but all teams must fi nish their sprint
on the same day.

The progress of a sprint is marked by short (typically 15 minute) meetings each day. During the meeting,
team members report on progress with their current task, describing any obstacles they are experiencing. The
meeting allows any colleagues who can assist with a problem to come forward. This might be because the
co-worker had a similar problem in the past for which they found a solution. Any resulting problem-solving
discussions take place after the meeting. These Scrum meetings should promote shared understanding in the
group but also help motivate the team as each person’s progress is visible to the whole group.

Sprints are time-boxed and at the end of the sprint period some uncompleted, lower-priority features may
be held over. Unlike XP, external requirements are frozen during the sprint – it will be recalled that with XP,
changes can be requested at any point. However, at the end of the sprint, all sprint teams meet with the other
project stakeholders to review the products created. It is at this point that new features could be added, and
previous ones deleted or modifi ed. The priority of desired features could be modifi ed. The features to be
built in the next sprint are then chosen, and the tasks needed to deliver those features are planned. The sprint
process described above is then repeated.

When all the sprints have been completed, there is a fi nal closure phase where tasks like regression and
integration testing and the writing of user and training guides take place to create a fi nal package for delivery
to market.

Linda Rising and Norman S. Janoff (2000) have described the implementation of Scrum at AG Communications
in the USA. Of interest in their account is the evidence of fl exibility in implementing the process. One team,
for example, decided to have Scrum meetings three times a week, rather than each day. In another case, a

Linda Rising and
Norman S. Janoff
(2000) ‘The Scrum
software development
process for small
teams’ IEEE Software
July/August 26–32 pro-
vides a good overview
of Scrum in practice.

Working in Teams 273

team decided to break the rule that externally imposed changes should be ignored during a sprint, when an
unusually severe externally imposed change was clearly unavoidable.

12.4 Organization and Team Structures
Large software development companies are usually organized into departments. Departmentalization of a
company may be based on several criteria such as staff specialization, product lines, categories of customers,
or geographical location. For example, a certain company at a high-level may be divided into departments
such as banking, embedded application, and telecom software development. Such departments are also
called verticals. Small companies do not have high-level departmentalization. Therefore, we can view a small
company as having only a single department.

Every department usually handles several projects at any time, and each project is assigned to a separate team
of developers. The effectiveness of the developers in achieving the project objectives is signifi cantly affected
by how a department is organized into teams and how the individual teams are structured. In this context, two
important issues that are critical to the effective functioning of every organization are

 ● Department Structure: How is a department organized into teams?

 ● Team Structure: How are project teams structured?

We discuss these issues in the following section.

Department structure
There are essentially three broad ways in which a software development department can be structured, viz.,
functional, project, and matrix formats.

Functional format
In the functional format, the developers are divided into functional groups based on
their specialization or experience. In other words, each functional group comprises
developers having expertise in some specifi c task or functional area. For example,
the different functional groups of an organization might specialize in areas such as
database, networking, requirements analysis, design, testing, and so on. The functional
organizational structure is shown in Figure 12.2(b).

Every developer in an organization would belong to some functional group depending
on his/her specialization. For carrying out specifi c activities, different projects borrow
developers from the corresponding functional groups (shown using arrows in Fig.
12.2). Upon the completion of their activities, the developers are returned to their
respective functional groups. The partially completed product passes from one team to
another and evolves due to the work done on it by several teams. A functional team working on a project does
not physically meet the members of other functional teams who have carried out other parts of the project.
Consequently, a team understands the work carried out by the other functional teams solely by studying the
documents produced by them. Unless good quality documents are produced by each team, teams working
subsequently on the project will fi nd it hard to understand the work already completed. We can therefore say
that a functional organization mandates production of good quality documentation.

As will be seen
later, a functional divi-
sion could facilitate
outsourcing.

Programme manage-
ment can facilitate
better sharing of staff
between projects.

274 So ware Project Management

Project format
The project format is designed for realizing task-oriented teams. In the project format, at the start of every
project, a set of developers are assigned to it (See Figure 12.2 (a)). It is assumed that, among them the
assigned members can carry out various activities required for project completion. The developers remain
with the project till the completion of the project. Thus, the same team carries out all the project activities.
This is in contrast to a functional organization, where each developer belongs to a functional group and
for completing a project activity, members of the corresponding functional area are assigned to the project
temporarily, who are returned back to their respective functional area after completion of the activity.

Functional versus project formats
As we have already pointed out, in a functional organization, the team members carrying out the different
activities of a project do not meet each other. The consequent communication gap is a weak point of this
format. Also, users often prefer the project team approach because they will have a group dedicated to their
needs and they need not deal with members of a large number of functional groups. Further, the project
team members build up familiarity with the software over a relatively long period of time and can effi ciently
carry out maintenance activities. Therefore, the project team approach is advantageous for carrying out the
software maintenance activities. On the other hand, the functional format offers several other types of advan-
tages. The main advantages that the functional team format offers are the following.

 ● Ease of staffi ng The functional organization structure provides an effi cient solution to the staffi ng
problem. Usually different numbers of developers are needed to carry out different project activities.
The project staffi ng problem is eased signifi cantly because any number of required personnel can be
brought into a project as needed, and they can be returned to the functional group when they complete
their work. This possibly is the most important advantage of the functional organization. A project
organization structure, on the other hand, mandates the manager to accept a fi xed number of developers
at the start of the project. These developers work for the entire duration of the project. This results in
many team members idling in the initial phases of software development and the entire team comes
under tremendous pressure in the later phases of development.

FIGURE 12.2 Project and func onal organiza on structures

Working in Teams 275

 ● Production of good quality documents A functional organization mandates production of good quality
documents, since the team members working on some part of a project do not meet the developers who
have completed other parts of the project and gone back to their functional teams.

 ● Job Specialization The functional organization structure facilitates developers to become to specialize
in particular tasks such as database, networking, compilers, requirements analysis, design, coding,
testing, maintenance, etc. They perform these activities again and again for different projects, and
thereby gain experience and insights into their respective areas of specialization.

 ● Effi cient handling of the problems associated with manpower turnover Functional organizations help
to effectively handle the problem of manpower turnover compared to a democratic organization. First,
developers are brought in from the functional pool when needed. Also, good documentation produced
in this organization structure helps any new member to quickly get familiarized with the work already
completed.

 ● Career Planning A functional organization makes it easier for a developer to have a career that is
technically oriented, called the technical ladder. On the other hand, a project organization tends to
facilitate a more general form of career progression, where the developers become business analysts
and managers.

 EXERCISE 12.3

In spite of several important advantages of the functional organization, it is rarely adopted by the
industry. Explain the apparent paradox.

Matrix format
Matrix format is an extension of a functional format, and is intended to provide the advantages of both the
functional and project structures. In a matrix organization, the pool of functional specialists is assigned to
different projects as needed. Thus, the deployment of the different functional specialists in different projects
can be represented in a matrix (see Figure 12.3). Observe that a member assigned to a project reports to both
the manager of his functional group as well as the manager of the project to which he has been assigned.
Thus, in a matrix organization, the project manager needs to share the project responsibility with a number
of individual functional managers.

Matrix organizations can be characterized as weak or strong, depending upon the relative authority of the
functional managers and the project managers. In a strong functional matrix, the functional managers have
authority to assign workers to projects and project managers have to accept the assigned personnel. In a
weak matrix, the project manager completely controls the project budget, can reject workers from functional
groups, and can even decide to hire outside workers.

Though a matrix team organization offers several advantages, two important problems that such an organi-
zation may suffer from are the following.

 ● Due to the multiplicity of authority, confl icts can occur between functional and project managers over
allocation of workers.

 ● In a strong matrix organization, frequent shifting of workers may take place as the functional managers
adopt a fi refi ghting mode to tackle the crises in different projects.

276 So ware Project Management

Team structure
Team structure denotes the reporting, responsibility, and communication structures in individual project
teams. We consider only three team structures: democratic, chief programmer and the mixed team organiza-
tions, although several other variations to these structures are possible. Please note that it is not necessary that
all project teams in an organization are structured the same way. In fact, it is usually the case that within the
same organization, different projects adopt different team structures due to differences to their complexities
and sizes.

Chief Programmer team
A schematic representation of the chief programmer
team structure has been shown in Figure 12.4. In this
team structure, a senior member provides the technical
leadership and is designated as the chief programmer. The
structure of the chief programmer team is the philosophy
behind the chief programmer team is in keeping with the
suggestions of Brooks, who suggested that the design
activity should be carried out by a small team to maintain
design consistency. He argued in favour of making the
designers as productive as possible through support from
the other team members. The chief programmer defi nes
the specifi cation and constructs the high-level design; and
then partitions the remaining tasks of detailed design, viz.,
coding, testing, documentation, etc., into many smaller
tasks; and assigns them to the team members. He/she also
verifi es and integrates the work completed by different
team members.

FIGURE 12.3 Matrix Organiza on

FIGURE 12.4 Chief programmer team
structure

Working in Teams 277

Advantages of the chief programmer team
A chief programmer team is more effi cient than a democratic team for completing simple and small projects
since the chief programmer can quickly work out a satisfactory design and assign work to the team members
to code and test different modules of his design solution.

Disadvantages of the chief programmer team
 ● The chief programmer is provided with an authority to assign work to the team members and to monitor

their work. This however leads to lower team morale, as the team members work under the constant
supervision of the chief programmer.

 ● The chief programmer team structure inhibits collective and original thinking by the team members and
the chief programmer typically takes all important decisions by himself/herself.

 ● The chief programmer team is subject to single point failure since too much responsibility and
authority is assigned to the chief programmer. That is, a project might get severely affected if the chief
programmer either leaves the organization or becomes unavailable for some other reasons.

 ● A major problem with the chief programmer structure is getting hold of a really outstanding programmer
for the role of the chief programmer. Since the chief programmer carries out many tasks individually,
there is a danger of information overload on the chief programmer. This is especially true for large
projects.

Let us now try to understand the types of projects for which the chief programmer team structure would be
appropriate. Suppose an organization has successfully completed many simple MIS projects. Then, for a
similar MIS project, chief programmer team structure can be adopted. The chief programmer team structure
works well when the task is within the intellectual grasp of a single individual. However, even for small
projects the chief programmer team structure should not be used unless the importance of early completion
of the project outweighs other factors such as team morale, personal developments, etc.

Democratic team
The democratic team structure, as the name implies, does not enforce any formal team hierarchy. Decisions
are taken based on discussions, where any member is free to discuss with any other member as shown
in Figure 12.5. Typically, a manager provides the administrative leadership. At different times, different

FIGURE 12.5 Democra c team structure

278 So ware Project Management

members of the team provide technical leadership. Since a lot of debate and discussions among the team
members takes place, for large team sizes signifi cant overhead is incurred on this count.

It is generally accepted that a democratic structure offers higher moral and job satisfaction to the team
members. Consequently, a democratic team usually suffers from lower manpower turnover compared to the
chief programmer team. Though democratic teams are less productive compared to the chief programmer
team for small and simple projects, the democratic team structure is appropriate for less understood problems,
since a group of developers can invent better solutions than a single individual as in a chief programmer team.
A democratic team structure is suitable for research-oriented projects requiring less than fi ve or six devel-
opers. For large sized projects, a pure democratic organization tends to become chaotic. The democratic team
organization encourages egoless programming as programmers can share and review one another’s work. We
have already discussed egoless programming in this section.

Mixed control team structure
The mixed team structure, as the name implies, draws ideas from both the democratic and chief-pro-
grammer team structures. The mixed control team structure is shown pictorially in Figure 12.6. In Figure
12.6, the communication paths are shown as dashed lines and the reporting structure is shown using solid
arrows. Observe that this team structure incorporates both hierarchical reporting and democratic set up. The
democratic arrangement at the level of senior developers is used to decompose the problem into small parts.
Democratic setup at the programmer level facilitates working out at effective solution to a single part. This
team structure is extremely popular and is being used in many software development companies. The mixed
control team organization is suitable for large team sizes.

FIGURE 12.6 Mixed control team structure

Working in Teams 279

12.5 Coordination Dependencies
Why and to what extent do the different units within an overall organizational structure
really need to communicate? Researchers and innovators in the area of computer-
supported cooperative work (CSCW) have been interested in identifying the types of
coordination where computer tools could be of assistance. A coordination theory has
been developed which provides a useful classifi cation of coordination dependencies
that are likely to exist in any substantial organizational undertaking. These are listed
below.

 ● Shared resources. An example in software development projects is where
several projects need the services of particular types of scarce technical experts
for certain parts of the project. The unavailability of these experts because
of commitments elsewhere could delay a project. We noted in Chapter 2 that
programme management may be established at a higher level than individual
projects to reduce these resources clashes.

 ● Producer–customer (‘right time’) relationships. A project activity may depend on a product being
delivered fi rst. For example, a business analyst may need to produce an agreed requirements document
before the development of software components can begin. The Product Flow Diagram (PFD) promoted
by the PRINCE2 methodology and described in Chapter 3 can help identify some of these depen-
dencies, but the key point is that some other organizational unit, which could in fact be outside the
business, is involved.

 ● Task–subtask dependencies. In order to complete a task a sequence of subtasks have to be carried out.
Like the producer–customer relationships described above, this could be refl ected in the PFD. Unlike
the producer–customer relationship, this sequencing is forced by the technical nature of the thing being
created, or the method that is being adopted, rather than by decisions about who is to do what.

 ● Accessibility (‘right place’) dependencies. This type of dependency is of more relevance to activities
that require movement over a large geographical area. The problems of getting an available ambulance
to the site of a medical emergency as quickly as possible would a prime example of this. In ICT and
software development the examples are less obvious, but arranging the delivery and installation of ICT
equipment might be identifi ed as such.

 ● Usability (‘right thing’) dependencies. In this context, this is a broader concern than the design of user
interfaces more usually associated with the term ‘usability’. It relates to the general question of fi tness
for purpose, which includes the satisfaction of business requirements. In software development this
could lead to activities, such as prototyping, which ensure that the system being created will meet the
users’ operational needs. It could also involve change management activities when users need to change
requirements because of, for example, events in the business environment such as legislative changes.

 ● Fit requirements. This is ensuring that different system components work together effectively. Integration
testing is one mechanism that ensures that these requirements are met. One concern of confi guration
management (as described in Chapter 9) is assessing whether changes made to one component will
have knock-on effects on other components.

In many cases, information systems tools can support these coordination tasks. For example, project planning
tools, such as Microsoft Project, can be used to help decision making about the allocation of resources both
within projects and across a portfolio of concurrent projects. Such tools, through the support they give to the
development, analysis and manipulation of activity networks (as we have seen in Chapters 6 and 8), can help

Ian R. McChesney and
Séamus Gallagher
(2004) ‘Communication
and co-ordination
practices in software
engineering projects’
Information and
Software Technology
46 473–89 gives a
good introduction to
these concepts and
insights into their
application.

280 So ware Project Management

the control of producer–customer and task–subtask dependencies. Another example of software tool support
is the use of change management and confi guration management databases to keep track of changes to the
system under development and thus support usability and fi t dependencies.

Ian McChesney and Séamus Gallagher have published a research report which analyses two real-world
project environments in terms of the way coordination activities were carried out. Among some quite detailed
fi ndings, they noted the use of software tools to support some coordination activities, but also noted how a
single person in the project team could have a key coordination role. This person could act as a go-between
for staff who need to communicate, for example directing user enquiries to the developer best able to provide
information.

E-mail was noted as a principal means of communication. The practice had been developed of copying emails
to third parties who might need to be ‘kept in the loop’, that is, made aware of developments. It is interesting
that this development was seen as invaluable – there are reports of other environments where email has
become less effective as a means of communication as staff become overwhelmed by the sheer volume of
emails.

12.6 Dispersed and Virtual Teams
We have seen how projects require a team of people to carry them out, and the
members of this team could each be a specialist in a particular fi eld. Thus, the heart
of many projects is collaborative problem solving. The Second World War underlined
the importance of cooperation between individuals and groups to execute major global
operations, and encouraged research after the confl ict into effective team working. At
that time, group working meant, almost by defi nition, that the team members worked

in close physical proximity. However, in recent years the concept and practice of having dispersed or ‘virtual
teams’ have emerged.

We have also to see how projects work, especially the development of large software products, needs coordi-
nation which in turn means that team members need to communicate. Being located in the same physical space
clearly assists this. However, offi ces can be noisy places and while software development needs communi-
cation it also needs periods of solitary concentrated effort. DeMarco and Lister describe the condition of deep
concentration needed for effective creative work as ‘fl ow’, and suggest that about 15 minutes of uninterrupted
effort is needed to achieve this state. Every interruption destroys fl ow and requires another 15 minutes for its
recovery.

It was noted earlier that project managers often have little control over who will be allocated to their team.
They are even less likely to have control over the physical environment in which the team will work. Many
years ago, research at IBM suggested that ideally each software developer should have:

 ● 100 square feet of dedicated space;

 ● 30 square feet of work surface;

 ● noise protection in the form of enclosed offi ces or partitions at least six feet high.

For various reasons it is often diffi cult for software developers to be provided with this kind of accommo-
dation, yet DeMarco and Lister found clear links between reported noise levels in the workplace and the
number of defects found in the resulting software.

See Tom DeMarco
and Timothy Lister
(1999) PeopleWare:
Productive Projects
and Teams, 2nd edi-
tion, Dorset House.

Working in Teams 281

One answer is to send the software developers home. One recent (2004) survey found
that 77% of businesses allowed at least some of their staff to work at home. Most of
those working at home reported that they were more productive. The development of
cheap internet-based communications, supported by broadband channels, has reduced
the coordination problems that were the drawback of home working.

Modern communication technologies also mean that organizations can more easily
form temporary teams to carry out specifi c projects from amongst their employees
without having to relocate them. The nature of the work carried out in some projects
means that the demand for certain specialist skills is intermittent. Ideally the project manager would like to
have access to these skills for a short time but then be able to release them and thus avoid further costs. An
example of this might be the passing need for a graphic designer to produce aesthetically pleasing designs
for a web application project. This desire for fl exible labour means that contract workers are often used. The
internet allows these contractors to carry out well-defi ned tasks at their own premises without necessarily
having to travel to their clients’ site.

It is then only a short step to use ‘off-shore’ staff who live and work in a different part of the world. Hence we
arrive at the dispersed or virtual team.

To recap the possible advantages of such an arrangement:

 ● A reduction in staff costs by using labour from developing countries where salaries are lower.

 ● A reduction in the overheads that arise from having your own employees on site, including costs of
accommodation, social security payments, training.

 ● The fl exible use of staff – they are not employed when they are not needed.

 ● Productivity might be higher.

 ● Use of specialist staff for specifi c jobs, rather than more general project workers, might improve
quality.

 ● Advantage can be taken of people working in different time zones to reduce task durations – for
example, software developers can deliver new versions of code to testers in a different time zone who
can test it and deliver the results back at the start of the next working day.

Some of the challenges of dispersed working are:

 ● The requirements for work that is distributed to contractors have to be carefully
specifi ed.

 ● The procedures to be followed will need to be formally expressed, where previ-
ously practices might have been picked up through observation and imitation of
co-workers on site.

 ● Coordination of dispersed workers can be diffi cult.

 ● Payment methods may need to be modifi ed to make them fi xed price or
piece-rate.

 ● There may be a lack of trust of co-workers who are remote and never seen.

 ● Assessment of the quality of delivered products will need to be thorough.

 ● Different time zones can cause communication and coordination problems.

The survey was carried
out by the Economist
Intelligence Unit and
was reported on in
‘Remote working
boosts productiv-
ity’ in Computing, 25
November, 2004, p. 6.

One estimate was
that 24,000 IT and
software develop-
ment jobs would be
moved off-shore from
the UK between 2003
and 2005, according
to a British Computer
Society working party
report, Offshoring – a
challenge or opportuni-
ty for IT Professionals,
(British Computer
Society 2004).

282 So ware Project Management

12.7 Communication Genres
So far we have focused on some of the reasons why men and women engaged on a common project would
need to communicate, not only within work groups but with colleagues in other parts of the organization, or
in some cases in partner organizations. We have also mentioned various methods of communication but have
not examined communications media in a structured way.

Some work has been done to study the characteristics of various methods of communication. One approach
has been to try to identify communication genres. These refer to something more than just the technical means
of communicating. They are types of communication that people are in the habit of making and where there
are some ‘ground rules’ about when and how such communications should be carried out. For some types of
communication, such as offi cial meetings, these rules might be quite formal. Within the general heading of
‘management meetings’ there could be a range of types of meeting each with their own conventions. These
could be seen as genres in their own right.

Within the general heading of the email communication genre, advanced email-based applications can be
developed where the content of the email is structured by preset proformas designed to fulfi l a standard
process, such as requesting a change to a software specifi cation. These applications can be seen as commu-
nication genres in their own right.

A major infl uence on the nature of communication genres is the constraints of time and place. Modes of
communication can be categorized as combinations of two opposites: same time/different time and same
place/different place – see Table 12.1.

TABLE 12.1 Time/place constraints on some communica on methods

Same place Different place

Same time Meetings Telephone

Interviews etc. Instant messaging

Different times Noticeboards E-mail

Pigeon-holes Voicemail

Documents

The nature of the information to be conveyed also needs to be considered.

 ● What is the extent and complexity of the information to be conveyed? A telephone conversation may be
a very quick way of conveying simple messages – but has disadvantages as a medium for large amounts
of information.

 ● Is it easy to understand? For example, is the context well known to both the sender and the recipient?
If it is likely that the recipient will need clarifi cation of aspects of the information, then a mode of
communication that is two-way would be best.

 ● Where the communication is personally sensitive, then face-to-face contact is the most effective form
of communication, even if it can be uncomfortable or inconvenient for those concerned.

Working in Teams 283

 EXERCISE 12.4

What would be the best mode of communication for the following?

 (a) A developer needs clarifi cation of what is meant by a particular term used in a specifi cation.

 (b) The users of a system have found what appears to be a fault in a software application that they
use.

 (c) A fi nance director needs to ensure that a software application is changed to conform with new legal
requirements.

 (d) A software developer can only complete her software component if another developer fi nishes his
component fi rst, but he has not. The fi rst developer is under a lot of pressure from the client to
complete the work.

At different stages of a project it is likely that different communication genres will be preferred.

Early stages of a project
At the start of the project, team members will need to build up their trust and confi -
dence in their co-workers. For this same time/same place communication, actually
meeting is probably best. It is argued that this is especially the case with dispersed
projects: as Charles Handy has written: ‘paradoxically, the more virtual an organi-
zation becomes, the more its people need to meet in person’.

However, not everyone might agree with this. Julian Baggini, describing his experience
of writing a textbook on philosophy with someone he had never met, argues: ‘It is
simply not necessary to know the whole person in order to have a good relationship
with them.... If you get to know and dislike the way that someone behaves outside the
offi ce, that can make you uncomfortable with them in it.’

The early stages of a project are when at least some of the team will be involved in making decisions about the
overall design of the product to be delivered and the method by which it is to be created. In the preliminary
stages at least, same time/same place meetings are the most effective means of progressing.

Intermediate design stages of the project
Once the overall architecture of the product has been established, detailed design on different components
could well be carried out in parallel in different locations. However, some points will need to be clarifi ed and
for this, same time/different place communication could well be best, such as the use of teleconferencing.

Implementation stages of the project
Once the design is clarifi ed and everyone knows his or her role, work can progress.
Where there is a need to exchange information at this point, different time/different
place communication media such as e-mail are likely to be suffi cient.

Even at this stage some recommend regular face-to-face meetings of at least some
staff as this supplies a rhythm to the project which helps coordination of the project

Charles Handy (1995)
‘Trust and the virtual
organization’ Harvard
Business Review, May/
June 45–50.

Julian Baggini (2005)
‘Touched by your ab-
sence’ The Guardian 6
January.

M. L. Mazneski and
K. M. Chudoba (2000)
‘Bridging space over
time global virtual team
dynamics and effectiv-
ness’ Organization
Science, 11 (5).

284 So ware Project Management

and maintains motivation. Martha Maznevski and Katherine Chudoba observed the workings of a dispersed
project and have noted ‘interaction between coordination meetings was mainly in response to the previous
meeting or in anticipation of the next one. The coordination meeting served as a heartbeat, rhythmically
pumping new life into the team’s processes. . .’.

12.8 Communication Plans
Communication is important in all projects but a vital matter in the case of dispersed projects. Because of this,
consideration of the way that project stakeholders will communicate ought to be a part of the project planning
process. Some have gone as far as to suggest that a specifi c planning document ought to address communi-
cation issues affecting the project, not just for dispersed projects but for any project with a substantial number
of important stakeholders.

The fi rst step in producing such a plan is to list the main stakeholders, with special attention to those who are
participating in the development and implementation of the project – it may be recalled that the identifi cation
of stakeholders and their concerns was stressed in Chapter 1 as being fundamental to project success. Once
the overall project plan has been created using a process such as that described in Chapter 3, each of the
main activities and milestones is examined to see which channels and methods would be best for effective
communication with these stakeholders. We have already carried out such a process in our discussion of the
communication needs of the different phases of a dispersed project. Consultation with the representatives of
the various groups of stakeholders would be an essential part of this process.

The results of this process could be documented in a table with the following column headings.

 ● What This contains the name of a particular communication event, for example
‘kick-off meeting’, or a communication channel, for example ‘project intranet
site’.

 ● Who/target The target audience for the communication. ‘Target audience’ may not convey quite the
right idea as this implies that there are passive recipients of information from a central authority. In fact
the communication event or channel could be a means of eliciting information from the ‘audience’.

 ● Purpose What the communication is to achieve.

 ● When/frequency If the communication by means of a single event, then a specifi c date can be supplied.
If the event is a recurring one, such as a progress meeting, then the frequency should be indicated.

 ● Type/method The nature of the communication, for example a meeting or a distributed document.

 ● Responsibility The person who initiates the communication.

12.9 Leadership
When Amanda and Brigette fi rst took on project management responsibilities, one of
their private anxieties might well have been that staff would not take them seriously.
Leadership is generally taken to mean the ability to infl uence others in a group to act
in a particular way to achieve group goals. A leader is not necessarily a good manager

or vice versa, as managers have other roles such as organizing, planning and controlling.

Authorities on this subject have found it diffi cult to agree a list of the common characteristics of good leaders.
It would, however, seem safe to say that they seem to have a greater need for power and achievement and have
more self-control and more self-confi dence than others.

This table is based on
that in the Princeton
Project Methodology.

See Robert Johansen
et al. (1991) Leading
Business Teams,
Addison-Wesley.

Working in Teams 285

Leadership is based on the idea of authority or power, although leaders do not necessarily have much formal
authority. Power may come either from the person’s position (position power), from the person’s individual
qualities (personal power) or may be a mixture of the two. Position power has been further analysed into:

 ● coercive power, the ability to force someone to do something by threatening punishment;

 ● connection power, which is based on having access to those who have power;

 ● legitimate power, which is based on a person’s title conferring a special status;

 ● reward power, where the holder can give rewards to those who carry out tasks
to his or her satisfaction.

Personal power, on the other hand, can be further analysed into:

 ● expert power, which comes from being the person who is able to do a specialized task;

 ● information power, where the holder has exclusive access to information;

 ● referent power, which is based on the personal attractiveness of the leader.

 EXERCISE 12.5

What kinds of power (as defi ned above) would the following people have?

 (a) An internal auditor looking at the payroll system at Brightmouth College.

 (b) A consultant who is called in to advise International Offi ce Equipment about ways of improving
software development productivity.

 (c) The principal of Brightmouth College who has told staff that they must accept a new contract or
face the sack.

 (d) Brigette in respect to the users of the college payroll system.

 (e) Amanda in respect of the people in the project team developing the annual maintenance contract
application.

Leadership styles
Amanda and Brigette might be initially concerned about establishing their personal authority. Balanced
against this is the need to involve the staff in decision making in order to make the best use of expertise and
to gain commitment. Amanda and Brigette will need to judge when they must be authoritative and insist
on things and when they must be more fl exible and tolerant. Amanda, for example, may decide to be very
democratic when formulating plans, but once the plans have been agreed, to insist on a very disciplined
execution of the plan. Brigette, on the other hand, may fi nd at Brightmouth College that she alone has the
technical expertise to make some decisions, but, once she has briefed staff, they expect to be left alone to get
on with the job as they see fi t.

Attempts have been made to measure leadership styles on two axes: directive vs.
permissive and autocratic vs. democratic:
 ● directive autocrat: makes decisions alone, close supervision of implemen-

tation;
 ● permissive autocrat: makes decisions alone, subordinates have latitude in implementation;
 ● directive democrat: makes decisions participatively, close supervision of implementation;

 ● permissive democrat: makes decisions participatively, subordinates have latitude in implementation.

These ideas are asso-
ciated with the work of
J. R. P. French and B.
H. Raven.

This approach is as-
sociated with Rensis
Likert.

286 So ware Project Management

Another axis used to measure management styles has been on the degree to which a
manager is task-oriented, that is, the extent to which the execution of the task at hand
is paramount, and the degree to which the manager is concerned about the people
around them (people orientation). It is perhaps not surprising that subordinates appear
to perform best with managers who score highly in both respects.

Work environments vary with amount of control exerted over work. Some jobs are routine and predictable
(e.g. dealing with batched computer output). Others are driven by outside factors (e.g. a help desk) or are
situations where future direction is uncertain (e.g. at the early stages of a feasibility study). With a high
degree of uncertainty subordinates will seek guidance from above and welcome a task-oriented management
style. As uncertainty is reduced, the task-oriented manager is likely to relax, becoming more people-oriented,
and this will have good results. People-oriented managers are better where staff can control the work they
do, without referring matters to their line managers. It is then argued that if control becomes even easier the
people-oriented manager will be tempted to get involved in more task-centred questions, with undesirable
results.

Research also shows that where team members are relatively inexperienced, a task-oriented approach is most
effective. As group members mature, consideration for their personal needs and aspirations becomes more
valued. Where maturity is very high, there is no need for a strong emphasis on either of these approaches.

 EXERCISE 12.6

What in your view would be the most appropriate management style when dealing with the following
subordinates?

 (a) At Brightmouth College, a former member of the local authority who has dealt with the college
payroll for several years and who has been employed by the college to set up and manage the new
payroll section.

 (b) At IOE, a new trainee analyst/programmer who has just joined Amanda’s group.

 (c) At IOE, a very experienced analyst/programmer in their 40s, who was recruited into the software
development department some time ago from the accounts department and who has been dealing
with system support for the old maintenance accounts system that is now being revised.

CONCLUSION

Some of the important points that have been made in this chapter are:

 ● consideration should be given, when forming a new project team, to getting the right mix of people and
to planning activities which will promote team building;

 ● group working is more effective with some types of activity than others;

 ● the people who need to communicate most with each other should be grouped together
organizationally;

 ● different styles of leadership are needed in different situations;

 ● care should be taken to identify the most effective way of communicating with project participants at
key points in the project.

It should be empha-
sized that there is no
one best style of man-
agement – it depends
on the situation.

Working in Teams 287

FURTHER EXERCISES

 1. To what extent is the Belbin approach to balanced teams compatible with having chief programmer
teams?

 2. If you have been involved recently in a group activity or project, try to categorize each participant
according to the Belbin classifi cation. Were there any duplications or gaps in any of the roles? Did this
seem to have any impact on progress?

 3. Three different mental obstacles to good decision making were identifi ed in the text: faulty heuristics,
escalation of commitment and information overload. What steps do you think can be taken to reduce
the danger of each of these?

 4. Exercise 12.5 asked you to identity the management style most appropriate for each of three different
situations. Go back and consider how you as a manager would respond to each of these three situations
in terms of practical things to do or avoid.

 5. Do you agree with the following statement? ‘Few, if any, organization in the real world is purely
functional, project, or matrix in nature’. Justify your answer.

 6. Explain the advantages of a functional organization over a project organization. Also explain why
software development houses prefer to use project organization over functional organization.

 7. As a project manager, identify the characteristics that you would look for in a software developer while
trying to select personnel for your team.

13

OBJECTIVES

When you have completed this chapter you will be able to:
explain the importance of software quality to software users and developers;•
defi ne the qualities of good software;•
design methods of measuring the required qualities of software;•
monitor the quality of the processes in a software project;•
use external quality standards to ensure the quality of software acquired from an outside supplier;•
develop systems using procedures that will increase their quality.•

13.1 Introduction
While quality is generally agreed to be ‘a good thing’, in practice what is meant by the ‘quality’ of a system
can be vague. We need to defi ne precisely what qualities we require of a system. However, we need to go
further – we need to judge objectively whether a system meets our quality requirements and this needs
measurement. This would be of particular concern to someone like Brigette at Brightmouth College in the
process of selecting a package.

For someone – like Amanda at IOE – who is developing software, waiting until the system exists before
measuring it would be leaving things rather late. Amanda might want to assess the likely quality of the fi nal
system while it was still under development, and also to make sure that the development methods used would
produce that quality. This leads to a different emphasis – rather than concentrating on the quality of the fi nal
system, a potential customer for software might check that the suppliers were using the best development
methods.

This chapter examines these issues.

So ware Quality 289

13.2 Th e Place of Soft ware Quality in Project Planning
Quality will be of concern at all stages of project planning and execution, but will be of particular interest at
the following points in the Step Wise framework (Figure 13.1).

 ● Step 1: Identify project scope and objectives Some objectives could relate to the qualities of the appli-
cation to be delivered.

 ● Step 2: Identify project infrastructure Within this step, activity 2.2 identifi es installation standards and
procedures. Some of these will almost certainly be about quality.

 ● Step 3: Analyse project characteristics In activity 3.2 (‘Analyse other project characteristics – including
quality based ones’) the application to be implemented is examined to see if it has any special quality
requirements. If, for example, it is safety critical then a range of activities could be added, such as
n-version development where a number of teams develop versions of the same software which are then
run in parallel with the outputs being cross-checked for discrepancies.

FIGURE 13.1 The place of so ware quality in Step Wise

290 So ware Project Management

 ● Step 4: Identify the products and activities of the project It is at this point that the entry, exit and process
requirements are identifi ed for each activity. This is described later in this chapter.

 ● Step 8: Review and publicize plan At this stage the overall quality aspects of the project plan are
reviewed.

13.3 Th e Importance of Soft ware Quality
We would expect quality to be a concern of all producers of goods and services. However, the special charac-
teristics of software create special demands.

 ● Increasing criticality of software The fi nal customer or user is naturally anxious about the general
quality of software, especially its reliability. This is increasingly so as organizations rely more on their
computer systems and software is used in more safety-critical applications, for example to control
aircraft.

 ● The intangibility of software can make it diffi cult to know that a project task was completed satisfac-
torily. Task outcomes can be made tangible by demanding that the developer produce ‘deliverables’ that
can be examined for quality.

 ● Accumulating errors during software development As computer system development comprises steps
where the output from one step is the input to the next, the errors in the later deliverables will be added
to those in the earlier steps, leading to an accumulating detrimental effect. In general, the later in a
project that an error is found the more expensive it will be to fi x. In addition, because the number of
errors in the system is unknown, the debugging phases of a project are particularly diffi cult to control.

For these reasons quality management is an essential part of effective overall project management.

13.4 Defi ning Soft ware Quality
In Chapter 1 we noted that a system has functional, quality and resource requirements. Functional require-
ments defi ne what the system is to do, the resource requirements specify allowable costs and the quality
requirements state how well this system is to operate.

 EXERCISE 13.1

At Brightmouth College, Brigette has to select the best off-the-shelf payroll package for the college.
How should she go about this in a methodical manner?

One element of the approach could be the identifi cation of criteria against which payroll packages are
to be judged. What might these criteria be? How could you check the extent to which packages match
these criteria?

Some qualities of a software product refl ect the external view of software held by users, as in the case of
usability. These external qualities have to be mapped to internal factors of which the developers would
be aware. It could be argued, for example, that well-structured code is likely to have fewer errors and thus
improve reliability.

So ware Quality 291

Defi ning quality is not enough. If we are to judge whether a system meets our requirements we need to be
able to measure its qualities.

A good measure must relate the number of units to the maximum possible. The
maximum number of faults in a program, for example, is related to the size of the
program, so a measure of faults per thousand lines of code is more helpful than total
faults in a program.

Trying to fi nd measures for a particular quality helps to clarify and communicate what
that quality really is. What is being asked is, in effect, ‘how do we know when we
have been successful?’

The measures may be direct, where we can measure the quality directly, or indirect, where the thing being
measured is not the quality itself but an indicator that the quality is present. For example, the number of
enquiries by users received by a help desk about how one operates a particular software application might be
an indirect measurement of its usability.

When project managers identify quality measurements they effectively set targets for project team members,
so care has to be taken that an improvement in the measured quality is always meaningful. For example, the
number of errors found in program inspections could be counted, on the grounds that the more thorough the
inspection process, the more errors will be discovered. This count could, of course, be improved by allowing
more errors to go through to the inspection stage rather than eradicating them earlier – which is not quite the
point.

When there is concern about the need for a specifi c quality characteristic in a software product then a quality
specifi cation with the following minimum details should be drafted:

 ● defi nition/description: defi nition of the quality characteristic;

 ● scale: the unit of measurement;

 ● test: the practical test of the extent to which the attribute quality exists;

 ● minimally acceptable: the worst value which might be acceptable if other characteristics compensated
for it, and below which the product would have to be rejected out of hand;

 ● target range: the range of values within which it is planned the quality measurement value should lie;

 ● now: the value that applies currently.

 EXERCISE 13.2

Suggest quality specifi cations for a word processing package. Give particular attention to the way that
practical tests of these attributes could be conducted.

There could be several measurements applicable to a quality characteristic. For example, in the case of
reliability, this might be measured in terms of:

 ● availability: the percentage of a particular time interval that a system is usable;

 ● mean time between failures: the total service time divided by the number of failures;

 ● failure on demand: the probability that a system will not be available at the time required or the proba-
bility that a transaction will fail;

 ● support activity: the number of fault reports that are generated and processed.

The BS ISO/IEC
15939:2007 standard
Systems and software
engineering – mea-
surement process has
codifi ed many of the
practices discussed in
this section.

292 So ware Project Management

 EXERCISE 13.3

The enhanced IOE maintenance jobs system has been installed, and is normally available to users from
8.00 a.m. until 6.00 p.m. from Monday to Friday. Over a four-week period the system was unavailable
for one whole day because of problems with a disk drive and was not available on two other days until
10.00 in the morning because of problems with overnight batch processing runs.

What were the availability and the mean time between failures of the service?

Associated with reliability is maintainability, which is how quickly a fault, once
detected, can be corrected. A key component of this is changeability, which is the
ease with which the software can be modifi ed. However, before an amendment can be
made, the fault has to be diagnosed. Maintainability can therefore be seen as change-
ability plus a new quality, analysability, which is the ease with which causes of failure
can be identifi ed.

13.5 ISO 9126
Over the years, various lists of software quality characteristics have been put forward,
such as those of James McCall and of Barry Boehm. A diffi culty has been the lack
of agreed defi nitions of the qualities of good software. The term ‘maintainability’
has been used, for example, to refer to the ease with which an error can be located
and corrected in a piece of software, and also in a wider sense to include the ease
of making any changes. For some, ‘robustness’ has meant the software’s tolerance
of incorrect input, while for others it has meant the ability to change program code
without introducing errors. The ISO 9126 standard was fi rst introduced in 1991 to
tackle the question of the defi nition of software quality. The original 13-page document
was designed as a foundation upon which further, more detailed, standards could be
built. The ISO 9126 standards documents are now very lengthy. Partly this is because
people with differing motivations might be interested in software quality, namely:

 ● acquirers who are obtaining software from external suppliers;

 ● developers who are building a software product;

 ● independent evaluators who are assessing the quality of a software product, not for themselves but for
a community of users – for example, those who might use a particular type of software tool as part of
their professional practice.

ISO 9126 has separate documents to cater for these three sets of needs. Despite the size of this set of documen-
tation, it relates only to the defi nition of software quality attributes. A separate standard, ISO 14598, describes
the procedures that should be carried out when assessing the degree to which a software product conforms to
the selected ISO 9126 quality characteristics. This might seem unnecessary, but it is argued that ISO 14598
could be used to carry out an assessment using a different set of quality characteristics from those in ISO
9126 if circumstances required it.

The difference between internal and external quality attributes has already been noted. ISO 9126 also intro-
duces another type of quality – quality in use – for which the following elements have been identifi ed:

Maintainability can be
seen from two differ-
ent perspectives. The
user will be concerned
with the elapsed time
between a fault being
detected and it being
corrected, while the
software development
managers will be con-
cerned about the effort
involved.

Currently, in the UK,
the main ISO 9126
standard is known as
BS ISO/IEC 9126-
1:2001. This is supple-
mented by some ‘tech-
nical reports’ (TRs),
published in 2003,
which are provisional
standards. At the
time of writing, a new
standard in this area,
ISO 25000, is being
developed.

So ware Quality 293

 ● effectiveness: the ability to achieve user goals with accuracy and completeness;

 ● productivity: avoiding the excessive use of resources, such as staff effort, in achieving user goals;

 ● safety: within reasonable levels of risk of harm to people and other entities such as business, software,
property and the environment;

 ● satisfaction: smiling users.

‘Users’ in this context includes not just those who operate the system containing the software, but also those
who maintain and enhance the software. The idea of quality in use underlines how the required quality of
the software is an attribute not just of the software but also of the context of use. For instance, in the IOE
scenario, suppose the maintenance job reporting procedure varies considerably, depending on the type of
equipment being serviced, because different inputs are needed to calculate the cost to IOE. Say that 95% of
jobs currently involve maintaining photocopiers and 5% concern maintenance of printers. If the software is
written for this application, then despite good testing, some errors might still get into the operational system.
As these are reported and corrected, the software would become more ‘mature’ as faults become rarer. If there
were a rapid switch so that more printer maintenance jobs were being processed, there could be an increase
in reported faults as coding bugs in previously less heavily used parts of the software code for printer mainte-
nance were fl ushed out by the larger number of printer maintenance transactions. Thus, changes to software
use involve changes to quality requirements.

ISO 9126 identifi es six major external software quality characteristics:

 ● functionality, which covers the functions that a software product provides to satisfy user needs;

 ● reliability, which relates to the capability of the software to maintain its level of performance;

 ● usability, which relates to the effort needed to use the software;

 ● effi ciency, which relates to the physical resources used when the software is executed;

 ● maintainability, which relates to the effort needed to the make changes to the software;

 ● portability, which relates to the ability of the software to be transferred to a different environment.

ISO 9126 suggests sub-characteristics for each of the primary characteristics. They are useful as they clarify
what is meant by each of the main characteristics.

Characteristic Sub-characteristics

Functionality Suitability

Accuracy

Interoperability

Functionality compliance

Security

‘Functionality compliance’ refers to the degree to which the software adheres to application-related standards
or legal requirements. Typically these could be auditing requirements. Since the original 1999 draft, a
sub-characteristic called ‘compliance’ has been added to all six ISO external characteristics. In each case,
this refers to any specifi c standards that might apply to the particular quality attribute.

‘Interoperability’ is a good illustration of the efforts of ISO 9126 to clarify terminology. ‘Interoperability’
refers to the ability of the software to interact with other systems. The framers of ISO 9126 have chosen this

294 So ware Project Management

word rather than ‘compatibility’ because the latter causes confusion with the characteristic referred to by ISO
9126 as ‘replaceability’ (see below).

Characteristic Sub-characteristics

Reliability Maturity

Fault tolerance

Recoverability

Reliability compliance

‘Maturity’ refers to the frequency of failure due to faults in a software product, the implication being that the
more the software has been used, the more faults will have been uncovered and removed. It is also interesting
to note that ‘recoverability’ has been clearly distinguished from ‘security’ which describes the control of
access to a system.

Characteristic Sub-characteristics

Usability Understandability

Learnability

Operability

Attractiveness

Usability compliance

Note how ‘learnability’ is distinguished from ‘operability’. A software tool could be easy to learn but time-
consuming to use because, say, it uses a large number of nested menus. This might be fi ne for a package used
intermittently, but not where the system is used for many hours each day. In this case ‘learnability’ has been
incorporated at the expense of ‘operability’.

‘Attractiveness’ is a recent addition to the sub-characteristics of usability and is especially important where
users are not compelled to use a particular software product, as in the case of games and other entertainment
products.

Characteristic Sub-characteristics

Effi ciency Time behaviour

Resource utilization

Effi ciency compliance

Maintainability Analysability

Changeability

Stability

Testability

Maintainability compliance

So ware Quality 295

‘Analysability’ is the ease with which the cause of a failure can be determined. ‘Changeability’ is the quality
that others call ‘fl exibility’: the latter name is a better one as ‘changeability’ has a different connotation in
plain English – it might imply that the suppliers of the software are always changing it!

‘Stability’, on the other hand, does not refer to software never changing: it means that there is a low risk of a
modifi cation to the software having unexpected effects.

Characteristic Sub-characteristics

Portability Adaptability

Installability

Coexistence

Replaceability

Portability compliance

‘Portability compliance’ relates to those standards that have a bearing on portability.
The use of a standard programming language common to many software/hardware
environments would be an example of this. ‘Replaceability’ refers to the factors that
give ‘upwards compatibility’ between old software components and the new ones.
‘Downwards’ compatibility is not implied by the defi nition.

‘Coexistence’ refers to the ability of the software to share resources with other software
components; unlike ‘interoperability’, no direct data passing is necessarily involved.

ISO 9126 provides guidelines for the use of the quality characteristics. Variation in
the importance of different quality characteristics depending on the type of product is
stressed. Once the requirements for the software product have been established, the
following steps are suggested:

 1. Judge the importance of each quality characteristic for the application Thus reliability will be of
particular concern with safety-critical systems while effi ciency will be important for some real-time
systems.

 2. Select the external quality measurements within the ISO 9126 framework relevant to the qualities
prioritized above Thus for reliability mean time between failures would be an important measurement,
while for effi ciency, and more specifi cally ‘time behaviour’, response time would be an obvious
measurement.

 3. Map measurements onto ratings that refl ect user satisfaction For response time, for example, the
mappings might be as in Table 13.1.

 4. Identify the relevant internal measurements and the intermediate products in which they appear This
would only be important where software was being developed, rather than existing software being
evaluated. For new software, the likely quality of the fi nal product would need to be assessed during
development. For example, where the external quality in question was time behaviour, at the software
design stage an estimated execution time for a transaction could be produced by examining the software
code and calculating the time for each instruction in a typical execution of the transaction. In our view
the mappings between internal and external quality characteristics and measurements suggested in

A new version of a
word processing pack-
age might read the
documents produced
by previous versions
and thus be able to
replace them, but pre-
vious versions might
not be able to read all
documents created by
the new version.

296 So ware Project Management

the ISO 9126 standard are the least convincing elements in the approach. The part of the standard that
provides guidance at this point is a ‘technical report’ which is less authoritative than a full standard. It
concedes that mapping external and internal measurements can be diffi cult and that validation to check
that there is a meaningful correlation between the two in a specifi c environment needs to be done. This
refl ects a real problem in the practical world of software development of examining code structure and
from that attempting to predict accurately external qualities such as reliability.

TABLE 13.1 Mapping measurements to user sa sfac on

Response time (seconds) Rating

<2 Exceeds expectation

2–5 Within the target range

6–10 Minimally acceptable

>10 Unacceptable

 According to ISO 9126, measurements that might act as indicators of the fi nal quality of the software
can be taken at different stages of the development life cycle. For products at the early stages these
indicators might be qualitative. They could, for example, be based on checklists where compliance
with predefi ned criteria is assessed by expert judgement. As the product nears completion, objective,
quantitative, measurements would increasingly be taken.

 5. Overall assessment of product quality To what extent is it possible to combine ratings for different
quality characteristics into a single overall rating for the software? A factor which discourages attempts
at combining the assessments of different quality characteristics is that they can, in practice, be measured
in very different ways, which makes comparison and combination diffi cult. Sometimes the presence
of one quality could be to the detriment of another. For example, the effi ciency characteristics of time
behaviour and resource utilization could be enhanced by exploiting the particular characteristics of the
operating system and hardware environments within which the software will perform. This, however,
would probably be at the expense of portability.

 It was noted above that quality assessment could be carried out for a number of different reasons: to
assist software development, acquisition or independent assessment.

 During the development of a software product, the assessment would be driven by the need to focus the
minds of the developers on key quality requirements. The aim would be to identify possible weaknesses
early on and there would be no need for an overall quality rating.

TABLE 13.2 Mapping response mes onto user sa sfac on

Response time (seconds) Quality score

<2 5

2–3 4

(Contd)

So ware Quality 297

4–5 3

6–7 2

8–9 1

>9 0

Where potential users are assessing a number of different software products in order to choose the best one,
the outcome will be along the lines that product A is more satisfactory than product B or C. Here some idea
of relative satisfaction exists and there is a justifi cation in trying to model how this satisfaction might be
formed. One approach recognizes some mandatory quality rating levels which a product must reach or be
rejected, regardless of how good it is otherwise. Other characteristics might be desirable but not essential.
For these a user satisfaction rating could be allocated in the range, say, 0–5. This could be based on having
an objective measurement of some function and then relating different measurement values to different levels
of user satisfaction – see Table 13.2.

Along with the rating for satisfaction, a rating in the range 1–5, say, could be assigned to refl ect how important
each quality characteristic was. The scores for each quality could be given due weight by multiplying it by its
importance weighting. These weighted scores can then be summed to obtain an overall score for the product.
The scores for various products are then put in the order of preference. For example, two products might be
compared as to usability, effi ciency and maintainability. The importance of each of these qualities might be
rated as 3, 4 and 2, respectively, out of a possible maximum of 5. Quality tests might result in the situation
shown in Table 13.3.

TABLE 13.3 Weighted quality scores

Product quality Importance
rating (a)

Product A Product B

Quality score
(b)

Weighted score
(a 3 b)

Quality score
(c)

Weighted score
(a 3 c)

Usability 3 1 3 3 9

Effi ciency 4 2 8 2 8

Maintainability 2 3 6 1 2

Overall 17 19

Finally, a quality assessment can be made on behalf of a user community as a whole. For example, a profes-
sional body might assess software tools that support the working practices of its members. Unlike the selection
by an individual user/purchaser, this is an attempt to produce an objective assessment of the software indepen-
dently of a particular user environment. It is clear that the result of such an exercise would vary considerably
depending on the weightings given to each software characteristic, and different users could have different
requirements. Caution would be needed here.

(Contd) The problem here is
to map an objective
measurement onto an
indicator of customer
satisfaction which is
subjective.

298 So ware Project Management

13.6 Product and Process Metrics
We have already discussed in Section 13.4 that the users assess the quality of a software product based on
its external attributes, whereas during development, the developers assess the product’s quality based on
various internal attributes. We can also say that during development, the developers can ensure the quality
of a software product based on a measurement of the relevant internal attributes. The internal attributes may
measure either some aspects of the product (called product or of the development process (called process
metrics). Let us understand the basic differences between product and process metrics.

 ● Product metrics help measure the characteristics of a product being developed. A few examples of
product metrics and the specifi c product characteristics that they measure are the following: the LOC
and function point metrics are used to measure size, the PM (person-month) metric is used to measure
the effort required to develop a product, and the time required to develop the product is measured in
months.

 ● Process metrics help measure how a development process is performing. Examples of process metrics
are review effectiveness, average number of defects found per hour of inspection, average defect
correction time, productivity, average number of failures detected during testing per LOC, and the
number of latent defects per line of code in the developed product.

13.7 Product versus Process Quality Management
The measurements described above relate to products. With a product-based approach to planning and control,
as advocated by the PRINCE2 project management method, this focus on products is convenient. However,
we saw that it is often easier to measure these product qualities in a completed computer application rather
than during its development. Trying to use the attributes of intermediate products created at earlier stages to
predict the quality of the fi nal application is diffi cult. An alternative approach is to scrutinize the quality of
the processes used to develop software product.

The system development process comprises a number of activities linked so that the
output from one activity is the input to the next (Figure 13.2). Errors can enter the
process at any stage. They can be caused either by defects in a process, as when
software developers make mistakes in the logic of their software, or by information
not passing clearly and accurately between development stages.

Errors not removed at early stages become more expensive to correct at later stages.
Each development step that passes before the error is found increases the amount of
rework needed. An error in the specifi cation found in testing will mean rework at all

the stages between specifi cation and testing. Each successive step of development is also more detailed and
less able to absorb change.

Errors should therefore be eradicated by careful examination of the deliverables of each step before they are
passed on. One way of doing this is by having the following process requirements for each step.

 ● Entry requirements, which have to be in place before an activity can start. An example would be that a
comprehensive set of test data and expected results be prepared and approved before program testing
can commence.

 ● Implementation requirements, which defi ne how the process is to be conducted. In the testing phase,
for example, it could be laid down that whenever an error is found and corrected, all test runs must be
repeated, even those that have previously been found to run correctly.

Note that Extreme
Programming advo-
cates suggest that the
extra effort needed
to amend software at
later stages can be
exaggerated and is, in
any case, often justi-
fi ed as adding value to
the software.

So ware Quality 299

 ● Exit requirements, which have to be fulfi lled before an activity is deemed to have
been completed. For example, for the testing phase to be recognized as being
completed, all tests will have to have been run successfully with no outstanding
errors.

 EXERCISE 13.4

In what cases might the entry conditions for one activity be different from the exit conditions for
another activity that immediately precedes it?

 EXERCISE 13.5

What might be the entry and exit requirements for the process code program shown in Figure 13.2?

FIGURE 13.2 An example of the sequence of processes and deliverables These requirements
may be laid out in
installation standards,
or a Software Quality
Plan may be drawn up
for the specifi c project
if it is a major one.

300 So ware Project Management

13.8 Quality Management Systems
BS EN ISO 9001:2000
At IOE, a decision might be made to use an outside contractor to produce the annual maintenance contracts
subsystem. A natural concern would be the standard of the contractor’s deliverables. Quality control would
involve the rigorous testing of all the software produced by the contractor, insisting on rework where defects
are found. This would be very time-consuming. An alternative approach would focus on quality assurance. In
this case IOE would check that the contractors themselves were carrying out effective quality control. A key
element of this would be ensuring that the contractor had the right quality management system in place.

Various national and international standards bodies, including the British Standards Institution (BSI), have
engaged in the creation of standards for quality management systems. The British Standard is now called
BS EN ISO 9001:2000, which is identical to the international standard, ISO 9001:2000. Standards such as
the ISO 9000 series try to ensure that a monitoring and control system to check quality is in place. They are
concerned with the certifi cation of the development process, not of the end-product as in the case of crash
helmets and electrical appliances with their familiar CE marks. Standards in the ISO 9000 series relate to
quality systems in general and not just those in software development.

ISO 9000 describes the fundamental features of a quality management system (QMS) and its terminology.
ISO 9001 describes how a QMS can be applied to the creation of products and the provision of services. ISO
9004 applies to process improvement.

There has been some controversy over the value of these standards. Stephen Halliday, writing in The
Observer, had misgivings that these standards are taken by many customers to imply that the fi nal product is
of a certifi ed standard although, as Halliday says, ‘It has nothing to do with the quality of the product going
out of the gate. You set down your own specifi cations and just have to maintain them, however low they may
be.’ Obtaining certifi cation can be expensive and time-consuming which can put smaller, but still well-run,
businesses at a disadvantage. Finally, there has been a concern that a preoccupation with certifi cation might
distract attention from the real problems of producing quality products. This would be another example of
means–ends inversion, discussed in Chapter 4.

Putting aside these reservations, let us examine how the standard works. First, we identify those things to be
the subject of quality requirements. We then put a system in place which checks that the requirements are
being fulfi lled and corrective action taken when necessary.

An overview of BS EN ISO 9001:2000 QMS requirements
The standard is built on a foundation of the following principles:

 ● understanding the requirements of customers so that they can be met, or even
exceeded;

 ● leadership to provide the unity of purpose and direction needed to achieve quality
objectives;

 ● involvement of staff at all levels;

 ● a focus on the individual processes which create intermediate or deliverable products and services;

 ● a focus on the systems of interrelated processes that create delivered products and services;

Remember that these
standards are de-
signed for all kinds of
production – not just
software development.

So ware Quality 301

 ● continuous improvement of processes;

 ● decision making based on factual evidence;

 ● building mutually benefi cial relationships with suppliers.

These principles are applied through cycles which involve the following activities:

 1. determining the needs and expectations of the customer;

 2. establishing a quality policy, that is, a framework which allows the organization’s objectives in relation
to quality to be defi ned;

 3. design of the processes which will create the products (or deliver the services) which will have the
qualities implied in the organization’s quality objectives;

 4. allocation of the responsibilities for meeting these requirements for each element of each process;

 5. ensuring that resources are available to execute these processes properly;

 6. design of methods for measuring the effectiveness and effi ciency of each process in contributing to the
organization’s quality objectives;

 7. gathering of measurements;

 8. identifi cation of any discrepancies between the actual measurements and the target values;

 9. analysis and elimination of the causes of discrepancies.

The procedures above should be designed and executed so that there is continual improvement. They should,
if carried out properly, lead to an effective QMS. More detailed ISO 9001 requirements include:

 ● Documentation of objectives, procedures (in the form of a quality manual), plans, and records relating
to the actual operation of processes. The documentation must be subject to a change control system that
ensures that it is current. Essentially one needs to be able to demonstrate to an outsider that the QMS
exists and is actually adhered to.

 ● Management responsibility – the organization needs to show that the QMS and the processes that
produce goods and services conforming to the quality objectives are actively and properly managed.

 ● Resources – an organization must ensure that adequate resources, including appropriately trained staff
and appropriate infrastructure, are applied to the processes.

 ● Production should be characterized by:

 ■ planning;

 ■ determination and review of customer requirements;

 ● effective communications between the customer and supplier;

 ● design and development being subject to planning, control and review;

 ● requirements and other information used in design being adequately and clearly recorded;

 ● design outcomes being verifi ed, validated and documented in a way that provides suffi cient information
for those who have to use the designs;

 ● changes to the designs should be properly controlled;

 ● adequate measures to specify and evaluate the quality of purchased components;

 ● production of goods and the provision of services should be under controlled conditions to ensure
adequate provision of information, work instruction, equipment, measurement devices, and post-de-
livery activities;

302 So ware Project Management

 ● measurement – to demonstrate that products conform to standards, and the QMS is effective, and to
improve the effectiveness of processes that create products or services.

 EXERCISE 13.6

One of the processes involved in developing software is system testing and subsequent modifi cation to
the application in the light of errors found. If a software development organization were to attempt to
conform to BS EN ISO 9001:2000, how might this affect system testing?

 EXERCISE 13.7

Bearing in mind the criticisms of BS EN ISO 9001 that have been mentioned, what precautionary steps
could a project manager take where some work for which quality is important is to be contracted out to
an organization which has BS EN ISO 9001 accreditation?

13.9 Process Capability Models
As compared to the product metrics, the process metrics are more meaningfully measured during product
development. Consequently, to manage quality during development, process-based techniques are very
important. In this section, we discuss SEI CMM, CMMI, ISO 15504, and Six Sigma, which are popular
process capability models.

A historical perspective
Before the 1950s, the primary means of realizing quality products was by undertaking extensive testing of
the fi nished products. However, the emphasis of the quality paradigms later shifted from product assurance
(extensive testing of the fi nished product) to process assurance (ensuring that a good quality process is used
for product development). In this context, it needs to be emphasized that a basic assumption made by all
modern quality paradigms is that if an organization’s processes are good and are followed rigorously, then the
products developed by using it would certainly be of good quality. Therefore, all modern quality assurance
techniques focus on providing suffi cient guidance for recognizing, defi ning, analysing, and improving the
process.

A good documented process enables setting up of a good quality system. However, to reach the next quality
level, it is necessary to improve the process whenever any shortcomings in it are noticed. It is also necessary to
incorporate into the development process any new tools or techniques that may become available. This forms
the essential idea behind Total Quality Management (TQM). In a nutshell, TQM advocates that the process
followed by an organization must continuously be improved through process measurements. Continuous
process improvement is achieved through process redesign. A term related to TQM is Business Process
Reengineering (BPR). BPR aims at reengineering the way business is carried out in an organization.

SEI capability maturity model (CMM)
The United States Department of Defence (US DoD) is one of the largest buyers of software products in
the world. It has often faced diffi culties dealing with the quality of performance of vendors, to whom it

So ware Quality 303

assigned contracts. The department had to live with recurring problems of delivery of low quality products,
late delivery, and cost escalations. In this context, DoD worked with the Software Engineering Institute (SEI)
of the Carnegie Mellon University to develop CMM. Originally, the objective of CMM was to assist DoD in
developing an effective software acquisition method by predicting the likely contractor performance through
an evaluation of their development practices.

Most of the DoD contractors began to undertake CMM-based process improvement initiatives as they vied
for DoD contracts. It was soon observed that the SEI CMM model helped organizations to actually improve
the quality of the software they developed. These organizations were quickly convinced that adoption of SEI
CMM model had signifi cant business benefi ts even when they were developing software for clients other
than the DoD. Gradually many other commercial organizations began to adopt CMM in their own internal
improvement initiatives.

In simple words, CMM is a reference model for appraising a software development organization into one
of fi ve process maturity levels. The maturity level of an organization is a ranking of the quality of the devel-
opment process used by the organization. This information can be used to predict the most likely outcome of
a project that the organization undertakes.

It should be remembered that SEI CMM can be used in two different ways, viz., capability evaluation and
process assessment. Capability evaluation and software process assessment differ in motivation, objective,
and the fi nal use of the result. Capability evaluation essentially concerns assessing the software process
capability of an organization. Capability evaluation is administered by the contract awarding authority, and
therefore the results are indicative of the likely contractor performance if the contractor is awarded a work.
On the other hand, process assessment is used by an organization with the objective of improving its own
process capability. Thus, the result of the latter type of assessment is purely for internal use by a company.

In process assessment, the quality level is assessed by a team of assessors coming into an organization and
interviewing the key staff about their practices, using a standard questionnaire to capture information. It
needs to be remembered that in this case, a key objective is not just to assess, but to recommend specifi c
actions to bring the organization up to a higher process maturity level. The different levels of SEI CMM have
been designed so that it is easy for an organization to slowly ramp up its quality system starting from scratch.
SEI CMM classifi es software development organizations into the following fi ve maturity levels.

Level 1: Initial A software development organization at this level is characterized by haphazard activities by
the members of project teams. The chaotic activities are primarily brought about by the lack of any defi nition
of the development and management processes. Each developer feels free to follow any process that he or she
may like. Due to the chaotic development process practised, when a developer leaves the organization, the
new incumbent usually faces great diffi culty in understanding the process that was followed for the portion of
the work that has been completed. Besides the lack of any agreed development processes in the organization,
no systematic project management process is prevalent. Consequently, time pressure builds up towards the
product delivery time. To cope up with the time pressure, many short cuts are tried out leading to low quality
products. Though project failures and project completion delays are commonplace in these level 1 organiza-
tions, yet it is possible that some projects may get successfully completed. But an analysis of any incidence
of successful completion of a project would reveal the heroic efforts put in by some members of the project
team. Thus, it can be said that the chances of a successful project execution by a level 1 organization depends
to a large extent on who exactly are the members of the development team.

304 So ware Project Management

Level 2: Repeatable Organizations at this level usually practise some basic project management practices
such as planning and tracking cost and schedule. Further, these organizations make use of confi guration
management tools to keep the deliverable items under confi guration control. As level 1 organizations, level
2 organizations are characterized by any documented process. However, the developers usually have a rough
understanding of the process being followed in the organization. As a result, such an organization can usually
repeat its success on one project on other similar projects.

Level 3: Defi ned At this level, the processes for both management and development activities are defi ned and
documented. There is a common organization-wide understanding of activities, roles, and responsibilities.
At this level, the organization builds up the capabilities of its employees through periodic training programs.
Also, systematic reviews are practised to achieve phase containment of errors.

Level 4: Managed Organizations at this level focus on effectively managing development tasks by collecting
appropriate process and product metrics. Quantitative quality goals are set for the products and processes. At
the time of project completion, it is checked whether the quantitative quality goals for these have been met.
The process metrics are used to check if project activities were performed satisfactorily. In other words, the
collected metrics are used to measure and track project performance rather than improve the process.

Level 5: Optimizing Organizations operating at this level not only collect process and product metrics, but
analyse them to identify scopes for improving and optimizing the various development and management
activities. In other words, these organizations strive for continuous process improvement. As an example of
a process optimization that may be made, consider that from an analysis of the process measurement results,
it is observed that the code reviews are not very effective and a large number of errors are detected only
during the unit testing. In this case, the review process would be fi ne-tuned to make it more effective. In a
level 5 organization, the lessons learned from specifi c projects are incorporated in to the process. Continuous
process improvement is achieved both by careful analysis of the process measurement results and assimi-
lation of innovative ideas and technologies. Level 5 organizations usually have a department whose sole
responsibility is to assimilate latest tools and technologies and propagate them across the organization.
Since the processes change continuously in these organizations, it becomes necessary to effectively manage
these changing processes. To effectively manage process changes, level 5 organizations use confi guration
management techniques.

Key process areas
Except for level 1, each maturity level is characterized by several Key Process Areas (KPAs). The KPAs of
a level indicate the areas that an organization at the lower maturity level needs to focus to reach this level.
The KPAs for the different process maturity levels are shown in Table 13.4. Note that level 1 has no KPAs
associated with it, since by default all organizations are in level 1.

KPAs provide a way for an organization to gradually improve its quality of over several stages. In other
words, at each stage of process maturity, KPAs identify the key areas on which an organization needs to focus
to take it to the next level of maturity. Each stage has been carefully designed such that one stage enhances the
capability already built up. For example, trying to implement a defi ned process (level 3) before a repeatable
process (level 2) would be counterproductive as it becomes diffi cult to follow the defi ned process due to
schedule and budget pressures. In other words, trying to focus on some higher level KPAs without achieving
the lower level KPAs would be counterproductive.

So ware Quality 305

CMMI (Capability Maturity Model Integration)
CMMI is the successor of the Capability Maturity Model (CMM). In 2002, CMMI Version 1.1 was released.
Version 1.2 followed in 2006. The genesis of CMMI is the following. After CMMI was fi rst released in
1990, it was adopted and used in many domains other than software development, such as human resource
management (HRM). CMMs were developed for disciplines such as systems engineering (SE-CMM),
people management (PCMM), software acquisition (SA-CMM), and others. Although many organizations
found these models to be useful, they faced diffi culties arising from overlap, inconsistencies, as well as
integration of the models. In this context, CMMI is generalized to be applicable to many domains using a
single framework. However, this unifi cation has resulted in making CMMI much more abstract than its prede-
cessors such as CMM. For example, all the terminologies that are used are very generic in nature and even
the word software does not appear in the defi nition documentation of CMMI. However, CMMI has much in
common with CMM, and also describes the fi ve distinct levels of process maturity of CMM.

TABLE 13.4 CMMI key process areas

Level Key process areas

1. Initial Not applicable

2. Managed Requirements management, project planning and monitoring and control, supplier
agreement management, measurement and analysis, process and product quality
assurance, confi guration management

3. Defi ned Requirements development, technical solution, product integration, verifi cation,
validation, organizational process focus and defi nition, training, integrated project
management, risk management, integrated teaming, integrated supplier management,
decision analysis and resolution, organizational environment for integration

4. Quantitatively managed Organizational process performance, quantitative project management

5. Optimizing Organizational innovation and deployment, causal analysis and resolution

ISO 15504 Process assessment
ISO/IEC 15504 is a standard for process assessment that shares many concepts with
CMMI. The two standards should be compatible. Like CMMI the standard is designed
to provide guidance on the assessment of software development processes. To do this
there must be some benchmark or process reference model which represents the ideal
development life cycle against which the actual processes can be compared. Various
process reference models could be used but the default is the one described in ISO 12207, which has been
briefl y discussed in Chapter 1 and which describes the main processes – such as requirements analysis and
architectural design – in the classic software development life cycle.

Processes are assessed on the basis of nine process attributes – see Table 13.5.

The main reference in
the UK for this stan-
dard is BS ISO/IEC
15504-1:2004.

306 So ware Project Management

TABLE 13.5 ISO 15504 framework for process capability

Level Attribute Comments

0. Incomplete The process is not implemented or is
unsuccessful

1. Performed
process

1.1 Process
performance

The process produces its defi ned
outcomes

2. Managed
process

2.1 Performance
management

The process is properly planned and
monitored

2.2 Work product
management

Work products are properly defi ned
and reviewed to ensure they meet
requirements

3. Established
process

3.1 Process
defi nition

The processes to be carried out are
carefully defi ned

3.2 Process
deployment

The processes defi ned above are properly
executed by properly trained staff

4. Predictable
process

4.1 Process
measurement

Quantitatively measurable targets are set
for each sub-process and data collected
to monitor performance

4.2 Process
control

On the basis of the data collected by
4.1 corrective action is taken if there is
unacceptable variation from the targets

5. Optimizing 5.1 Process
innovation

As a result of the data collected by 4.1,
opportunities for improving processes
are identifi ed

5.2 Process
optimization

The opportunities for process
improvement are properly evaluated
and where appropriate are effectively
implemented

When assessors are judging the degree to which a process attribute is being fulfi lled they allocate one of the
following scores:

Level Interpretation

N – not achieved 0 to 15% achievement

P – partially achieved 15% to 50% achievement

L – largely achieved 50% to 85% achievement

F – fully achieved 85% achievement

For a process to be
judged to be at Level
3, for example, Levels
1 and 2 must also have
been achieved.

So ware Quality 307

In order to assess the process attribute of a process as being at a certain level of achievement, indicators have
to be found that provide evidence for the assessment. For example, say the requirement analysis processes
of an organization were being assessed. Assessors might wish to test whether the organization is at Level
3, which relates to there being an established process. The assessor might fi nd a section in a procedures
manual relating to the conduct of requirements. This could be evidence of the process being defi ned (3.1 in
Table 13.5). They might also come across control documents which have been signed off as each step of the
requirements analysis process has been completed. This would indicate that the defi ned process is actually
deployed (3.2).

Implementing process improvement
The CMMI standard has now grown to over 500 pages. Without getting bogged down in detail, this section
explores how the general approach might usefully be employed. To do this we will take a scenario from
industry.

UVW is a company that builds machine tool equipment containing sophisticated control software. This
equipment also produces log fi les of fault and other performance data in electronic format. UVW produces
software that can read these log fi les and produce analysis reports and execute queries.

Both the control and analysis software is produced and maintained by the Software Engineering department.
Within this department there are separate teams who deal with the software for different types of equipment.
Lisa is a Software Team Leader in the Software Engineering department with a team of six systems designers
reporting to her.

Her group is responsible for new control systems and the maintenance of existing systems for a particular
product line. The dividing line between new development and maintenance is sometimes blurred as a new
control system often makes use of existing software components which are modifi ed to create the new
software.

A separate Systems Testing Group test software for new control systems, but not fault correction and adaptive
maintenance of released systems.

A project for a new control system is controlled by a Project Engineer with overall responsibility for managing
both the hardware and software sides of the project. The Project Engineer is not primarily a software specialist
and would make heavy demands on the Software Team Leader, such as Lisa, in an advisory capacity. Lisa may,
as a Software Team Leader, work for a number of different Project Engineers in respect of different projects,
but in the UVW organizational chart she is shown as reporting to the Head of Software Engineering.

A new control system starts with the Project Engineer writing a software requirement document which is
reviewed by a Software Team Leader, who will then agree to the document, usually after some amendment.
A copy of the requirements document will pass to the Systems Testing Group so that they can create system
test cases and a systems test environment.

Lisa, if she were the designated Software Team Leader, would then write an Architecture Design document
mapping the requirements to actual software components. These would be allocated to Work Packages carried
out by individual members of Lisa’s team.

UVW teams get the software quickly written and uploaded onto the newly developed hardware platform for
initial debugging. The hardware and software engineers will then invariably have to alter the requirement and
consequently the software as they fi nd inconsistencies, faults and missing functions. The Systems Testing

308 So ware Project Management

Group should be notifi ed of these changes, but this can be patchy. Once the system seems to be satisfactory to
the developers, it is released to the Systems Testing Group for fi nal testing before shipping to customers.

Lisa’s work problems mainly relate to late deliveries of software by her group because:

 (i) the Head of Software Engineering and the Project Leaders may not liaise properly, leading to the over-
commitment of resources to both new systems and maintenance jobs at the same time;

 (ii) the initial testing of the prototype often leads to major new requirements being identifi ed;

 (iii) there is no proper control over change requests – the volume of these can sometimes increase the
demand for software development well beyond that originally planned;

 (iv) completion of system testing can be delayed because of the number of bug fi xes.

We can see that there is plenty of scope for improvements. One problem is knowing where to start. However,
approaches like that of CMMI can help us identify the order in which steps in improvement have to take
place. Some steps need to build on the completion of others. An immediate step would be to introduce more
formal planning and control. This would at least enable us to assess the size of the problems even if we are not
yet able to solve them all. Given a software requirement, formal plans enable staff workloads to be distributed
more carefully. The monitoring of plans would also allow managers to identify emerging problems with
particular projects. Effective change control procedures would make managers more aware of how changes
in the system’s functionality can force project deadlines to be breached. These process developments would
help an organization move from Level 1 to Level 2. Figure 13.3 illustrates how a project control system could
be envisaged at the level of maturity.

FIGURE 13.3 The project as a ‘closed box’

The next step would be to defi ne carefully the processes involved in each stage of the development life cycle
– see Figure 13.4. The steps of defi ning procedures for each development task and ensuring that they are
actually carried out help to bring an organization up to Level 3.

 EXERCISE 13.8

The diagram in Figure 13.4 does not show the fl ows of information needed to indicate how managers
could ensure that the correct amount of staff time is allocated to development activities. Amend the
diagram to show these fl ows.

So ware Quality 309

When more formalized processes exist, the behaviour of component processes can be monitored. We can
see, for example, the numbers of change reports generated and system defects detected at the system testing
phase. Apart from information about the products passing between processes, we can also collect effort infor-
mation about each process itself. This enables effective remedial action to be taken speedily when problems
are found. The development processes are now properly managed, bringing the organization up to Level 4.

Finally, at Level 5 of process management, the information collected is used to improve the process model
itself. It might, for example, become apparent that the changes to software requirements are a major source
of defects. Steps could therefore be taken to improve this process. For example, the hardware component of
the system could be simulated using software tools. This could help the hardware engineers to produce more
realistic designs and reduce changes. It might even be possible to build control software and test it against a
simulated hardware system. This could enable earlier and cheaper resolution of technical problems.

Six Sigma
Motorola, USA, initially developed the six sigma method in the early 1980s. Since then, thousands of
companies around the world have discovered the benefi ts of adopting six sigma methodologies. The purpose

FIGURE 13.4 A process diagram

310 So ware Project Management

of six sigma is to improve processes to do things better, faster, and at a lower cost. It can in fact, be used to
improve every facet of business, i.e., production, human resources, order entry, and technical support areas.
Six sigma becomes applicable to any activity that is concerned with cost, timeliness, and quality of results.
Therefore, it is applicable to virtually every industry. Six sigma seeks to improve the quality of process
outputs by identifying and removing the causes of defects and minimizing variability in the use of process.
It uses many quality management methods, including statistical methods, and requires presence of six sigma
experts within the organization (black belts, green belts, etc.).

Six sigma is essentially a disciplined, data-driven approach to eliminate defects in any process. The statis-
tical representation of six sigma describes quantitatively how a process is performing. To achieve six sigma,
a process must not produce more than 3.4 defects per million defect opportunities. A six sigma defect is
defi ned as any system behaviour that is not as per customer specifi cations. Total number of six sigma defect
opportunities is then the total number of chances for committing an error. Sigma of a process can easily be
calculated using a six sigma calculator.

As already mentioned, a basic objective of the six sigma methodology is the implementation of a measure-
ment-based strategy that focuses on process improvement and variation reduction through the application of
six sigma improvement methodologies. This is accomplished through the use of two six sigma sub-method-
ologies: DMAIC and DMADV. The six sigma DMAIC process (defi ne, measure, analyse, improve, control)
is an improvement system for existing processes falling below specifi cation and looking for incremental
improvement. The six sigma DMADV process (defi ne, measure, analyse, design, verify) is an improvement
system used to develop new processes or products at six sigma quality levels. Both six sigma processes are
executed by six sigma green belts and six sigma black belts, and are overseen by six sigma master black
belts.

Many frameworks exist for implementing the six sigma methodology. Six sigma consultants all over the
world have also developed proprietary methodologies for implementing six sigma quality that is based on
various philosophies and tools.

13.10 Techniques to Help Enhance Soft ware Quality
Three main themes emerge in this discussion of software quality:

 ● Increasing visibility A landmark in the movement towards a focus on software
quality was Gerald Weinberg’s advocacy of ‘egoless programming’. Weinberg
encouraged the simple practice of programmers looking at each other’s code.

 ● Procedural structure At fi rst, programmers were left to get on with writing
programs as best they could. Over the years there has been the growth of method-
ologies where every process in the software development cycle has carefully laid
down steps.

 ● Checking intermediate stages It is tempting to push forward quickly with
the development of any engineered object until a ‘working’ model, however
imperfect, has been produced which can then be ‘debugged’. The move towards
quality practices has emphasized checking the correctness of work at its earlier,
conceptual, stages.

However, recently focus has shifted from relying solely on checking the products of intermediate stages and
towards building an application as a number of smaller, relatively independent components developed quickly

Gerald Weinberg
(1998) The Psychology
of Computer
Programming, Silver
Anniversary Edition,
Dorset House.

The creation of an
early working model of
a system may still be
useful, as the creation
of prototypes shows.

So ware Quality 311

and tested at an early stage. This can reduce some of the problems, noted earlier, of attempting to predict the
external quality of the software from early design documents. It does not preclude careful checking of the
design of components.

We are now going to look at some specifi c techniques. The push towards more visibility has been dominated
by the increasing use of walk-throughs, inspections and reviews. The movement towards a more procedural
structure inevitably leads to discussion of structured programming techniques and to its later manifestation in
the ideas of ‘clean-room’ software development.

The interest in the dramatic improvements made by the Japanese in product quality has led to much discussion
of the quality techniques they have adopted, such as the use of quality circles, and these will be looked at
briefl y. Some of these ideas are variations on the theme of inspection and clean-room development.

Inspections
Inspections can be applied to documents produced at any development stage. For instance, test cases need to
be reviewed – their production is usually not a high-profi le task even though errors can get through to opera-
tional running because of their poor quality.

When a piece of work is completed, copies are distributed to co-workers who examine the work, noting
defects. A meeting then discusses the work and a list of defects requiring rework is produced. The work to be
examined could be, typically, a program listing that is free of compilation errors.

Our own experience of using this technique has been that:

 ● it is a very effective way of removing superfi cial errors;

 ● it motivates developers to produce better structured and self-explanatory
software;

 ● it helps spread good programming practices as the participants discuss specifi c
pieces of code;

 ● it can enhance team spirit.

The item will usually be reviewed by colleagues who work in the same area, so that
software developers, for example, will have their work reviewed by fellow devel-
opers. To reduce the problems of communication between different stages, there may
be representatives from the stages preceding and following the one which produced
the work under review.

IBM made the review process more structured and formal, producing statistics to show its effectiveness. A
Fagan inspection (named after the IBM employee who pioneered the technique) is led, not by the author of
the work, but by a specially trained ‘moderator’.

Th e general principles behind the Fagan method
 ● Inspections are carried out on all major deliverables.

 ● All types of defect are noted – not just logic or function errors.

 ● Inspections can be carried out by colleagues at all levels except the very top.

 ● Inspections are carried out using a predefi ned set of steps.

The main problem is
maintaining the com-
mitment of participants
to a thorough examina-
tion of the work dis-
tributed to them after
the novelty value of
reviews has worn off
a little.

This is sometimes
called ‘peer review’,
where ‘peers’ are peo-
ple who are equals.

See M. E. Fagan’s
(1976) article ‘Design
and code inspections
to reduce errors in
program development’,
IBM Systems Journal
15(3).

312 So ware Project Management

 ● Inspection meetings do not last for more than two hours.

 ● The inspection is led by a moderator who has had specifi c training in the technique.

 ● The other participants have defi ned roles. For example, one person will act as a recorder and note all
defects found, and another will act as reader and take the other participants through the document
under inspection.

 ● Checklists are used to assist the fault-fi nding process.

 ● Material is inspected at an optimal rate of about 100 lines an hour.

 ● Statistics are maintained so that the effectiveness of the inspection process can be monitored.

 EXERCISE 13.9

Compare and contrast the peer review process described above with pair programming which is
advocated as part of extreme programming (XP).

Structured programming and clean-room soft ware development
In the late 1960s, software was seen to be getting more complex while the capacity
of the human mind to hold detail remained limited. It was also realized that it was
impossible to test any substantial piece of software completely given the huge number
of possible input combinations. Testing, at best, could prove the presence of errors,
not their absence. Thus Dijkstra and others suggested that the only way to reassure
ourselves about the correctness of software was by examining the code.

The way to deal with complex systems, it was contended, was to break them down
into components of a size the human mind could comprehend. For a large system
there would be a hierarchy of components and sub components. For this decompo-
sition to work properly, each component would have to be self-contained, with only

one entry and exit point.

The ideas of structured programming have been further developed into the ideas of clean-room software
development by people such as the late Harlan Mills of IBM.

With this type of development there are three separate teams:

 ● a specifi cation team, which obtains the user requirements and also a usage profi le
estimating the volume of use for each feature in the system;

 ● a development team, which develops the code but which does no machine testing
of the program code produced;

 ● a certifi cation team, which carries out testing.

Any system is produced in increments – recall Section 4.10 – each of which should be capable of actual
operation by the end-user. The development team does no debugging; instead, all software has to be verifi ed
by them using mathematical techniques. The argument is that software which is constructed by throwing up a
crude program, which then has test data thrown at it and a series of hit-and-miss amendments made to it until
it works, is bound to be unreliable.

E. W. Dijkstra in 1968
wrote a letter to a
learned computing
journal which was en-
titled ‘Go To Statement
Considered Harmful’.
This unfortunately led
to the common idea
that structured pro-
gramming was simply
about not using GO
TOs.

Usage profi les refl ect
the need to assess
quality in use as
discussed earlier in
relation to ISO 9126.
They will be further dis-
cussed in the Section
13.11 on testing below.

So ware Quality 313

The certifi cation team carry out the testing, which is continued until a statistical model shows that the failure
intensity has been reduced to an acceptable level.

Formal methods
Clean-room development, mentioned above, uses mathematical verifi cation techniques. These techniques use
unambiguous, mathematically based, specifi cation languages of which Z and VDM are examples. They are
used to defi ne preconditions and postconditions for each procedure. Preconditions defi ne the allowable states,
before processing, of the data items upon which a procedure is to work. The postconditions defi ne the state of
those data items after processing. The mathematical notation should ensure that such a specifi cation is precise
and unambiguous. It should also be possible to prove mathematically (in much the same way that at school
you learnt to prove Pythagoras’ theorem) that a particular algorithm will work on the data defi ned by the
preconditions in such a way as to produce the postconditions. Despite the claims of the effectiveness of the
use of a formal notation to defi ne software specifi cations for many years now, it is rarely used in mainstream
software development. This is despite it being quite widely being taught in universities. A newer development
that may meet with more success is the development of Object Constraint Language (OCL). It adds precise,
unambiguous, detail to the UML models, for example about the ranges of values that would be valid for a
named attribute. It uses an unambiguous, but non-mathematical, notation which developers who are familiar
with Java-like programming languages should grasp relatively easily.

Soft ware quality circles
Much interest has been shown in Japanese software quality practices. The aim of the ‘Japanese’ approach is
to examine and modify the activities in the development process in order to reduce the number of errors that
they have in their end-products. Testing and Fagan inspections can assist the removal of errors – but the same
types of error could occur repeatedly in successive products created by a faculty process. By uncovering the
source of errors, this repetition can be eliminated.

Staff are involved in the identifi cation of sources of errors through the formation of quality circles. These can
be set up in all departments of an organization, including those producing software where they are known as
software quality circles (SWQC).

A quality circle is a group of four to ten volunteers working in the same area who meet for, say, an hour a
week to identify, analyse and solve their work-related problems. One of their number is the group leader and
there could be an outsider, a facilitator, who can advise on procedural matters. In order to make the quality
circle work effectively, training needs to be given.

Together the quality group select a pressing problem that affects their work. They identify what they think are
the causes of the problem and decide on a course of action to remove these causes. Often, because of resource
or possible organizational constraints, they will have to present their ideas to management to obtain approval
before implementing the process improvement.

 EXERCISE 13.10

What are the important differences between a quality circle and a review group?

314 So ware Project Management

Associated with quality circles is the compilation of most probable error lists. For example, at IOE, Amanda
might fi nd that the annual maintenance contracts project is being delayed because of errors in the require-
ments specifi cations. The project team could be assembled and spend some time producing a list of the most
common types of error that occur in requirements specifi cations. This is then used to identify measures which
can reduce the occurrence of each type of error. They might suggest, for instance, that test cases be produced
at the same time as the requirements specifi cation and that these test cases should be dry run at an inspection.
The result is a checklist for use when conducting inspections of requirement specifi cations.

Lessons learnt reports
Another way by which an organization can improve its performance is by refl ecting on the performance of
a project at its immediate end when the experience is still fresh. This refl ection may identify lessons to be
applied to future projects. Project managers are required to write a Lessons Learnt report at the end of the
project. This should be distinguished from a Post Implementation Review (PIR). A PIR takes place after a
signifi cant period of operation of the new system, and focuses on the effectiveness of the new system, rather
than the original project process. The PIR is often produced by someone who was not involved in the original
project, in order to ensure neutrality. An outcome of the PIR will often be changes to enhance the effec-
tiveness of the installed system.

The Lessons Learnt report, on the other hand, is written by the project manager as soon as possible after the
completion of the project. This urgency is because the project team is often dispersed to new work soon after
the fi nish of the project. One problem that is frequently voiced is that there is often very little follow-up on
the recommendations of such reports, as there is often no body within the organization with the responsibility
and authority to do so.

13.11 Testing
The fi nal judgement of the quality of a software application is whether it actually works correctly when
executed. This section looks at aspects of the planning and management of testing. A major headache with
testing is estimating how much testing remains at any point. This estimate of the work still to be done
depends on an unknown, the number of bugs left in the code. We will briefl y discuss how we can deal with
this problem.

In Chapter 4, the V-process model was introduced as an extension to the waterfall process model. Figure 13.5
gives a diagrammatic representation of this model. This stresses the necessity for validation activities that
match the activities creating the products of the project.

The V-process model can be seen as expanding the activity box ‘testing’ in the waterfall model. Each step has
a matching validation process which can, where defects are found, cause a loop back to the corresponding
development stage and a reworking of the following steps. Ideally this feeding back should occur only where
a discrepancy has been found between what was specifi ed by a particular activity and what was actually
implemented in the next lower activity on the descent of the V loop. For example, the system designer
might have written that a calculation be carried out in a certain way. A developer building code to meet this
design might have misunderstood what was required. At system testing stage, the original designer would be
responsible for checking that the software is doing what was specifi ed and this would discover the coder’s
misreading of that document.

So ware Quality 315

Using the V-process model as a framework, planning decisions can be made at the outset as to the types
and amounts of testing to be done. An obvious example of this would be that if the software were acquired
‘off-the-shelf’, the program design and code stages would not be relevant and so program testing would not
be needed. User requirements would still be produced so user acceptance tests would still be valid.

Verifi cation versus validation
The objectives of both verifi cation and validation techniques are very similar. Both these techniques have
been designed to help remove errors in software. In spite of the apparent similarity between their objectives,
the underlying principles of these two bug detection techniques and their applicability are very different. The
main differences between these two techniques are the following:

 ● Verifi cation is the process of determining whether the output of one phase of software development
conforms to that of its previous phase. Validation is the process of determining whether fully developed
software conforms to its requirements specifi cation. We can therefore say that the objective of verifi -
cation is to check if the artifacts produced after a phase conforms to that of the previous phase. For
example, a verifi cation step can be to check if the design documents produced after the design step
conform to the requirements specifi cation. On the other hand, validation is applied to the fully developed
and integrated software to check if it satisfi es the customer’s requirements. The primary techniques
used for verifi cation include review, simulation, and formal verifi cation. On the other hand, validation
techniques are primarily based on product testing.

 ● Verifi cation is carried out during the development process to check if the development activities are
being carried out correctly, whereas validation is carried out towards the end of the development process
to check if the right product as required by the customer has been developed. Verifi cation techniques
can be viewed as an attempt to achieve phase containment of errors. Phase containment of errors has
been acknowledged to be a cost-effective way to eliminate program bugs, and accepted as an important
software engineering principle.

FIGURE 13.5 The V-process model

316 So ware Project Management

All the boxes shown in the right hand side of the V-process model of Figure 13.5 correspond to verifi cation
activities except the system testing block which corresponds to validation activity.

 EXERCISE 13.11

Is it at all possible to develop highly reliable software using validation techniques alone? If so, can we
say that whenever thorough validation is carried out, verifi cation is redundant?

Test case design
There are essentially two main approaches to systematically design test cases: black-box approach and
white-box (or glass-box) approach.

In the black-box approach, test cases are designed using only the functional specifi cation of the software.
That is, test cases are designed solely based on an analysis of the input/output behaviour (that is, functional
behaviour) and does not require any knowledge of the internal structure of a program. For this reason,
black-box testing is also known as functional testing and also as requirements-driven testing. Design of
white-box test cases on the other hand, requires analysis of the source code. Consequently, white-box testing
is also called structural testing or structure-driven testing.

Levels of testing
A software product is normally tested at three different stages or levels. These three testing stages are

 ● Unit testing

 ● Integration testing

 ● System testing

During unit testing, the individual components (or units) of a program are tested. For every module, unit
testing is carried out as soon as the coding for it is complete. Since every module is tested separately, there is
a good scope for parallel activities during unit testing. The objective of integration testing is to check whether
the modules have any errors pertaining to interfacing with each other.

Unit testing is referred to as testing in the small, whereas integration and system testing are referred to as
testing in the large. After testing all the units individually, the units are integrated over a number of steps and
tested after each step of integration (integration testing). Finally, the fully integrated system is tested (system
testing).

 EXERCISE 13.12

Why is it necessary to test each module of a program in isolation fi rst, then integrate these modules
and re-test, and again test the integrated set of modules? Why not just test the fully integrated set of
modules once thoroughly?

Testing activities
Testing involves performing the following main activities:

So ware Quality 317

Test Planning Since many activities are carried out during testing, careful planning is needed. The specifi c
test case design strategies that would be deployed are also planned. Test planning consists of determining the
relevant test strategies and planning for any test bed that may be required. A suitable test bed is an especially
important concern while testing embedded applications. A test bed usually includes setting up the hardware
or simulator.

Test Suite Design Planned testing strategies are used to design the set of test cases (called test suite) using
which a program is to be tested.

Test Case Execution and Result Checking Each test case is run and the results are compared with the expected
results. A mismatch between the actual result and expected results indicates a failure. The test cases for which
the system fails are noted down for test reporting.

Test Reporting When the test cases are run, the tester may raise issues, that is, report discrepancies between
the expected and the actual fi ndings. A means of formally recording these issues and their history is needed.
A review body adjudicates these issues. The outcome of this scrutiny would be one of the following:

 ● The issue is dismissed on the grounds that there has been a misunderstanding of a requirement by the
tester.

 ● The issue is identifi ed as a fault which the developers need to correct–Where development is being
done by contractors, they would be expected to cover the cost of the correction.

 ● It is recognized that the software is behaving as specifi ed, but the requirement originally agreed is
in fact incorrect–Remedying this means adding a new requirement and a contractor could expect to
receive payment for the additional work.

 ● The issue is identifi ed as a fault but is treated as an off-specifi cation –It is decided that the application
can be made operational with the error still in place.

In a commercial project, execution of the entire test suite can take several weeks to complete. Therefore,
in order to optimize the turnaround time, the test failure information is usually informally intimated to the
development team as and when failures are noticed.

Debugging For each failure observed during testing, debugging is carried out to identify the statements that
are in error. There are several debugging strategies, but essentially in each the failure symptoms are analysed
to locate the errors.

Error Correction After an error is located through
a debugging activity; the code is appropriately
changed to correct the error.

Defect Retesting Once a defect has been dealt with
by the development team; the corrected code is
retested by the testing team to check whether the
defect has successfully been addressed. Defect
retest is also popularly called resolution testing.
The resolution tests are a subset of the complete test
suite (see Fig. 13.6).

Regression Testing While resolution testing checks
whether the defect has been fi xed, regression testing
checks whether the unmodifi ed functionalities still

FIGURE 13.6 Types of test cases in the original test
suite a er a change

318 So ware Project Management

continue to work correctly. Thus, whenever a defect is corrected and the change is incorporated in the program
code, a danger is that a change introduced to correct an error could actually introduce errors in functionalities
that were previously working correctly. The regression tests check whether the unmodifi ed functionalities
continue to work correctly. As a result, after a bug-fi xing session, both the resolution and regression test cases
need to be run. This is where the additional effort required to create automated test scripts can pay off. As
shown in Figure 13.6, some test cases may no more be valid after the change. These have been shown as
invalid test case. The rest are redundant test cases, which check those parts of the program code that are not
at all affected by the change.

Test Closure Once the system successfully passes all the tests, documents related to lessons learned, test
results, logs, etc., are archieved for use as a reference in future projects.

Of all the above-mentioned testing activities, debugging is usually the most time-consuming activity.

Who performs testing?
A question to be settled at the planning stage is who would carry out testing. Many organizations have
separate system testing groups to provide an independent assessment of the correctness of software before
release. In other organizations, staff is allocated to a purely testing role but work alongside the developers
instead of a separate group. While an independent testing group can provide fi nal quality check, it has been
argued that developers may take less care of their work if they know the existence of this safety net.

Test automation
Testing is usually the most time consuming and laborious of all software development activities. This is
especially true for large and complex software products that are being developed currently. In fact at present,
testing cost often exceeds all other development life-cycle costs. With the growing size of programs and the
increased importance being given to product quality, test automation is drawing considerable attention from
both industry circles and academia. Test automation is a generic term for automating one or some activities
of the test process.

Other than reducing human effort and time in this otherwise time and effort-intensive work, test automation
also signifi cantly improves the thoroughness of testing. This is because more testing can be carried out using
a large number of test cases within a short period of time without any signifi cant cost overhead.

The effectiveness of testing, to a large extent, depends on the exact test case design strategy used. Considering
the large overheads that sophisticated testing techniques incur, in many industrial projects, often testing
is carried out using randomly selected test values. With automation, more sophisticated test case design
techniques can be deployed. Without the use of proper tools, testing large and complex software products
can especially be extremely time consuming and laborious. A further advantage of using testing tools is that
automated test results are much more reliable and eliminate human errors during testing. Regression testing
after every change or error correction requires running several old test cases. In this situation, test automation
simplifi es repeated running of the test cases. Testing tools hold out the promise of substantial cost and time
reduction even in the testing and maintenance phases.

Every software product undergoes signifi cant change overtime. Each time the code changes, it needs to be
tested whether the changes induce any failures in the unchanged features. Thus the originally designed test
suite needs to be run repeatedly each time the code changes. Of course additional tests have to be designed
and carried out on the enhanced features. Repeated running of the same set of test cases over and over after

So ware Quality 319

every change is monotonous, boring, and error-prone. Automated testing tools can be of considerable use in
repeatedly running the same set of test cases. Testing tools can entirely or at least substantially eliminate the
drudgery of running same test cases and also signifi cantly reduce testing costs. A large number of tools are at
present available both in the public domain as well as from commercial sources. It is possible to classify these
tools into the following types with regard to the specifi c methodology on which they are based.

Capture and Playback In this type of tools, the test cases are executed manually only once. During the manual
execution, the sequence and values of various inputs as well as the outputs produced are recorded. On any
subsequent occasion, the test can be automatically replayed and the results are checked against the recorded
output. An important advantage of the capture playback tools is that once test data are captured and the
results verifi ed, the tests can be rerun several times over easily and cheaply. Thus, these tools are very useful
for regression testing. However, capture and playback tools have a few disadvantages as well. Test mainte-
nance can be costly when the unit under test changes, since some of the captured tests may become invalid. It
would require considerable effort to determine and remove the invalid test cases or modify the test input and
output data. Also new test cases would have to be added for the altered code.

Automated Test Script Test scripts are used to drive an automated test tool. The scripts provide input to the
unit under test and record the output. The testers employ a variety of languages to express test scripts. An
important advantage of test script-based tools is that once the test script is debugged and verifi ed, it can be
rerun a large number of times easily and cheaply. However, debugging the test script to ensure its accuracy
requires signifi cant effort. Also, every subsequent change to the unit under test entails effort to identify
impacted test scripts, modify, rerun and reconfi rm them.

Random Input Test In this type of an automatic testing tool, test values are randomly generated to cover
the input space of the unit under test. The outputs are ignored because analysing them would be extremely
expensive. The goal is usually to crash the unit under test and not to check if the produced results are correct.
An advantage of random input testing tools is that it is relatively easy. This approach however can be the
most cost-effective for fi nding some types of defects. However, random input testing is a very limited form of
testing. It fi nds only the defects that crash the unit under test and not the majority of defects that do not crash
the system but simply produce incorrect results.

Model-based Test A model is a simplifi ed representation of program. There can be several types of models
of a program. These models can either be structural models or behavioural models. Examples of behavioral
models are state models and activity models. A state model-based testing generates tests that adequately
cover the state space described by the model.

Estimation of latent errors
Earlier, we noted the problem of estimating the number of errors left in an application under test. At the start
of testing, there is one relatively straightforward way of estimating the number of errors in code. Simply put,
bigger programs are likely to have more errors. If you have collected error data from past projects, you can
arrive at the historic number of errors per 1000 lines of code. This can then be used to arrive at a reasonable
estimate of the number of errors likely to be found in a new system development of a known size.

This estimate could be confi rmed during the actual testing. One suggestion is that known errors can be seeded
in the software. This seeding could be done by having one or more people doing a desk-check of code, but
then leaving any errors found in the code. Say 10 such errors are found. Then suppose that after the fi rst set
of tests 30 errors were found of which six were known errors, that is 60% of the seeded errors. This suggests

320 So ware Project Management

that around 40% of the errors have still to be detected, that is 20 errors (of which four are already known).
The method of calculating an estimate of the errors in the software is

(total errors found)/(seeded errors found) 3 (total number of seeded errors)

You may be thinking that deliberately putting (or leaving) known errors in software
is a bit sneaky. It might be more acceptable to use a slightly different approach origi-
nally suggested by Tom Gilb. Two different reviewers, or groups of reviewers, are
asked to inspect or test the same code. They must be completely independent of one
another. Three counts are collected:

 ● n1, the number of valid errors found by A

 ● n2, the number of valid errors found by B

 ● n12, the number of cases where the same error is found by both A and B.

The smaller the proportion of errors found by both A and B compared to those found by only one reviewer,
the larger the total number of errors likely to be in the software. An estimate of the total number of errors (n)
can be calculated by the formula:

n = (n1 3 n2)/n12

For example, A fi nds 30 errors and B fi nds 20 errors of which 15 are common to both A and B. The estimated
total number of errors would be:

(30 3 20)/15 = 40

13.12 Soft ware Reliability
We had pointed out in Section 13.5 that reliability is an important quality attribute. In this section, we discuss
some basic concepts in software reliability engineering. The reliability of a software product essentially
denotes its trustworthiness or dependability. Alternatively, the reliability of a software product can be defi ned
as the probability of its working correctly over a given period of time.

Intuitively, it is obvious that a software product having a large number of defects is unreliable. It is also
very reasonable to assume that the reliability of a system would improve if the number of defects in it is
reduced. However, it is very diffi cult to formulate a mathematical expression to characterize the reliability of
a system in terms of the number of latent defects in it. To get an insight into this issue, consider the following.
Removing errors from those parts of a software product that are infrequently executed makes little difference
to the reliability of the product. It has been experimentally observed by analysing the behaviour of a large
number of programs that 90% of the execution time of a typical program is spent in executing only 10% of the
instructions in the program. Therefore, in addition to the number of defects, the specifi c point in the program
(core or non-core part) where the bug is located also matters. Further, reliability is observer dependent, in
the sense that it depends on the relative frequency with which different users invoke the functionalities of a
system. It is possible that because of different usage patterns of the available functionalities of software, a
bug which frequently shows up for one user, may not show up at all for another user, or may show up very
infrequently.

Reliability of a software product usually keeps on improving with time during the testing and operational
phases as defects are identifi ed and repaired. In this context, the growth of reliability over the testing and
operational phases can be modelled using a mathematical expression called Reliability Growth Model (RGM).

Tom Gilb (1977)
Software Metrics
Winthrop Publishers,
Cambridge, MA.

So ware Quality 321

Thus, RGM models show how the reliability of a software product improves as failures are reported and bugs
are corrected. A large number of RGMs have been proposed by researchers based on various failure and bug
repair patterns. A few popular reliability growth models are Jelinski–Moranda model, Littlewood–Verall’s
model, and Goel–Okutomo’s model. For a given development project, a suitable RGM can be used to predict
when (or if at all) a particular level of reliability is likely to be attained. Thus, reliability growth modelling
can be used to determine when during the testing phase a given reliability level will be attained, so that testing
can be stopped.

13.13 Quality Plans
Some organizations produce quality plans for each project. These show how the standard quality procedures
and standards laid down in an organization’s quality manual will actually be applied to the project. If an
approach to planning such as Step Wise has been followed, quality-related activities and requirements will
have been identifi ed by the main planning process with no need for a separate quality plan. However, where
software is being produced for an external client, the client’s quality assurance staff might require that a
quality plan be produced to ensure the quality of the delivered products. A quality plan can be seen as a
checklist that all quality issues have been dealt with by the planning process. Thus, most of the content will
be references to other documents.

A quality plan might have entries for:
 ● purpose – scope of plan;

 ● list of references to other documents;

 ● management arrangements, including organization, tasks and responsibilities;

 ● documentation to be produced;

 ● standards, practices and conventions;

 ● reviews and audits;

 ● testing;

 ● problem reporting and corrective action;

 ● tools, techniques and methodologies;

 ● code, media and supplier control;

 ● records collection, maintenance and retention;

 ● training;

 ● risk management – the methods of risk management that are to be used.

CONCLUSION

Important points to remember about software quality include the following.

 ● Quality by itself is a vague concept and practical quality requirements have to be carefully defi ned.

 ● There have to be practical ways of testing for the relative presence or absence of quality.

 ● Most of the qualities that are apparent to the users of software can only be tested for when the system
is completed.

This contents list is
based on a draft IEEE
standard for software
quality assurance
plans.

322 So ware Project Management

 ● Therefore ways are needed of checking during development what the quality of the fi nal system is
likely to be.

 ● Some quality-enhancing techniques concentrate on testing the products of the development process,
while others try to evaluate the quality of the development processes used.

FURTHER EXERCISES

 1. An organization is contemplating the purchase of a project planning software tool, such as MS Project,
and has decided to draw up quality specifi cations for the package. The features that they are particularly
concerned with are:

 ■ setting up details of new projects;

 ■ allocating resources to project tasks, taking account of the need for resource smoothing;

 ■ updating the project details with information about actual tasks completed;

 ■ the effective presentation of plans.

 Draw up quality specifi cations in respect of the qualities of:

 ■ usability

 ■ reliability

 ■ recoverability.

 2. The following is an excerpt from a report generated from a help-desk logging system.

Module Date fault reported Fault corrected Effort (hours)

AA247 1.4.2004 2.4.2004 5

AA247 10.4.2004 5.5.2004 4

AA247 12.4.2004 5.5.2004 3

AA247 6.5.2004 7.5.2004 2

 Assess the maintainability of module AA247 from the point of view of:

 ■ the user management;

 ■ the developer management.

 3. Discuss how meaningful the following measurements are.

 (a) The number of error messages produced on the fi rst compilation of a program.

 (b) The average effort to implement changes requested by users to a system.

 (c) The percentage of lines in program listings that are comments.

 (d) The number of pages in a requirements document.

 4. How might you measure the effectiveness of a user manual for a software package? Consider both
the measurements that might be applicable and the procedures by which the measurements might be
taken.

So ware Quality 323

 5. What might the entry, implementation and exit requirements be for the process design program
structure?

 6. Identify a task that you do as part of your everyday work. For that task identify entry, process and exit
requirements.

 7. What BS EN ISO 9001 requirements have a bearing on the need for an effective confi guration
management system?

 8. In a software development organization, identify the persons responsible for carrying out the quality
assurance activities. Explain the principal tasks they perform to meet this responsibility.

 9. Suppose an organization mentions in its job advertisement that it has been assessed at level 3 of SEI
CMM. What can you infer about the current quality practices at the organization? What does this
organization have to do to reach SEI CMM level 4?

 10. Suppose as the president of a company, you have the choice to either go for ISO 9000 based quality
model or SEI CMM based model, which one would you prefer? Give the reasons for your choice.

 11. In a software development organization whose responsibility is it to ensure that the products are of high
quality? Explain the principal tasks they perform to meet this responsibility.

 12. What do you understand by repeatable software development? Organizations assessed at which level of
SEI CMM maturity achieve repeatable software development?

 13. What do you understand by Key Process Area (KPA), in the context of SEI CMM? Would there be any
problem if an organization tries to implement higher level SEI CMM KPAs before achieving lower
level KPAs? Justify your answer using a suitable example.

 14. What do you understand by the six sigma quality initiative? To which category of industries is it appli-
cable? Explain the six sigma technique with respect to its goal, the procedure followed, and the outcome
expected.

 15. What is the difference between process and product metrics? Give two examples of each. How does
computation of process and product metrics help in developing quality products?

 16. Identify the persons responsible for carrying out testing in a software development organization.
Explain the principal tasks they perform.

—

APPENDIX A

A.1 Introduction to PRINCE2
Large organizations can have a number of software and other projects being executed
at the same time. Some of these might use external suppliers of products and services.
In such an environment it would be helpful if the procedures by which each project
were run were standardized rather than having to be continually reinvented. However,
each project will make different demands on management: some, for example, might
be more technically challenging, might affect particularly critical areas of the business
or might involve larger numbers of different types of users. Because the adoption of a
management method is not cost-free, the degree of control that will be cost-effective
will vary from project to project. Hence any standard approach should incorporate
mechanisms to tailor management procedures and structures to suit localized needs.
In the UK, the government has sponsored, through the OGC, a set of such procedures,

called PRINCE, which has, after several years, been revised as PRINCE2.

The precursor to PRINCE was a project management method called PROMPT, which suffered from the
defect that it was not fl exible enough to deal adequately with all types of project. This was followed by the
fi rst version of PRINCE, which was designed primarily for an ICT development environment so that, for
example, it was made to have a good fi t with SSADM. It soon became apparent, however, that the method
was applicable to projects outside the strictly ICT domain and PRINCE2 makes no specifi c references to ICT
development.

It is now possible to take examinations in PRINCE2 and to be thus recognized as a PRINCE2 practitioner.

A.2 Th e Components of PRINCE2
The method does not claim to cover all aspects of project management. It has the following components:

 ● organization;

The OGC is the
Offi ce of Government
Commerce, which has
replaced the CCTA, the
Central Computer and
Telecommunications
Agency.

PRINCE stands for
‘PRojects IN Controlled
Environments’.

Appendix A Prince2—An Overview 325

 ● planning;

 ● controls;

 ● stages;

 ● management of risk;

 ● quality;

 ● confi guration management;

 ● change control.

The following list provides a convenient structure that we will use to explain PRINCE2:

 ● techniques;

 ● organization;

 ● documentation;

 ● procedures.

This appendix will not explore the supplementary techniques where the PRINCE2 manual lays down some
basic requirements. We do not describe these areas in detail since there is suffi cient material elsewhere in this
book. They include:

 ● risk management;

 ● quality management;

 ● confi guration management;

 ● change control.

Below, we will outline the general approach to planning that PRINCE2 advocates. It will be noted that
PRINCE2, compared, for example, to SSADM, is rather light in its description of techniques. It is stronger
in its rules for the project management structures that should be adopted. In our view, its main focus is on the
project as an information system. Project management information is identifi ed and the procedures by which
the various elements of this information are created, processed and used are described at some length. This
project information is mainly associated with the delivery of products, in a controlled environment, resulting
in benefi ts to the business.

A.3 PRINCE Planning Technique
Figure A.1 shows the stages in the planning process that are suggested by PRINCE2.
The fi rst of these – Design a plan – is essentially deciding what kind of information
is to go into the plan, particularly at what level of detail the plan is to be drawn.
The remaining steps are very similar to the Step Wise approach to planning that
was outlined in Chapter 3, except that in the Step Wise approach the risk analysis
was carried out immediately after the estimation of effort for each activity. This was
because in our view risk identifi cation follows on naturally from estimation: you work out how long you think
it will take to do an activity and then you consider what factors could work to make that estimate incorrect.
Also, the identifi cation of risks can lead to new activities being introduced to avoid the risks occurring and
this is conveniently done before the schedule is put together by allocating resources. However, the Step Wise
approach is not necessarily at odds with PRINCE2 as PRINCE2 does emphasize the iterative nature of risk
analysis.

The Step Wise ap-
proach was outlined
in Chapter 3, while
risk was discussed in
Chapter 7.

326 So ware Project Management

Like Step Wise, PRINCE2 is very product-based. In the second planning phase, PL2 in Figure A.1, all
the business products, plus the management and quality documents needed to control their delivery, are
identifi ed.

This sequence of steps can be used in several places in the PRINCE2 procedural framework to produce a
variety of different types of plan.

A.4 PRINCE2 Project Organization
PRINCE2 identifi es roles rather than jobs. Depending on the circumstances, a role could, in fact, be carried
out by more than one person, or a single person could assume more than one role.

PRINCE2 is based on the perception that the project will involve users of the products of the project, on
the one hand, and suppliers of goods and services needed by the project on the other. While the users and
suppliers could in fact belong to the same organization, for management and control purposes the two sides
need to be carefully distinguished. Furthermore, on the customer side, two management roles exist. Any
development project is carried out, not for its own sake, but to do something useful for the customer organi-
zation. The Executive role has the responsibility of ensuring that the project continues to meet these business
requirements. A danger, for example, is that development costs might grow in such a way that they exceed
any benefi ts of the completed project. The customer side will also, of course, contain the community who
will actually use the completed system on a day-to-day basis. Although we have talked about the supplier and
customer sides, it could also be argued that the suppliers who will provide the system and the users who will

FIGURE A.1 PRINCE2 approach to planning

Appendix A Prince2—An Overview 327

operate it needs to cooperate to ensure that the operational system provides the benefi ts sought after by their
customer, the ‘Executive’.

PRINCE2 specifi es that the three roles of Executive, Supplier and User are repre-
sented on a Project Board which has overall accountability for the success of the
project and responsibility for the commitment of resources.

The senior staff carrying out the respective roles will be responsible offi cers within
their respective organizations and the oversight of the project will probably be only
one of many responsibilities. Hence, the task of managing the project on a day-to-day
basis will be delegated by the Project Board to a Project Manager. On a large project
it could be necessary for the Project Manager to delegate the managing of certain
aspects of the project to specialist Team Managers.

Conscientious and motivated staff will inevitably focus on meeting user requirements and give a lower
priority to dealing with what they might see as project management ‘red tape’. It could even be that the
Project Manager with the daily burden of pushing the project forward might not be immune to this. However,
this ‘red tape’ is needed to ensure that the project remains under control and that it continues to meet its
business justifi cation. Thus, some assurance is needed, independent of project management, that project
management procedures are being properly followed. The ultimate responsibility for this assurance resides
with the Project Board, but in practice detailed project assurance could be carried out by staff, independent of
the team executing the project, who report to the Project Board members. Different types of project assurance
specialists might be employed to ensure the business justifi cation of the project is maintained, that the users’
needs are being met and that the necessary technical requirements are being adhered to by the suppliers.

Project support
The Project Manager can require day-to-day support with the administration of the
project. This might involve such tasks as processing time sheets or updating a comput-
er-based project management tool such as Microsoft Project. It could be convenient
for one group within an organization to supply this support to a number of projects.
A key member of the project support team will be the Confi guration Librarian, who
will keep track of the latest versions of the products and documents generated by the
project.

A.5 Project Stages
It is sensible to divide large projects into more manageable segments. PRINCE2 caters for this through the
idea of Stages. These are subsets of the project activities and are managed as a sequence of individual units.
Normally, the Project Manager will, at any one time, be authorized by the Project Board to execute only the
current Stage. The Project Manager will be able to start the next Stage only when the Project Board has met
to give its approval for the plans for that Stage. The end of a Stage signals a decision point when the Project
Board will review the progress to date and reassure itself that the project is still viable from a business point
of view – in particular, that the expected benefi ts are still likely to justify the projected costs.

The typical system development life cycle contains a number of phases, where each phase makes use of
different specialist techniques. These technical phases might be the typical steps outlined in Chapter 1:
requirements analysis and specifi cation, logical design, physical design, build, testing and installation. It
is convenient in many cases for the management Stages specifi ed by PRINCE2 to be mapped onto these

Note that we have fol-
lowed the convention
of indicating specifi c
PRINCE2 terms by
initial capital letters,
Project Board, for ex-
ample. All these terms
are as in the PRINCE2
manual, which has
Crown copyright.

The Project Board,
Project Manager, Team
Leaders and project
assurance and support
staff are known col-
lectively in PRINCE2
as the Project
Management Team.

328 So ware Project Management

technical phases, but the PRINCE2 standards are at pains to stress that it is not always convenient to do this –
for instance the project might be more manageable if more than one technical phase were combined to create
a Stage.

As will be explained in more detail in Section A.8 on ‘Starting a project’, at the beginning of a project a
Project Plan will be created which will give the envisaged Stages. Only the fi rst of these Stages will need
to have a detailed Stage Plan immediately available. For the later stages, it is better to complete the detailed
Stage Plan just a little while before the Stage is due to start. In that way, the Stage Plan can take account of a
more complete picture of the project: at the beginning of the project, for example, it would be impossible to
plan the system building stage in detail when the system requirement has not yet been clearly defi ned.

Once the Stage has been authorized and its execution has been embarked upon, the Project Board should not
need to meet as long as any deviations from planned time and cost are only minor and are within laid-down
project tolerances. It should be suffi cient for members of the Project Board to receive regular reports from the
Project Manager. If these tolerances are likely to be exceeded, then the Project Manager has a responsibility
to produce an Exception Report for the Project Board. If the problems are serious enough to undermine the
Stage Plan, then the Project Manager might be required to produce a modifi ed Stage Plan, or more properly
an Exception Plan, which the Project Board will need to approve formally. In extreme circumstances the
Project Board might at this point decide to terminate the project prematurely.

A.6 Project Procedures
Table A.1 lists the main project management processes for which PRINCE2 lays down procedures to deal
with the various events that the Project Management Team might encounter.

The levels of staff who are involved with each of the groups of project management processes in Table A.1 are
indicated in Figure A.2. The general planning process PL is not shown as this can take place at various times
and places for different reasons. For example, it could take place during the ‘Initiating a project’ (IP) process
to create the Project Plan, or during ‘Managing stage boundaries’ (SB) when a Stage Plan for the next Stage
is constructed or when an Exception Plan needs to be produced.

TABLE A.1 Major PRINCE2 processes

PRINCE ID Major processes

SU Starting up a project

IP Initiating a project

DP Directing a project

CS Controlling a stage

MP Managing product delivery

SB Managing stage boundaries

CP Closing a project

PL Planning

Appendix A Prince2—An Overview 329

A.7 Directing a Project
The main points where the Project Board have to be active are covered by the DP processes – Directing a
project. These points are:

 ● authorizing initiation – agreeing to the start of detailed planning of a project;

 ● authorizing a project – agreeing, after the planning has been completed, that the project can go ahead;

 ● authorizing a Stage or Exception Plan;

 ● giving ad hoc direction;

 ● closing a project.

A.8 Starting Up a Project
As we noted in Chapter 2, the decision to undertake a project does not spring out
of thin air. Where a customer organization has a coherent strategy, it is likely that
there will be a layer of programme management where the ‘programme’ is a group of
projects that are coordinated to meet an integrated set of business requirements. The
current project could therefore be triggered by the programme managers. In any case,
PRINCE2 envisages that the project cycle will be sparked by some kind of Project
Mandate, which will identify the customer and the general subject of the project.
The PRINCE2 Start Up process is essentially concerned with getting into a position
where detailed planning of the proposed project can begin. As a starting point, this will need the recruitment
of people to the various roles in the Project Management Team. The Project Mandate, which could be a rather

FIGURE A.2 Project management roles (see Table A.1 for key)

With the fi rst version
of PRINCE there were
sometimes diffi culties
knowing at which point
the project had really
started. The separate
processes of Start Up
and Initiation could
avoid this.

330 So ware Project Management

insubstantial or imprecise document, might need to be refi ned and expanded into a Project Brief, which
defi nes the objectives of the project. Based on this, the general technical approach to be adopted to meet these
objectives needs to be decided upon and documented in the Project Approach. The kinds of issue raised in
Chapter 4 will need to be considered at this point. This could involve decisions about whether an off-the-shelf
package can be bought or whether a bespoke package is required, and, if so, whether its development is to be
carried out ‘in-house’ or by external contractors. All these activities lead to the formulation of a general plan
of how the detailed planning is to be carried out.

A.9 Initiating the Project
Having completed the Start Up Process, the Project Board can now decide that there are suffi cient grounds to
go on to more detailed planning. This begins with the consideration of a Project Quality Plan. Despite what
some books suggest, quality levels do have cost implications. Different projects will have different quality
requirements – faults in a college timetabling system are annoying but do not have the same consequences as
the failure of a system controlling the fl ight of a passenger aeroplane. These quality requirements will have an
effect on the activities that will have to be scheduled and the resources that will have to be found. This Project
Quality Plan, plus the information in the Project Brief and Project Approach documents, now allow a Project
Plan to be drafted. This will contain:

 ● the major products to be created;

 ● the main activities to be undertaken;

 ● project risks and their counter-measures;

 ● effort requirements;

 ● timescales;

 ● key decision points.

We now have a much clearer idea of the overall cost of the project than we did at the time of the original
Project Mandate. The business case can now be reviewed to see whether the proposed project is still viable.
The reliability of the business case will depend on the validity of the assumptions upon which it is based.
The possibility that particular assumptions are incorrect is assessed and documented in a Risk Log. The fi nal
parts of project initiation are specifying how the project is to be controlled in terms of reporting and decision-
making responsibilities and the setting up of project fi les.

The culmination of Initiating a Project is the putting together of a Project Initiation Document, which brings
together the documentation generated by the Start Up and Initiation processes. If the Project Board can
approve this document then the fi rst proper Stage of the project can start.

A.10 Controlling a Stage
Once a Stage has been initiated, the Project Manager should be able to get on with the direction of the Stage
without having to organize regular formal meetings with the Project Board.

Table A.2 shows the actions that the Project Manager might have to carry out while the Stage is being
executed and for which the originators of PRINCE2 have laid down procedural guidelines.

The Project Manager will have to authorize Work Packages (CS1), tasks that have to be carried out to create
the products that should be the desired outcome of the project, such as software modules. On a substantial

Appendix A Prince2—An Overview 331

project, these authorizations will be passed not directly to the people who will do the work but to Team
Managers.

Once the work has been authorized, the Project Manager will then need to fi nd out how that work is
progressing (CS2). This involves the kinds of task touched on in Chapter 9 on project control. For instance,
progress information will have to be gathered to see if tasks are likely to be completed on time; feedback on
recent quality-checking activities will also be needed to ensure that apparent progress is not being made by
releasing products before they are really ready. Eventually, for each Work Package the Project Manager will
be informed that the work can be signed-off as completed (CS9). This progress data will be used to add actual
completion dates to the details of planned activities that have been recorded in the Stage Plan.

TABLE A.2 PRINCE2 processes when controlling a Stage

PRINCE ID Controlling Stages (CS) processes

CS1 Authorize Work Package

CS2 Assess progress

CS3 Capture Project Issues

CS4 Examine Project Issues

CS5 Review Stage status

CS6 Report highlights

CS7 Take corrective action

CS8 Escalate project issue

CS9 Receive completed Work Package

A major part of a Project Manager’s job during the execution of a Stage is bound to be ‘fi re-fi ghting’ – dealing
with the unexpected problems that are certain to occur. PRINCE2 lays down a procedure (CS3 Capturing
Project Issues) to ensure that these ‘issues’ are properly recorded. The ‘issues’ could be changes to require-
ments, changes to the environment such as new legal obligations, and other problems that might or might not
have been foreseen by the risk analysis for the project. All these issues should be logged. Another PRINCE2
procedure (CS4) is designed to ensure that all these issues are dealt with in an effective way. Outcomes can
include a Request for Change to modify the user requirement or an Off-Specifi cation, which records known
and accepted errors and omissions in the product to be delivered.

The process of assessing progress (CS2) requires the Project Manager to look at the individual strands of work
going on in his or her area of responsibility. PRINCE2 envisages a separate but related activity where having
gathered this progress information and also any outstanding Project Issues, the Project Manager checks the
health of the Stage as a whole (CS5). In particular, the Project Manager will want to be reassured that the
project as a whole is still progressing within its tolerances, the boundaries within which the Project Manager
is allowed to manoeuvre without having to obtain clearance from the Project Board. One outcome of CS5
could be the carrying out of corrective action (CS7) that might include authorizing new Work Packages to
deal with specifi c problems. Where work is progressing so that Project Issues are being kept under control

332 So ware Project Management

and the Stage is within tolerances, then it will be enough to communicate progress to the Project Board by
means of Highlight reports (CS6). In some cases the Project Manager might feel unable to progress with a
matter without guidance from higher management and will request advice. Where activities have taken longer
than planned or have taken up more resources than were budgeted so that the Project Manager is in danger of
having to act outside the tolerances laid down in the Stage Plan, the Project Manager might have to ‘escalate’
a particular issue (CS8) by drafting an Exception Report to be considered by the Project Board. This should
not only explain why the Stage has gone adrift from its original plan, but also detail possible options for
recovering the situation and make a specifi c recommendation to the Project Board.

A.11 Managing Product Delivery
The processes described in ‘Controlling a Stage’ all assume that the work needed to complete a Stage is under
the direct control of the Project Manager. Of course, it could be the case that, as described in Chapter 10 on
contract management, some of the work is to be carried out by third party suppliers, that is, by an external
organization that is not the primary supplier in direct contact with the customer, but a sub-contractor who
carries out work on behalf of the supplier. These sub-contractors might not be using PRINCE2. Hence the
situation could need careful handling and PRINCE2 provides some guidelines to help this – see Table A.3.

TABLE A.3 PRINCE2 processes when managing product delivery

PRINCE ID Managing product delivery (MP) processes

MP1 Accept Work Package

MP2 Execute Work Package

MP3 Deliver Work Package

Once the Project Manager has authorized a Work Package (CS1), as described in the ‘Controlling a Stage’
section, the person who is to be responsible for the execution of the Work Package needs to check the require-
ments of the Work Package to ensure that there is common understanding on what exactly is to be delivered,
the constraints that might apply to the work and the requirements of any interfaces with other work (MP1).
The Team Manager who is accepting the work must be confi dent that the targets can be realistically achieved.
This could involve working out a Team Plan detailing how the work is to be done.

Once the work has been accepted, work can start on executing the Work Package (MP2). As this could be
done by a sub-contractor who does not use PRINCE2, PRINCE2 lays down the general requirement that the
responsible Team Manager should have the information ready to hand to report back to the Project Manager
on progress as laid down in the authorized Work Package document. Finally, the need to defi ne and agree the
process by which completed Work Packages are handed over to the Project Manager is identifi ed (MP3).

A.12 Managing Stage Boundaries
A key PRINCE2 principle is to avoid too detailed planning at too early a stage. At
the beginning of the project, for instance, the overall Project Plan is produced, but the
more detailed Stage Plan is only produced for the fi rst Stage. Towards the end of a
Stage, the detailed plan for the next Stage can be mapped out as a clearer idea of the
project requirements emerges (SB1). The creation of the Stage Plan for the next Stage

The transition from one
Stage to another will
involve the processes
shown in Table A.4.

Appendix A Prince2—An Overview 333

could show up inadequacies in the overall Project Plan, which might need to be updated. For example, the
design Stage of a project might reveal that the functionality of the system is greater than was foreseen when
the fi rst Project Plan was produced. More time might therefore be needed at the build Stage and this needs to
be refl ected in the Project Plan (SB2).

More time needed at build Stage will almost certainly mean that the date by which the project will be fi nally
completed will be put back. This will lead to increasing development costs and the deferment of any income
from the implemented system. At this point we need a process that checks that the project is still viable, that
is, that the benefi ts of the delivered system will still outweigh the costs (SB3).

TABLE A.4 PRINCE2 processes when managing Stage boundaries

PRINCE ID Managing Stage boundaries

SB1 Planning a Stage

SB2 Updating the Project Plan

SB3 Updating the project business case

SB4 Updating the Risk Log

SB5 Reporting a Stage End

SB6 Producing an Exception Report

The situation with regard to risks might also have changed and this too needs to be reviewed (SB4). For
example, as the project moves from design to build, some risks will disappear – if users were heavily involved
in a design phase based around prototyping, a risk such as the non-availability of users for prototype evalu-
ation will no longer be applicable and can be struck out. Other risks might, however, have materialized – a
new version of the software building tool to be used could have been imposed by the organization and there
is the possibility that developers might have technical diffi culties adapting to the new product.

When all these things have been done, the new Stage will still need to wait for the successful completion of
the last Stage. When this happens, the Project Manager can report the completion of the Stage (SB5) and the
approval of the Project Board for the new Stage Plan can be requested.

A.13 Closing the Project
PRINCE2 divides the closing of a project into three separate processes:

 ● decommissioning a project (CP1);

 ● identifying follow-on actions (CP2);

 ● evaluating the project (CP3).

Decommissioning is mainly ensuring that all the loose ends are tied up. All Project Issues should either have
been resolved or have been recorded as requiring Follow-on Actions. All the planned project products should
have been accepted by the client and the requested operational and maintenance arrangements should be in
place. Project fi les will have to be stored away into an archive and all parties involved should be notifi ed
that the project is now closed. PRINCE2 does not specify that team members and key users should have a

334 So ware Project Management

celebratory drink, but now might be the time to consider this. Decommissioning might have been caused by
an ad hoc direction (DP4) to terminate a project prematurely as it is no longer required and in this case a wake
could be more appropriate.

One follow-on action will be to plan for the Post Project Review which evaluates the effectiveness of the
installed system after a set period of operation.

In organizations where development resources are scarce, there might appear to be little time available to
refl ect on practice and to dwell on past mistakes. However, if this is not done, time will be wasted in dealing
with recurrent problems. PRINCE2 recognizes this by specifying that at this point a Project End Report
should be produced, documenting the extent to which the project has met the objectives set out in the Project
Initiation Document, and also a Lessons Learnt Report, which should make suggestions about how problems
could be avoided in future projects.

APPENDIX B

Software project management usually requires carrying out a large amount of book-keeping activities, charting,
computation, and additionally involves collecting information from customers and team members as well as
disseminating information to them. These are some of the activities in which use of automated tools can be of
great help. Let us now briefl y examine these activities. Examples of computational activities in which a tool
can be invaluable include estimation of various project parameters and computation of critical paths. A tool
can also help a project manager effectively and effi ciently develop various charts such as GANTT and PERT
charts. A tool can also help in regular collection of different types of information pertaining to the progress of
the project such as tracking important mile stones can help in revising the different types of charts based on
the information collected, and also in communicating them to the team members over a web interface.

In the absence of automation support, a signifi cant part of a project manager’s time is wasted in mundane
activities. For this reason, it is very important for a project manager to make use of suitable tools. A large
variety of project management tools are available commercially as well as free (GPL) software. These tools
come with various levels of sophistication, usability, and cost. To be able to decide upon a suitable tool to use
for a specifi c project, it is necessary for a project manager to have an understanding of the features supported
by different tools. Broadly, there are two main categories of tools, viz., desktop-based and web-based tools.
The desktop-based tools can be used only on the computer on which it is installed, whereas a web-based tool
can be invoked from any computer in a network.

In the following, we review two commercial project management tools, viz., Microsoft Project and Oracle’s
Primavera SureTrak. We also review Ganttproject as a representative GPL software tool. A summary of
the features of these three tools is presented in Table B.1. For handling small and simple projects, GPL
software tools such as Ganttproject can be suffi cient. When it is required to manage large projects or several
projects that share resources, more sophisticated tools such as Microsoft Project or Oracle Primavera may be
necessary. It should also be remembered that learning to use a sophisticated project management package is
usually much more diffi cult compared to simpler ones.

336 So ware Project Management

Microsoft ProjectTM

Microsoft Project is the basic project management software from Microsoft Corporation. Advanced capabil-
ities are supported through MS-Offi ce Project Server, and MS-Offi ce Project Web Access software. Microsoft
Project can be used with the Project Server and Project Web Access tools to form the Enterprise Project
Management (EPM) solutions. Project Server supports portfolio management, resource management, and
collaboration capabilities in the EPM solution. It stores project data and resource information in a central
SQL-based database. Web Access is a web portal that allows authorized users to access a Project Server
database across the Internet, and includes viewing various charts and supports various administrative tools.
Learning to use MS Project is easier for those having experience with MS Offi ce suite, since many of the user
interface components are similar in both the packages.

In the following, we summarize the important features of the MS Project software.

 ● Support for Collaboration This tool can be used with the Internet, thereby allowing faster and easier
information dissemination among the team members. For example, members can at any time view the
schedule of tasks assigned to them in the form of Gantt or PERT charts.

 ● Portfolio View Using portfolio view, the project manager can examine multiple projects simultaneously.
This helps the project manager to better understand how changes in one project can affect other projects
of the organization.

 ● Task Linking This tool allows interlinking various tasks in a project. Based on this, the effect of delay
to one task on other tasks can be studied. This also allows a project manager to analyse the effect of
various corrective measures and check if these are suffi cient to make up for the delay.

 ● Resource Pooling Using this feature of the tool, resource defi nitions (people, equipment and materials)
can be shared between projects using a shared resource pool. Each resource can have its own calendar
which defi nes what days and shifts for a resource are available. Resource rates can also be used to
calculate resource assignment costs which are rolled up and summarized at the resource level. Each
resource can be assigned to multiple tasks in multiple plans and each task can be assigned multiple
resources. The application schedules task work according to the resource availability defi ned in the
resource calendars.

PrimaveraTM Project Management Soft ware
It is a widely used suite of project management software. SureTrak is the entry-level software and Primavera 6
is the advanced software. Using SureTrak’s Project KickStartTM a project manager can defi ne project phases,
establish goals, anticipate obstacles, and delegate assignments.

 ● Variable Timescale This feature lets users zoom into some portion of the project timescale to see the
plan in days and at the same time view rest of the plan in weeks. This allows a project manager to
identify the possibility of work optimization.

 ● Scheduling Support Schedulers can examine an activity, its predecessors and successors using the trace
logic feature. The impact of a change to an activity on the completion time of the project can also be
viewed.

 ● Highlighting Specifi c Activity Attributes Using the different patterns and colour for different activity
attributes, a project manager can highlight important aspects of the project.

 ● Web Interface SureTrak has built-in web publishing and e-mail capabilities. This allows the project
manager to have easier interaction with the team members. Layouts and reports can be published as
HTML documents which the members can view on the Internet.

Appendix B Project Management Tools 337

 ● Cost Management For project control, basic cost management and earned value analysis capabilities
are supported.

 ● Contractor Management Often subcontractors are responsible for large portions of the overall project.
Primavera allows keeping track of the progress of the subcontractors and assessing their productivity.

GanttProject
GanttProject is freeware (GPL-licensed) project management software that runs under the Windows, Linux
and Mac operating systems. It provides options to generate reports in HTML, PDF, and spreadsheets formats.
The latest release of GanttProject can be downloaded from the website http://ganttproject.sf.net.

The important features of Ganttproject are

 ● Creation of tasks and interlinking them based on their dependencies

 ● Creation of resources and assignment of resources to tasks

 ● Creation of Gantt and PERT charts

 ● Preparation of PDF and HTML reports

 ● Data import/export from/to MS Project and spreadsheet applications

TABLE B.1 Summary of important features of project management tools

Software Portfolio
Management

Web-based Scheduling Cost
Management

Resource
Management

Open Source

Ganttproject

Microsoft
Project

Primavera
SureTrak

APPENDIX C

Chapter 1
1.1 Examples of projects
The order you put these projects in is, of course, to a large degree subjective. Here is one example of a
possible ordering.

 1. Putting a robot vehicle on Mars to search for signs of life Almost everybody puts this one fi rst. The
huge scale of the task, the relative novelty of the project, all the different specialisms involved and the
international nature of the project make it special. Note that the successful achievement of the project
from the engineering point of view is the safe landing of the robot, not the discovery of signs of life.

 2. Writing an operating system This is a prime example of a software development project.

 3. Amending a fi nancial system to deal with a common European currency This project is modifying
an existing system rather than creating a new one from scratch. Many software projects have this
characteristic and it does not make them any less a software project.

 4. Installing a new version of a word processing package in an organization Although no software
is being produced or modifi ed, many of the stages that are associated with software projects will be
involved and the techniques of software project management would be appropriate.

 5. Investigation into the reasons why a user has a problem with a computer system This will have
many of the stages common to software projects, although the precise nature of the end result is
uncertain at the outset. It could be that the user needs some simple remedial training. On the other
hand, it could turn out to be quite a considerable software modifi cation task.

 6. Getting married There should be lots of arguments about this one! Some will be reluctant to give a
high rating to this because of its personal nature. The degree to which this is ‘project-like’ will depend
very much upon the cultural milieu in which it takes place. Very often it requires a high degree of
planning, involves lots of different people and, for most people, is a non-routine operation.

Appendix C Answer Pointers 339

 7. A research project into what makes a good human–computer interface Compared to some of the
projects above, the objectives of the research project are more open-ended and the idea of a specifi c
client for the end-product may be less well defi ned. Research projects are in some ways special cases
and the approach to their planning needs a rather different approach, which is outside the scope of this
book.

 8. Producing an edition of a newspaper In some ways this has all the characteristics of a project. There
are lots of different people with lots of different specialisms whose work needs to be coordinated in
order to produce an end-product under very tight time constraints. What argues against this as a typical
project is that it is repeated. After a while, everyone knows what he or she needs to do and most of the
problems that arise are familiar and the procedures to deal with them are well defi ned.

 9. A second-year programming assignment for a computing student This is not being done for a
customer, although it could be argued that the tutor responsible for setting and assessing the assignment
is, in effect, a surrogate client. Not all the stages of a normal project will be gone through.

1.2 Brightmouth College payroll: stages of a project
 1. Project evaluation All the costs that would be incurred by the college if it were to carry out its own

payroll processing would need to be carefully examined to ensure that it would be more cost-effective
than letting the local authority carry on providing the service.

 2. Planning The way that the transfer to local processing is to be carried out needs to be carefully planned
with the participation of all those concerned. Some detailed planning would need to be deferred until
more information was available, for example which payroll package was to be used.

 3. Requirements elicitation and analysis This is fi nding out what the users need from the system. To a
large extent it will often consist of fi nding out what the current system does, as it may be assumed that
in general the new system is to provide the same functions as the old. The users might have additional
requirements, however, or there might even be facilities that are no longer needed.

 4. Specifi cation This involves documenting what the new system is to be able to do.

 5. Design/coding As an ‘off-the-shelf’ package is envisaged, these stages will be replaced by a package
evaluation and selection activity.

 6. Verifi cation and validation Tests will need to be carried out to ensure that the selected package will
actually do what is required. This task might well involve parallel running of the old and new systems
and a comparison of the output from them both to check for any inconsistencies.

 7. Implementation This would involve such things as installing the software, setting system parameters
such as the salary scales, and setting up details of employees.

 8. Maintenance/support This will include dealing with users’ queries, liaising with the package supplier
and taking account of new payroll requirements.

1.3 Brightmouth College: feasibility study
 1. Discuss with stakeholders and understand the important features that the pay roll software needs to

support.

 2. Estimate the changes that have to be made to the existing software to support the features identifi ed in
Step 1.

 3. Estimate the cost to customize the existing software based on the estimates made in Step 2. Also
determine the time required to carry out the changes.

340 So ware Project Management

 4. Estimate all other costs, including those for installation, training, feasibility study, project management,
offi ce overheads, etc.

 5. Arrive at the total cost of the software by adding the expected profi t to the sum of the costs computed
in steps 2, 3 and 4.

 6. Check with the college authorities if they agree with the estimated cost and duration for completion of
the project. Based on their response, make a decision to go ahead with the project, otherwise abandon
it.

1.4 Estimation of the height of the building you are in
We will not spoil the fun by suggesting a particular method.

1.5 Th e nature of an operating system
Many large organizations that are committed to computer-based information systems have specialists respon-
sible for the maintenance of operating systems. However, as an operating system is primarily concerned with
driving the hardware, it is argued that it has more in common with what we have described as embedded
systems.

1.6 Brightmouth College payroll: objectives-driven vs. product-driven
This project is really driven by objectives. If in-house payroll processing turns out not to be cost-effective,
then the project should not try to implement such a solution. Other ways of meeting the objectives set could
be considered: for example, it might be possible to contract out the processing to some organization other
than the local authority at a lower cost.

1.7 Brightmouth College payroll: stakeholders
Major stakeholders would include:

 ● the fi nance department;

 ● the human resources department, who would need to supply most of the employee details needed;

 ● heads of departments, who would need to submit details of hours worked for part-time staff;

 ● staff, who would naturally be concerned that they are paid correctly;

 ● site management: the new arrangements may mean that the offi ce layout has to be rearranged
physically;

 ● software and hardware vendors.

One group of stakeholders that might not be readily identifi ed at fi rst is the local government authority and
its staff. It might seem strange to list the people who used to do the job, but who are no longer required. The
project manager’s job will be made a lot easier if their cooperation and help can be obtained. The project
manager would do well to sound out tactfully how the local authority staff feel about losing this work. It could
be that they are pleased to be short of the workload and hassle involved! Arrangements that take into account
existing local authority staff might be possible. For example, if the college needs to recruit new staff to deal
with payroll, it might smoothen things to give the job to a member of the local authority staff who already
deals with this area.

Appendix C Answer Pointers 341

1.8 Defi ning objectives
Among the comments and queries that could be made in each case are:

 (i) Have the actual time and the amount of the budget been specifi ed somewhere? Deadline and budget
constraints normally have to be set against the scope and the quality of the functions to be delivered.
For example, if the deadline were not achieved, would the customer rather have the full set of function-
ality at a later date, or an essential sub-set of the functionality on the deadline date?

 (ii) ‘The fewest possible software errors’ is not precise. Removing errors requires effort and hence money.
Can developers spend as much money and time as they like if this reduces errors?

 (iii) What does ‘user-friendly’ really mean? How is it measured? Normally ‘ease of use’ is measured by the
time it takes for a beginner to become profi cient in carrying out standard operations.

 (iv) What does ‘full documentation’ mean? A list of the types of document to be produced, perhaps with an
indication of the content layout, would be more useful.

1.9 Brightmouth College payroll: objectives, goals and measures of eff ectiveness
The original objective might have been formulated as: ‘To carry out payroll processing at less cost while
maintaining the current scope and quality of services’.

In order to achieve this, sub-objectives or goals will usually have been identifi ed, for example:

 ● to transfer payroll processing to the college by 1 April;

 ● to implement in the new system those facilities that exist in the current system less those identifi ed in
the initial report as not being required;

 ● to carry out the implementation of the payroll processing capability within the fi nancial constraints
identifi ed in the initial report.

It should be noted that the objectives listed above do not explicitly mention such things as putting into place
ongoing arrangements to deal with hardware and software maintenance, security arrangements and so on.
By discussing and trying to agree objectives with the various people involved, the true requirements of the
project can be clarifi ed.

Measures of effectiveness for the sub-objectives listed above might include the following:

 ● Date of implementation Was the new system being used operationally by the agreed date?

 ● Facilities In parallel runs, were all the outputs produced by the old system and still required also
produced by the new system?

 ● Costs How did the actual costs incurred compare with the budgeted costs?

1.10 A day in the life of a project manager
Planning:
 ● staffi ng requirements for the next year.

Representing the section:
 ● at the group meeting;

 ● when communicating with the human resources manager about replacement staff;

 ● when explaining about the delay to users.

342 So ware Project Management

Controlling, innovating, directing:
 ● deciding what needs to be done to make good the progress that will be lost through temporarily losing

a member of staff.

Staffi ng:
 ● deciding which member of staff is to do what;

 ● discussion with human resources about the requirement for temporary staff;

 ● planning staffi ng for the next year.

Note: the same activity can involve many different roles.

1.11 Collecting control data
The project seems to have two major components: training and document transfer. If trainers were expected
to tour offi ces giving training then one would expect there to be a schedule indicating when each offi ce
was to receive training. The following information about the progress of the information might therefore be
collected:

 ● the number of offi ces that had received training – this could be compared with the schedule;

 ● the number of staff who had received training – to ensure that all staff were attending;

 ● feedback from staff on the perceived quality of training – for example, by post-training evaluation
forms.

For the document transfer aspect, the following might be usefully collected for each offi ce on a regular basis
during the transfer process:

 ● number of documents transferred;

 ● estimated number of documents still needing to be transferred;

 ● number of staff-hours spent on transferring documents – to monitor the budget and transfer
productivity;

 ● number of staff involved in the transfer.

When all documents have been transferred, performance tests to check response times might be required.

1.12 Brightmouth College: life cycle stages

 1. Requirements Elicitation and Analysis: As in Example 1.2

 2. Specifi cation: As in Example 1.2

 3. Change Requirements Analysis: Determine the differences between the requirements of Brightmouth
College and that for its existing product.

 4. Design Change Analysis: Identify the design parts of the pay roll software that would not be needed, be
excluded, changed, and the ones that would have to be developed again.

 5. Design: Design those parts that have to be developed again and change the design of those that need
modifi cation.

 6. Code and Test: Code the new parts and carry out modifi cations to the code of the parts that need to be
changed; and then test these.

Appendix C Answer Pointers 343

 7. Verifi cation and Validation: As in Example 1.2

 8. Implementation: As in Example 1.2

 9. Maintenance or Support: As in Example 1.2

Chapter 2
2.1 Costs and benefi ts for the Brightmouth College payroll system
Table C.1 lists costs and benefi ts for the proposed Brightmouth HE College payroll system. It is not compre-
hensive but illustrates some of the types of items that you should have listed.

TABLE C.1 Costs and benefi ts for the Brightmouth College payroll system

Category Cost/benefi t

Development costs Software purchase – software cost plus selection and purchasing cost

Project team employment costs

Setup costs Training includes costs of trainers and operational staff time lost while training Staff
recruitment

Computer hardware and other equipment which might have a residual value at end of
projected life

Accommodation – any new/refurbished accommodation and furniture required to house
new system

Initial systems supplies – purchase of stationery, disks and other consumables

Operational costs Operations staff – full employment costs

Stationery – purchase and storage

Maintenance and standby – contract or estimation of occurrence costs
Accommodation, including heating, power, insurance, etc.

Quantifi ed and valued Saving on local authority fees

Later payment – increase interest income through paying salaries later in the month

Quantifi ed but not valued Improved accuracy – the number of errors needing to be corrected each month

Identifi ed but not easily
valued

Improved management information – this should lead to improved decision making but
it is very diffi cult to quantify the potential benefi ts

2.2 Ranking project cash fl ows
Obviously you will have your own views about which have the best and worst cash fl ows. You should,
however, have considered the following points: project 2 requires a very large investment compared to its
gain – in fact we could obtain £100,000 by undertaking both projects 1 and 3 for a lower cost than project 2.

344 So ware Project Management

Both projects 1 and 4 produce the bulk of their incomes relatively late in their lives compared with project 3,
which produces a steady income over its life.

2.3 Calculating payback periods
The payback periods for each of the projects will occur during the year indicated: project 1, year 5; project 2,
year 5; project 3, year 4 and project 4, at the end of year 4.

We would therefore favour project 3 or 4 over the other two. Note that, in reality, with relatively short-term
projects such as these we would produce a monthly (or at least quarterly) cash fl ow forecast and it is therefore
likely that project 3 would be seen more clearly to have a shorter payback period than project 4.

2.4 Calculating the return on investment
The return on investments for each of the projects is – project 1: 10%, project 2: 2%, project 3: 10% and
project 4: 12.5%. Project 4 therefore stands out as being the most benefi cial as it earns the highest return.

2.5 Calculating the net present value
The net present value for each of the projects is calculated as in Table C.2. On the basis of net present value,
project 4 clearly provides the greatest return and project 2 is clearly not worth considering.

TABLE C.2 Calcula ng the net present value of projects 2, 3 and 4

Year Discount factor Discounted cash fl ow (£)

Project 2 Project 3 Project 4

0 1.00 –1,000,000 –100,000 –120,000

1 0.90 181,820 27,273 27,273

2 0.82 165,280 24,792 24,792

3 0.75 150,260 22,539 22,539

4 0.68 136,600 20,490 20,490

5 0.62 186,270 18,627 46,568

NPV –179,770 13,721 21,662

2.6 Calculating the eff ect of discount rates on NPV
Table C.3 illustrates the effect of varying discount rates on the NPV. In each case the ‘best’ project is indicated
in bold. In this somewhat artifi cial example, which project is best is very sensitive to the chosen discount rate.
In such a case we must either have a very strong reason to use a particular discount rate or take other criteria
into account when choosing among the projects.

Appendix C Answer Pointers 345

2.7 Brightmouth College: cost–benefi t analysis
By using discount rate of 15%, the NPV of the three projects work out to be 852, 607, and 197, respectively.
Therefore, all the three projects are worth taking up when the rate of interest on borrowed capital is 15%.

2.8 Project evaluation using cost–benefi t analysis
Expected sales of £500,000 per year over four years would generate an expected net income of £1.2m (after
allowing for annual costs of £200,000), which, by almost any criteria, would provide a good return on an
investment of £750,000. However, if sales are low, and there is a 30% chance of this happening, the company
will lose money – it is unlikely that any company would wish to take such a risk knowingly.

This example illustrates one of the basic objections to using this approach for one-off decisions. Were we to
repeat the project a large number of times we would expect, on average, an income of £500,000 per annum.
However, the company is developing this package only once – they can’t keep trying in the hope of, on
average, generating a respectable income. Indeed, a severe loss on this project could mean it is the last project
they are able to undertake.

TABLE C.3 The e ect on net present value of varying the discount rate

Year Cash fl ow values (£)

Project A Project B Project C

0 –8,000 –8,000 –10,000

1 4,000 1,000 2,000

2 4,000 2,000 2,000

3 2,000 4,000 6,000

4 1,000 3,000 2,000

5 500 9,000 2,000

6 500 –6,000 2,000

Net Profi t £4,000 £5,000 £6,000

NPV @ 8% £2,111 £2,365 £2,421

NPV @ 10% £1,720 £1,818 £1,716

NPV @ 12% £1,356 £1,308 £1,070

Chapter 3
3.1 External stakeholders in IOE accounts system

The main stakeholders who need to be considered are the IOE customers. It will be worth consulting some
representative customers about the attractiveness of the new annual maintenance contract scheme. IOE might

346 So ware Project Management

have a partnership arrangement with the manufacturers of the equipment it maintains whereby it is recog-
nized as approved to carry out repairs. It might therefore need to consult the equipment providers about the
new scheme. The suppliers might, for example, be willing to promote the scheme on a commission basis. It is
possible with annual maintenance contract schemes of this nature to outsource their fi nancing to an insurance
company. Essentially, in return for an annual premium, the insurance company would pay IOE every time a
maintenance job is carried out under this scheme.

3.2 Product description for acceptance test cases
An example of a possible product description for acceptance test cases is shown below:

Name/identity Acceptance test case

Purpose To record the individual tests that will be carried out during the acceptance testing. It will ensure
that testing is comprehensive, i.e. that all user requirements are tested.

Derivation The user requirements report

Composition For each test case the following will be recorded:

 (i) cross-reference to user requirements;

 (ii) preconditions – including items that would need to be set up on the database before the test
can be executed;

 (iii) input data;

 (iv) expected results.

Form A word-processed document created using a template

Quality criteria Independently reviewed against the requirements document to ensure that all requirements
are covered. Internal consistency checked, including whether pre-conditions are complete and
expected results correctly calculated.

Note: Other products – such as a testing plan – would also have to be created in order to document the accep-
tance testing phase.

3.3 Brightmouth College: product breakdown structure

Appendix C Answer Pointers 347

3.4 Creating an invitation to tender (ITT) – Product Flow Diagram
Figure C.1 illustrates a Product Flow Diagram for the products needed to create an invitation to tender for
Brightmouth College payroll.

FIGURE C.1 Product Flow Diagram for the crea on of an ‘invita on to tender’

Different PFDs could be produced depending on the policy decisions made about how the process is to be
carried out. This is one way in which it could be done. A person acting as an analyst investigates the current
way of doing payroll in order to fi nd out the basic functions that the new system must have. This document
may prompt the user management to come up with some new functions that would let them do things with
the new system that they could not do before. Once it is known, for example, what types of record the new
system will hold, and the functions the new system will have, the size of the database and the number and size
of transactions to be carried out can then be estimated. This will indicate the size and power needed for the
hardware platform on which the application will run. The hardware will need to be housed within a particular
physical layout governed by the offi ce space available at the college and contractors may need to take this into
account. The invitations to tender (ITTs) will need to be sent to suitable potential suppliers and some research
will be needed to decide who these suppliers will be. The documented requirements are the basis for a set of
procedures to evaluate the proposals, including some test cases.

3.5 Invitation to tender activity network
Figure C.2 illustrates the activity network, showing the activities needed to create an invitation to tender for
the Brightmouth College payroll.

348 So ware Project Management

3.6 Including a checkpoint
Figure C.3 illustrates the inclusion of a checkpoint in Amanda’s activity network.

3.7 Quality checks on user requirements
The users will need at least to read and approve the system specifi cation. This might be rather late to make
major changes, so user approval of earlier documents such as interview notes would be helpful.

FIGURE C.2 Brightmouth College payroll project ac vity network fragment

FIGURE C.3 An ac vity network for a so ware development task, modifi ed to include a checkpoint

3.8 Cross-reference of a planning document to Step Wise activities

Table C.4 suggests the Step Wise activities needed to create the different sections of a plan.

Appendix C Answer Pointers 349

TABLE C.4 Sec ons of a plan cross-referenced to Step Wise ac vi es

Section of plan Step Wise activities

Introduction

Background 1.3 Identify stakeholders

2.1 Establish relationship between project and strategic planning

Project objectives 1.1 Identify objectives and measures of effectiveness

1.4 Modify objectives in the light of stakeholder analysis

Constraints 1.1 Identify objectives and measures of effectiveness

2.2 Identify installation standards and procedures

Methods 3. Analyse project characteristics

4.2 Document generic product fl ows (this could help establish a methodology)

Project products 4.1 Identify and describe project products

Activities to be carried out 4.4 Produce ideal activity network

4.5 Modify ideal activity network

Resources to be used 3.6 Review overall resource estimates

5.1 Carry out bottom-up estimates

7. Allocate resources

Risks to the project 3.3 Identify high-level project risks

6. Identify activity risks

Management of the project 1.2 Establish project authority

1.5 Establish methods of communication with all parties

2.3 Identify project team organization

Chapter 4
4.1 Classifi cation of systems

 (a) A payroll system is a data-oriented or information system that is application specifi c.

 (b) The bottling plant system is a process control or industrial system which contains embedded software.

 (c) This looks like an information system that may make use of computer graphics. The plant itself might
use control software which might be safety critical but this is not the subject of the project under
consideration.

350 So ware Project Management

 (d) Project management software tools are often categorized as general packages. There would be a consid-
erable information systems element to them.

 (e) This could use an information retrieval package that is a general software package. It is also a strong
candidate for a knowledge-based system.

4.2 Identifi cation of risks
The user staff could, arguably, be regarded as a project resource. The writers’ view is that it is useful to add a
fourth category of risk – those belonging to the environment in which the system is to be implemented.

Among the risks that might be identifi ed at Brightmouth College are:

 ● confl ict of views between the fi nance and personnel departments;

 ● lack of staff acceptance for the system, especially among personnel staff;

 ● lack of cooperation by the local authority that used to carry out payroll work;

 ● lack of experience with running payroll at the college, leading to errors and delays in processing;

 ● lack of administrative computing expertise at the college;

 ● possible inadequacy of the chosen hardware;

 ● changes to the payroll requirements.

4.3 Selection of project approaches
 (a) This would appear to be a knowledge-based system that is also safety critical. Techniques associated

with knowledge-based systems could be used for constructing the system. Testing would need to
be very carefully conducted. A lengthy parallel run where the system is used to shadow the human
decisions made in real cases and the results compared could be considered. Another approach would be
to develop two or more systems in parallel so that the advice offered could be cross-checked.

 (b) This is an information system that will be on a relatively large scale. A structured approach designed for
information systems applications, such as SSADM, would be justifi ed. When student loans were fi rst
introduced there was no existing system and so there might have been some scope for a prototype.

 (c) This is an embedded system that is safety-critical. Measures that might ensure the reliability of the
system include:

 ■ use of mathematics-based specifi cation languages to avoid ambiguity;

 ■ developing parallel versions of the same software so that they can be cross-checked;

 ■ statistical control of software testing to allow for the estimation of the reliability of the
software.

4.4 Stages of a project where a prototype can be appropriate
 (a) A prototype could be useful as part of the feasibility study. A mock-up of an executive information

system loaded with current management information could be set up manually and then be tried out by
the managers to see how easy and useful they found it.

 (b) A prototype could be used to assist in the design of the user dialogues. Structured approaches like
SSADM often allow for prototypes for this purpose as part of requirement specifi cation.

 (c) A prototype of the most response-critical transactions could be made at the physical design stage to see
whether Microsoft Access could produce software that gave a satisfactory performance.

Appendix C Answer Pointers 351

4.5 Diff erences between RAD and agile model
In the agile model, the customer is delivered a working system at the end of each iteration, which the customer
can meaningfully use. On the other hand, in the RAD model, the customer is delivered a throwaway prototype
at the end of each iteration to experiment and give feedback.

4.6 Choices of life cycle model
A spiral model is a complex model and is normally deployed for projects in which the risks cannot be antici-
pated before project execution. In the given case, a prototyping model would be appropriate for developing
the user interface part of the software. For the other parts, a waterfall model would be appropriate assuming
that the programmers are experienced in developing similar software products.

Chapter 5
5.1 Calculating productivity rates and using productivity rates to project eff ort
Tables C.5 and C.6 illustrate productivity rates and estimated project effort.

TABLE C.5 Produc vity rates

Project Work-months SLOC Productivity
(SLOC/month)

a 16.7 6,050 362

b 22.6 8,363 370

c 32.2 13,334 414

d 3.9 5,942 1,524

e 17.3 3,315 192

f 67.7 38,988 576

g 10.1 38,614 3,823

h 19.3 12,762 661

i 59.5 26,500 445

Overall 249.3 153,868 617

TABLE C.6 Es mated e ort

Project Estimated work-months Actual Difference

a 6050/617 = 9.80 16.7 6.90

d 5942/617 = 9.63 3.9 –5.73

352 So ware Project Management

There would be an under-estimate of 6.9 work-months for project a and an over-estimate of 5.7 for
project d.

5.2 Productivity insight
The productivity of 10 SLOC/day cannot be considered as low, since coding is only a small part of a program-
mer’s activity and a lot of effort goes into requirements specifi cation, designing, testing, etc. Thus, implicit in
the LOC/day productivity measure is all the work that goes into the processes mentioned above.

5.3 Agile methods and the problems of estimating
Points that might be discussed include the following.

 ● Diseconomies of scale with larger projects. It is recommended that the programming team does not
contain more than ten people in order assist easy team communication.

 ● Threats to quality of tight deadlines. Time-boxing can help here. There are four sets of project outcomes
that can be traded off: scope of the functionality, quality, project duration and cost. The XP approach
argues that quality, project duration, and cost can be controlled by the business management, but scope
must be controlled by the development team. If the project comes under time pressure, some low-pri-
ority deliverables may need to be held over to the next release, but something will still be released on
time, and the quality of this will not have been compromised.

 ● Substandard work not being apparent until late in the project. Testing is done as an integral part of the
design/code process and is not put off as a task to be done by another group, such as a system testing
group, at a later stage in the project.

5.4 Course staff costs program – activities required
A list of activities might include:

 ● obtaining user requirements;

 ● analysis of the structure of the data already held;

 ● design of the report layout;

 ● writing the user proposal;

 ● planning test cases;

 ● technical specifi cation;

 ● design of the software structure;

 ● software coding;

 ● testing software;

 ● writing the operating instruction;

 ● acceptance testing.

The most diffi cult tasks to estimate are often those that are most sensitive to the size and the complexity of
the software to be produced, in this case the design, writing and testing of the software. Writing the technical
specifi cation can also be diffi cult because of this, but estimating problems tend to be concealed here as
deadlines can be met by omitting detail that can be added later when defi ciencies are found.

Appendix C Answer Pointers 353

The duration of activities that are to be carried out by users may also present problems, as this might depend
upon their sense of priorities.

5.5 SLOC estimate for customer insertion program
Figure C.4 gives an outline program structure using a Jackson structured diagram. The numbers in circles
are our estimates of the lines of ‘generic’ code needed to implement each sub-process in the program. They
should add up to 95 SLOC.

FIGURE C.4 Outline program structure for ‘set up customer’ transac on
* means the process is repeated; o means the processes are alterna ves.

5.6 Eff ort drivers for a student assignment
The most obvious effort driver would seem to be the number of words required. Diffi culty factors might
include:

 ● availability of material, for example in the library;

354 So ware Project Management

 ● familiarity of the student with the topic;

 ● breadth/depth required, that is, a broad survey of a wide fi eld or an in-depth study of a narrow area;

 ● technical diffi culty – some topics are easier to explain than others.

It could be argued that time available is the constraint. The student just does what can be done in the time
available (see ‘design to cost’).

5.7 Calculating Euclidean distance
The Euclidean distance between project B and the target case is the square root of ((7 – 5)2 + (15 – 10)2),
that is, 5.39. Project A is therefore a closer analogy.

5.8 Albrecht function points

External input types none

External output types the report, that is, 1

Logical internal fi le types none

External interface fi le types payroll fi le, staff fi le (timetabling), courses fi le (timetabling), that is, 3

External inquiry types none

The function point counts are as follows:

External enquiry types none

External output types 1 3 7 = 7

Logical internal fi le types none

External interface types 3 3 7 = 21

External inquiry types none

Total 28

5.9 Calculation of SLOC from Albrecht function points
The estimated lines of Java = 28 3 53 = 1484. With a productivity rate of 50 SLOC per day, this gives an
estimated effort of 1484/50, that is, approximately 30 days.

5.10 Mark II function points
The function types are:

Input data types 6

Entities accessed 1

Output data types 1

Unadjusted function points = (0.58 3 6) + (1.66 3 1) + (0.26 3 1) = 5.4

Appendix C Answer Pointers 355

5.11 Data movements

Data movement Type

Incoming vehicle sensed E

Access vehicle count R

Signal barrier to be lifted X

Increment vehicle count W

Outgoing vehicle sensed E

Decrement vehicle count W

New maximum input E

Set new maximum W

Adjust current vehicle count E

Record adjusted vehicle count W

Note that different interpretations of the requirements could lead to different counts. The description in the
exercise does not, for example, specify that the system should output a message that the car park is full or has
spaces, although this might be expected.

5.12 COCOMO – calculating the exponent scale factors
Table C.7 shows scale factors for the example.

TABLE C.7 Assessing the scale factors

Factor Rating Value

PREC nominal 3.72

FLEX high 2.03

RESL very low 7.07

TEAM very high 1.10

PMAT low 6.24

 (i) The overall scale factor would be 0.91 + 0.01 3 (3.72 + 2.03 + 7.07 + 1.10 + 6.24)
 = 0.91 + 0.01 3 20.16 = 1.112

 (ii) The estimated effort would be 2.94 3 21.112 = 6.35 staff-months

356 So ware Project Management

5.13 COCOMO II Applying eff ort multipliers

TABLE C.8 E ort mul pliers

Factor Description Rating Effort multiplier

RCPX product reliability and complexity vh 1.91

RUSE reuse vh 1.15

PDIF platform diffi culty l 0.87

PERS personnel capability vh 0.63

PREX personnel experience nominal 1.00

FCIL facilities nominal 1.00

SCED required development schedule nominal 1.00

The combined effort modifi er would be

(1.91 3 1.15 3 0.87 3 0.63 3 1.00 3 1.00 3 1.00) = 1.20

The modifi ed estimate would be 200 3 1.20 = 240 staff months

5.14 Cost estimation

From the basic COCOMO estimation formula for organic software

Effort = 2.4 3 321.05 = 91 pm

Nominal development time = 2.5 3 910.38 = 14 months

Staff cost required to develop the product = 91 3 £2,000 = £ 182,000

5.15 Impact of fi xed team size
Constant level of manpower throughout the project duration would lead to wastage of effort and result in
increasing both the time and effort required to develop the product. If a constant number of developers are
used over all the phases of a project, some phases would be overstaffed and the other phases would be under-
staffed causing ineffi cient use of manpower. This would lead to schedule slippage and also increase the cost
of product development.

5.16 Eff ort increase with time compression
The project can be classifi ed as a large project. Therefore, the new cost to be negotiated can be given by

Putnam’s formula as New Cost =
4

15£200,000 £488,281
12

Ê ˆ¥ =Ë ¯

Appendix C Answer Pointers 357

5.17 Reason for eff ort increase
The extra effort can be attributed to the increased communication requirements and the free time of the devel-
opers waiting for work. The project manager recruits a large number of developers hoping to complete the
project early, but it becomes very diffi cult to keep those additional developers continuously occupied with
work. Implicit in the schedule and duration estimation arrived at using the COCOMO model, is the fact that
all developers can continuously be assigned work. However, when a large number of developers are hired to
decrease the duration signifi cantly, it becomes diffi cult to keep all developers busy all the time. After all, the
number of activities in a project that can be carried out simultaneously is restricted.

5.18 Estimation of latent errors
There are four error removal stages. The errors that would remain is 1000*(0.7)4 = 24 errors.

Chapter 6
6.1 Drawing a CPM network
A solution is given in Figure 6.14. If your solution is not exactly the same as this, do not worry. Just check that
it is logically the same and that it follows the precedence network conventions of layout and labelling etc.

6.2 Th e precedence network
Figure C.5 illustrates a precedence network for Amanda’s project, showing an earliest completion date of
day 104.

6.3 Calculating activity fl oats
Free fl oat and interfering fl oat for each of the activities are shown in Table C.9. Note that activity A has no
free fl oat since any delay in its completion will delay the start of activity C. Float must be regularly monitored
as a project progresses since a delay in any activity beyond its free fl oat allowance will eat into the fl oat of
subsequent activities.

TABLE C.9 Ac vity fl oats

Activity Total fl oat Free fl oat Interfering fl oat

A 2 0 2

B 3 0 3

C 2 0 2

D 3 1 2

E 3 3 0

F 0 0 0

G 0 0 0

H 2 2 0

358 So ware Project Management

6.4 Shortening a project duration
Shortening activity F to 8 weeks will bring the project completion date forward to week 11 – that is, it will
save 2 weeks on the duration of the project. However, there are now two critical paths, start–F–G–fi nish
and start–A–C–H–fi nish, so that reducing the duration of activity F any further will not shorten the project
duration any further. If we wish to complete the project earlier than week 11 we must save time on both of
these critical paths.

6.5 Errors drawing activity networks
 (a) Activity D dangles, giving the project two ‘end events’. This network should be drawn as below. To aid

comparison with the original, the nodes have not been renumbered, although we would normally do
so.

FIGURE C.5 Amanda’s precedence network

Appendix C Answer Pointers 359

 (b) Once again, this network has two end nodes, but in this case the solution is slightly different since we
should introduce a dummy activity if we are to follow the standard CPM conventions.

 (c) Either this one has a dangle (although, because of the way it is drawn, it is less obvious) or activity E
has its arrow pointing in the wrong direction. We need a bit more information before we can redraw this
one correctly.

 (d) Strictly speaking, there is nothing wrong with this one – it is just badly drawn and the nodes are not
numbered according to the standard conventions. It should be redrawn as in the following example.

 In this diagram the nodes have retained their original numbers (to aid identifi cation), although they
should of course be renumbered sequentially from left to right.

 (e) This one contains a loop – F cannot start before G has fi nished, G cannot start before E has fi nished and
E cannot start before G has fi nished. One of the arrows is wrong! It is probably activity F that is wrong
but we cannot be sure without further information.

6.6 Drawing Brigette’s activity network as a CPM network
Brigette’s payroll CPM network should look like the diagram shown in Figure C.6. If your diagram is not
exactly the same as this, check that it is logically the same.

FIGURE C.6 Brige e’s CPM network

360 So ware Project Management

Chapter 7
7.1 Matching causes and eff ects
There is no one correct answer to this. An example of a possible answer is provided below.

 (a) i and ii. Staff inexperience leads to code that has many errors in it and which therefore needs additional
testing time. Inexperienced staff will take longer to carry out development in any case.

 (b) iv. If top management do not have a strong commitment to the project they will not act with a sense of
urgency.

 (c) ii. New technology takes time to get used to.

 (d) iii. If users are uncertain of their requirements then they are likely to identify new requirements as the
project progresses.

7.2 Identifying risks
Once again the answer below can only be indicative – there is no one correct answer.

Domain IOE Brightmouth payroll

Actors Possible user resistance – see the Section 3.5
case study example

Lack of experience running payroll – see answer
to Exercise 4.2

Structure Not all stakeholders are represented on the
Project Board – see Section 3.3

Lack of cooperation between the local authority
and the college

Tasks Uncertainty about time needed to change
existing software – see Section 3.8

Evaluation of packages – software may be
diffi cult to access to carry out evaluation testing

Technology Existing hardware is not adequate to deal with
new application

Existing hardware is not adequate to deal with
new application

7.3 Conditions needed for successful pooling arrangement
Among the conditions would be the following.

 ● The chance of fi re is precisely 1 in 1000. As this is only an estimate of an average, this could not
be guaranteed. If a fi re happened at a second location, the pool would already have been exhausted.
Having a larger number of contributors and a larger pool would reduce, but not eliminate, this risk.

 ● The sites would have to be at completely different locations so that a fi re at one site does not affect the
others.

 ● Each site has the same chance of fi re. If the people at a site were aware that the chance of fi re was a lot
less in their location, they might object to having to effectively subsidize other sites.

 ● The amount of damage caused is always the same.

7.4 Pre-conditions to facilitate contingency actions
Staff illness is just one of several reasons why you might need to transfer staff between job roles in the middle
of an activity. Such transfers would be made easier if:

Appendix C Answer Pointers 361

 ● there was a standard methodology for the way that the work was carried out;

 ● intermediate steps were well documented;

 ● other staff were involved in reviewing products at regular intervals;

 ● job descriptions were fl exible.

It is interesting to note that in an extreme programming environment, the recommended approach of pair
programming should provide an alternative way of dealing with this problem.

The factors to be taken account of could include costs and human factors. The structured approach to devel-
opment that the bullet points above imply would involve costs in selecting the right methodology, training
and other aspects of implementation and management of the process to ensure that staff adhere to the require-
ments of the methodology. Very fl exible staffi ng arrangements where staff could be switched between jobs at
short notice could have implications for morale (which might be positive as well as negative).

7.5 Deciding on risk actions
REbefore = £50,000 3 0.5 3 0.25 = £6,250

REafter = £50,000 3 0.1 = £5,000

Cost of risk reduction = £2000 * 0.8 3 6 = £9600

Risk reduction leverage = (£6,250 – £5,000)/ £9600 = 0.13

Since this is less than 1, it would be not be a good idea to employ the back-up engineer.

7.6 Calculating expected activity durations
Table C.10 shows the activity duration estimates from Table 7.6 along with the calculated expected durations,
te.

7.7 Th e forward pass to calculate expected completion date
The expected duration and the expected dates for the other project events are shown in Figure 7.6. An expected
duration of 13.5 weeks means that we expect the project to be completed halfway through week 14, although
since this is only an expected value it could fi nish earlier or later.

TABLE C.10 Calcula ng expected ac vity dura ons

Activity Activity durations (weeks)

Optimistic (a) Most likely (m) Pessimistic (b) Expected (te)

A 5 6 8 6.17

B 3 4 5 4.00

C 2 3 3 2.83

D 3.5 4 5 4.08

E 1 3 4 2.83

F 8 10 15 10.50

G 2 3 4 3.00

H 2 2 2.5 2.08

362 So ware Project Management

7.8 Calculating standard deviations
The correct values are shown in Figure 7.7. Brief calculations for events 4 and 6 are given here.

Event 4: Path A + C has a standard deviation of √(0.502 + 0.172) = 0.53

 Path B + D has a standard deviation of √(0.332 + 0.252) = 0.41

 Node 4 therefore has a standard deviation of 0.53.

Event 6: Path 4 + H has a standard deviation of √(0.532 + 0.082) = 0.54

 Path 5 + G has a standard deviation of √(1.172 + 0.332) = 1.22

 Node 6 therefore has a standard deviation of 1.22.

7.9 Calculating z values

The z value for event 5 is
10 10.5

1.17

-
 = −0.43, for event 6 it is

15 13.5

1.22

-
 = 1.23.

7.10 Obtaining probabilities
Event 4: The z value is 1.89 which equates to a probability of approximately 3%. There is therefore only a

3% chance that we will not achieve this event by the target date of the end of week 10.

Event 5: The z value is −0.43 which equates to a probability of approximately 67%. There is therefore a
67% chance that we will not achieve this event by the target date of the end of week 10.

To calculate the probability of completing the project by week 14 we need to calculate a new z value for event
6 using a target date of 14. This new z value is

z =
14 13.5

1.22

-
 = 0.41

This equates to a probability of approximately 35%. This is the probability of not meeting the target date. The
probability of meeting the target date is therefore 65% (100% − 35%).

Chapter 8
8.1 Smoothing resource demand
Smoothing analyst/designer demand for stage 4 is reasonably easy. The design of module D could be scheduled

after the design of module C. Stage 2 is more problematic as scheduling the specifi -
cation of module D to start after the completion of B would delay the project. Amanda
might consider doing this if whoever is specifying module A could also be allocated
to module D for the last six days – although she may well decide that drafting an extra
person into a specifi cation activity is unsatisfactory.

8.2 Drawing a revised resource histogram
If the activities are scheduled at the earliest dates, then the plan still calls for four
analyst/designers as shown in Figure C.7. By delaying the start of some activities,

In Figure C.7 activi-
ties start at their earli-
est dates. The shaded
area of each bar is the
activity’s total fl oat. If
an activity starts later
than its earliest date,
part of its fl oat is ‘used
up’. In Figure C.8 this is
shown by the shaded
area of some bars mov-
ing to the left.

Appendix C Answer Pointers 363

however, Amanda is able to ensure that using three analyst/designers is suffi cient except for a single day. This
is shown in Figure C.8.

Note that if the specifi cation of module C were to be delayed for a further day, the project could be completed
with only three analyst/designers, although its completion day would, of course, be delayed.

8.3 Identifying critical activities
The critical path is now as shown in Figure C.9. Note the lag of 15 days against activity IoE/P/4, ensuring that
its start is delayed until an analyst/designer is expected to be available.

However, the availability of an analyst/designer for IoE/P/4 is dependent upon IoE/P/3 or IoE/P/5 being
completed on time – these two activities are therefore also now critical in the sense that a delay in both of
them would delay IoE/P/4, which is on the normal critical path. These two activities, although not on the
critical path, are, in that sense, critical.

FIGURE C.7 Amanda’s revised bar chart and resource histogram

364 So ware Project Management

8.4 Assigning staff to activities
Belinda must specify module B as she will then be available in time to start the specifi cation of module C.
This leaves Daisy for the specifi cation and design of module A. Belinda cannot do the design of module B as
she will still be working on the module C specifi cation when this needs to be done (6 days between days 56
and 66). This will have to be left to Tom, as he should be free on day 60.

Can you think of any other way in which she might have allocated the three team members to these
activities?

8.5 Calculating project costs
The easiest way to calculate the total cost is to set up a table similar to Table C.11.

FIGURE C.8 The e ect of delaying some ac vity starts

Appendix C Answer Pointers 365

Calculating the distribution of costs over the life of the project is best done as a per week or per month fi gure
rather than as daily costs. The expenditure per week for Amanda’s project is shown as a chart in Figure 8.9.

TABLE C.11 Calcula ng the cost of Amanda’s project

Analyst Daily cost (£) Days required Cost (£)

Amanda 300 1102 33,000

Belinda 250 50 12,500

Tom 175 25 4,375

Daisy 225 27 6,075

Gavin 150 30 4,500

Purdy 150 28 4,200

Justin 150 15 2,250

Spencer 150 25 3,750

Daily on-cost 200 100 20,000

Total 90,650

2This includes 10 days for pre-project planning and post-project review.

FIGURE C.9 The cri cal ac vi es a er delaying the start of module C

366 So ware Project Management

Chapter 9
9.1 Lines of code as a partial task completion indicator
There are many reasons why the proportion of lines coded is not a good indicator of completeness. In
particular, you should have considered the following:

 ● the estimated total number of lines of code might be inaccurate;

 ● the lines of code so far might have been easier, or harder, than those to follow – for example, reuse of
existing components might speed up development;

 ● a program is not generally considered complete until it has been tested – testing and debugging the code
could take considerable time once the code has been written.

With more knowledge of what has been done and what is left to complete it might be possible to make a
reasonable estimate of completeness. Breaking the development task into smaller sub-tasks such as software
design, coding and unit testing might be of some assistance here.

FIGURE C.10 The revised meline chart

Appendix C Answer Pointers 367

9.2 Review versus testing
Review is usually more cost-effective than testing for removing defects from a code module. This is so
because testing detects failures. Subsequently, signifi cant effort must be expended on debugging to locate the
bugs that are causing the failures. On the other hand, review directly locates defects.

9.3 Revising the timeline chart
At the end of week 8, the scheduled completion dates for drafting and issuing the tender need to be revised –
note that both need to be changed since they are both on the critical path (Figure C.10).

Subsequently, Brigette needs to show only the completion of each of these two remaining activities on the
timeline chart – the project being completed by the Thursday of week 11 (Figure C.11).

FIGURE C.11 The completed meline chart

368 So ware Project Management

9.4 Amanda’s earned value analysis
It should be apparent from Figure 9.12 that the initial activity, ‘specify overall system’, has slipped by one
day. It may not be quite so obvious from Figure 9.12 alone what else has happened to her project – inspection
of Figure 9.12 and Table 9.2 should, however, make it possible to deduce that one of the activities ‘specify
module B’ and ‘specify module D’ has taken 2 days longer than forecast and the other has taken 5 days longer.
In addition, ‘specify module A’ should have been completed by day 54 but has not. Thus, the project has
earned 34 workdays by day 35, 49 workdays by day 52 and 64 workdays by day 55.

From Figure 9.12 it is not possible to deduce the underlying causes of the slippage or to forecast the conse-
quences for the project. The use of earned value analysis for forecasting is described later in Section 9.6.

9.5 Project performance assessment
Planned Value (PV) = Planned percentage completion of work 3 Budgeted cost = 25% 3 £100,000 =
£25,000

Earned Value (EV) = Percentage work actually completed 3 Budgeted cost = 30% 3 £100,000 = £30,000

Cost Performance Index (CPI) = EV/Actual cost incurred = EV/AC = £30,000/£40,000 = 0.75

Schedule Performance Index (SPI) = EV/PV = £30,000/£25,000 = 1.2

Assessment of Project Performance: Since CPI is less than 1, the project is over budget. For every pound
spent, we are getting 0.75 worth of work. SPI is more than 1, indicating that the project is ahead of schedule.
At this rate, the project will be delivered ahead of schedule but is over budget. Therefore, corrective action
needs to be taken.

9.6 Th e eff ects of specifi cation changes
Among the items most likely to be affected by the change are test data, expected results and the user
handbooks.

9.7 Control procedures for development systems
Stages 1 to 6 will be basically the same except that an estimate on the effect of the project’s timescale will
need to be included in steps 3 and 4. Step 7 might not be required as system acceptance might not have taken
place yet and acceptance testing of the changes will be included in that.

The release of software in step 8 will not be needed if the system is not yet operational, although master
copies of products will need to be updated.

9.8 Reasons for scope creep
As well as user requests for extra features, developers will fi nd that additional code may be needed to deal
with exceptional circumstances that become apparent during detailed design. Additional functionality could
also occur because of the need to coordinate components.

9.9 Pros and cons of confi guration management
It is necessary to strike a balance between controlling too much, and controlling too little. If too much is
controlled, overheads due to confi guration management increase to unreasonably high levels. On the other
hand, controlling too little might lead to confusion and inconsistency when something changes.

Appendix C Answer Pointers 369

Chapter 10
10.1 Choice of type of package at IOE
The problem for Amanda at IOE would be that the new annual maintenance contracts subsystem would
essentially be an extension to and enhancement of the existing maintenance accounting system, so that the
interfacing of an off-the-shelf package might involve quite a few diffi culties. This seems to indicate that
bespoke development is needed. An alternative approach might be to consider replacing the whole of the
maintenance accounting system with a new off-the-shelf application.

10.2 Calculation of charges for a project
For the fi rst 2000 FPs $967 3 2,000 = $1,934,000

For the next 500 FPs $1,019 3 500 = $509,500

For the next 500 FPs $1,058 3 500 = $529,000

For the last 200 FPs $1,094 3 200 = $218,800

Charge for all 3,200 FPs $3,191,300

10.3 Calculating the cost of additional functionality
For changed FPs 500 3 600 3 (150/100) = $450,000

For additional FPs 200 3 600 = $120,000

Total charge $570,000

10.4 Advantage to customer of variable cost charges
The supplier will need to quote a price that will include a margin to cater for possible increases in equipment
prices. It might turn out that actual prices do not increase as much as was estimated – in the case of ICT
equipment some prices are likely to go down – but the customer would still have to pay the additional margin.
If the contract specifi es a fi xed charge plus the actual cost of materials and equipment, then the customer in
this case would be better off.

10.5 Calculating value for money
System X savings would be £20 3 20 hours 3 4 years = £1,600, for the automatic scale point adjustment
facility, and £20 3 12 hours 3 2 times a year 3 4 years = £1,920, for the bar-chart production facility. In total
the saving for system X would be £3,520.

For system Y, the saving would be £300 3 0.5 (to take account of the probability of change). That is, £150.

Even though system X costs £500 more, it will still give better value for money. Note that discounted cash
fl ow calculations could be applied to these fi gures.

10.6 Evaluation methods
 (i) The usability of an existing system could be evaluated by such means as the examination of user

handbooks, the observation of demonstrations and practical user trails.

370 So ware Project Management

 (ii) This is clearly tricky. One would have to evaluate the methods that the developers intend to use to see
whether they adhere to good interface design practice. One might also examine any interface standards
that are in use by the supplier.

 (iii) Note that the question focuses on the costs of maintenance, rather than that of reliability. The cost of
unexpected maintenance could be reduced, at least for a short time, by passing this risk to the supplier
if there is a comprehensive warranty. The warranties provided by suppliers would therefore need to be
scrutinized. Discussion with reference sites might also be helpful.

 (iv) Once again guarantees could be put in place by suppliers concerning this. The nature of these guarantees
could be examined. Discussion with reference sites could once again be helpful.

 (v) Training materials could be examined. The training staff could be interviewed and their CVs examined.
Reference sites that have already used the supplier’s training services could be approached for their
views.

Chapter 11
11.1 Tasks and responsibilities of an analyst/programmer
Analyst/programmers are expected to be able to carry out both analysis and programming tasks. It is likely,
however, that the kinds of analysis tasks undertaken will be restricted. They may, for example, do the analysis
work for enhancements to existing systems but not of completely new applications. Making this broad
assumption, a list of tasks and responsibilities might be as follows:

 ● carry out detailed investigations of new requirements for existing computer applications;

 ● analyse the results of investigations and review the solutions to problems experienced, including the
estimation of relevant costs;

 ● prepare systems specifi cations in accordance with organizational standards;

 ● conduct appropriate systems testing;

 ● prepare functional module specifi cations;

 ● produce and modify module structure diagrams;

 ● code and amend software modules;

 ● carry out appropriate unit testing;

 ● produce and amend user documentation;

 ● liaise with users, carrying out appropriate training in the use of computer applications where required.

11.2 Rewarding reuse
A problem here is that the software developers who make most use of reused components will, as a conse-
quence, be producing less code themselves. You also want to encourage programmers to produce software
components that other people can use: this might help the productivity of the organization but not that of the
current project that they are working on!

You need to have a method, like function point analysis, which measures the functions and features actually
delivered to the user. You also need to have some way of measuring the code used in the application that has
been taken from elsewhere. Percentage targets of the amount of reused code to new code could be set and
staff rewarded if the targets are met. As an alternative, the savings made by reuse could be measured and a
profi t-sharing scheme could be operated.

Appendix C Answer Pointers 371

Programmers could be encouraged to produce and publish reusable components by a system of royalties for
each time a software component is reused.

11.3 Financial incentives for top executives
This exercise was designed to be thought-provoking. Some thoughts that have come out of discussion on this
topic are given below.

 ● To some extent, material wants and, therefore, the motivation to obtain more money to satisfy these
wants can be generated through the marketing and advertising of new types of goods and services – but
how likely is this to be at the very top?

 ● Large salaries are associated with status, esteem and success. It could be that these are the real
reward.

 ● Historically, wealth has been associated with power, such as the ownership of land.

The essential point is that for many people money is not just a means of satisfying material wants.

11.4 High and low motivational incidents
This will obviously depend on individual experiences.

11.5 Possible objections to the stockholder ethical model
The purpose of this exercise is to stimulate debate, but some possible discussion points could be:

 ● The model implies that employees and customers exist simply to maximize the profi ts of the stock-
holders/shareholders. This suggests that the whole purpose of the business is this generation of profi ts.
But as has been shown in the recent global fi nancial crisis, businesses carry out functions that are
important for society as a whole, for example, when it appeared that some high street banks might cease
to operate, the UK and other governments stepped in and took over ownership in order to support the
economy as a whole. This suggests that the capital provided by shareholders can be seen as a means of
enabling the main business of the enterprise rather than the other way around.

 ● If commercial organizations are amoral in that their only concern is the generation of profi ts to the
possible detriment of other stakeholders, then this is an argument for the public ownership of organiza-
tions such as energy suppliers upon whom society depends.

 ● If we expect individuals as individuals to be socially responsible and ethical, then when these individuals
are also shareholders we might expect them to be socially responsible in that role as well.

 ● Paradoxically, acting in a socially responsible way may be a way of fostering goodwill in the community,
winning new business and contributing eventually to shareholder value.

Chapter 12
12.1 Social loafi ng
Among other ideas, the effects of social loafi ng can be reduced by:

 ● making the work of each performer individually identifi able;

 ● involving and interesting group members in the outcome of group efforts;

 ● rewarding individuals for their contributions to the group effort (rather like sports teams who pick out
a ‘club player of the year’).

372 So ware Project Management

12.2 Eff ect of ICT on the Delphi technique
Developments in ICT that assist cooperative working, especially the advent of electronic mail and
groupware such as Lotus Notes, will cut quite considerably the communication delays involved in the Delphi
technique.

12.3 Paradox of functional organizations
The apparent paradox is not diffi cult to explain.

 ● The project organization structure provides job rotation to the team members of a project. That is, each
team member takes on the role of the designer, coder, tester, etc., during the course of the project. This
is liked by the developers as they get exposed to different job roles. On the other hand, considering the
present skill shortage, it would be very diffi cult for a functional organization to fi ll slots for some roles
such as maintenance and testing as these might suffer from severe manpower turnover.

 ● In a project organization, the team members remain with a project throughout its duration and they get
exposed to the nitty-gritty of the project. On the other hand, in a functional organization, each time a
functional team comes in to carry out the next phase of the project it needs to spend considerable time
in picking up the specifi c details of the project.

 ● Many projects require knowledge of several specialized domain areas such as telecom, database,
networking, etc. It is diffi cult to bring in developers who are familiar with the domain area into a
project only for specifi c activities, unless the company handles a large number of projects involving the
specialized areas of the project. Consequently, for obvious reasons the functional format is not suitable
for small organizations handling just one or two projects.

12.4 Modes of communication
Once again, there is no one correct set of answers. Discussion points might be:

 (a) The developer might not be familiar with the context of the application domain – for example the
terminology employed by the users. Ideally, clarifi cation should be via same time/same place or same
time/different place (e.g. telephone), as the business analyst and developer could go through a cycle
of questions and answers quickly, and follow-up questions could be posed where answers were not
completely clear.

 (b) To start with, same time/different place (e.g. a call to a help desk) might be most appropriate as the
problem might be a simple misunderstanding. If a fault in the software was actually found then a
different time/different place mode of communication would be needed to record the fault report so that
it could be dealt with by the software maintenance team.

 (c) The requirement could be very complex and need considerable analysis, so initially different time/
different place communication involving studying and writing documents might be best. Different
options might need to be considered by the business and for this a same time/same place meeting might
be expedient.

 (d) There might be good reasons why the second developer is late. For example, he might have been on
sick leave. It might also be that he is unaware of the urgency of the task. Informal communication,
ideally face to face, might be appropriate, at least initially.

Appendix C Answer Pointers 373

12.5 Classifi cation of types of power
More than one type of power can be involved in each case.

 (i) Some expert power is involved here, but for those who are subject to the audit, the main type of power
is connection power as the auditor will produce a report that will go to higher management. External
auditors often have coercive power.

 (ii) Here, power will mainly be expert- and information-based, but as the consultant will report to higher
management, connection power also exists.

 (iii) This sounds pretty coercive.

 (iv) Brigette has some connection power. The technical expertise that is involved in her job means she has
some expert power. She has little or no coercive power as she is not the manager of the staff involved.
She might be able to exert some reward power as she can satisfy some of the staff’s need for ICT
support.

 (v) Amanda is unlikely to have direct coercive power although she might be able to institute disciplinary
procedures. Through the system of annual reviews common to many organizations, she might have
some reward power. Connection power, through her access to higher management, is also present. Her
access to users means she has information power. If she brings specifi c expertise to the project (such
as analysis skills) she might have some expert power. By acting as a role model that other project team
members might want to emulate she may even be displaying referent power.

12.6 Appropriate management styles
 (i). The clerk will know much more than anyone else about the practical details of the work. Heavy task-

oriented supervision would therefore not be appropriate. As the clerk is working in a new environment
and forging new relationships, a considerable amount of people-oriented supervision/support might be
needed initially.

 (ii) Both task-oriented and people-oriented management would be needed with the trainee.

 (iii) The experienced maintenance programmer has probably had considerable autonomy in the past. The
extensions to the systems could have a considerable, detailed, impact on this person’s work. A very
carefully judged increase in task-oriented management will be required for a short time.

Chapter 13
13.1 Selection of payroll package for college
 (a) Carry out an investigation to fi nd out what the users’ requirements really are. This might uncover that

there are different sets of requirements for different groups of users.

 (b) Organize the requirements into groups relating to individual qualities and attributes. These might be, for
example, functionality (the range of features that the software has), price, usability, capacity, effi ciency,
fl exibility and reliability.

 (c) Some of these requirements will be of an absolute nature. For example, an application will have to hold
records for up to a certain maximum number of employees. If it cannot, it will have to be immediately
eliminated from further consideration.

 (d) In other cases the requirement is relative. Some of the relative requirements are more important than
others. A low price is desirable but more expensive software cannot be ruled out straightaway. This can
be refl ected by giving each of the requirements a rating, a score out of 10, say, for importance.

374 So ware Project Management

 (e) A range of possible candidate packages needs to be identifi ed. If there are lots of possibilities, an initial
screening, for instance, by price, can be applied to reduce the contenders to a manageable shortlist.

 (f) Practical ways of measuring the desired qualities in the software have to be devised. In some cases, for
example with price and capacity, sales literature or a technical specifi cation can be consulted. In other
cases, effi ciency for instance, practical trials could be conducted, while in yet other cases a survey of
existing users might provide the information required.

 (g) It is likely that some software is going to be defi cient in some ways, but that this will be compensated
by other qualities. A simple way of combining the fi ndings on different qualities is to give a mark out
of 10 for the relative presence/absence of the quality. Each of these scores can be multiplied by a score
out of 10 for the importance of the quality (see (d)) and the results of all these multiplications can be
summed to give an overall score for the software.

13.2 Possible quality specifi cations for word processing soft ware
There are many that could be defi ned and just two examples are given below. One point that may emerge is
that the software might be best broken down into a number of different functional areas, each of which can be
evaluated separately, such as document preparation, presentation, mail merging, and so on. For example:

 ● quality: ease of learning;

 ● defi nition: the time taken, by a novice, to learn how to operate the package to produce a standard
document;

 ● scale: hours;

 ● test: interview novices to ascertain their previous experience of word processing. Supply them with a
machine, the software, a training manual and a standard document to set up. Time how long it takes
them to learn how to set the document up;

 ● minimally acceptable: >2.5 to 4 hours;

 ● target range: 1 to 2.5 hours;

 ● now: 3 hours;

or

 ● quality: ease of use;

 ● defi nition: the time taken for an experienced user to produce a standard document;

 ● scale: minutes;

 ● test: time user who has experience of package to produce the standard document;

 ● minimally acceptable: 40 to 45 minutes;

 ● target range: 30 to 40 minutes;

 ● current: 45 minutes.

This topic of evaluation is an extensive one and the pointers above leave all sorts of unanswered questions in
the air. Readers who wish to explore this area should read one of the more specialist books on the topic.

13.3 Availability and mean time between failures
Each day the system should be available from 8 a.m. to 6 p.m., that is 10 hours.

Over four weeks that should be 10 3 5 3 4 hours = 200 hours.

Appendix C Answer Pointers 375

It was unavailable for one day, i.e. 10 hours.

It was unavailable until 10.00 on two other days = 4 hours.

The hours available were therefore 200 – 10 – 4 = 186 hours.

Availability would therefore be 186/200 3 100 = 93%.

Assuming that three failures are counted, mean time between failures would be 186/3 = 62 hours.

13.4 Entry requirements for an activity diff erent from the exit requirements for another
activity that immediately precedes it

It is possible for one activity to start before the immediately preceding activity has been completely fi nished. In
this case, the entry requirement for the following activity has been satisfi ed, even though the exit requirement
of the preceding activity has not. For example, software modules could be used for performance testing of the
hardware platform even though there are some residual defects concerning screen layouts.

Another situation where the entry requirements could vary from the preceding exit requirements is where a
particular resource needs to be available in order for the new activity to start.

13.5 Entry and exit requirements
 ● Entry requirements A program design must have been produced that has been reviewed and any rework

required by the review must have been carried out and been inspected by the chair of the review
group.

 ● Exit requirements A program must have been produced that has been compiled and is free of compi-
lation errors; the code must have been reviewed and any rework required by the review must have been
carried out and been inspected by the chair of the review group.

It should be noted that the review group could use checklists for each type of product reviewed and these
could be regarded as further entry/exit requirements.

13.6 Application of BS EN ISO 9001 standards to system testing
There would be a need for a documented procedure that governs system testing.

The quality objective for system testing might be defi ned as ensuring that the software conforms to the
requirements laid down in the user specifi cation.

Processes to ensure this could include documented cross-references from test cases to sections of the
specifi cation.

The results of executing test cases would need to be recorded and the subsequent remedying of any discrep-
ancies would also need to be recorded.

13.7 Precautionary steps when work is contracted out
The project manager could check who actually carried out the certifi cation. They could also discover the
scope of the BS EN ISO 9001 certifi cation that was awarded. For example, it could be that certifi cation only
applied to the processes that created some products and not others.

376 So ware Project Management

Perhaps the most important point is that the project manager will need to be reassured that the specifi -
cation to which the contractors will be working is an adequate refl ection of the requirements of the client
organization.

13.8 Information fl ows for staff allocation
When the architecture design process which creates work packages is taking place, there could be a further
output, namely the effort estimation for each software component. These could be passed to a management
process which allocates staff to the develop software process. The develop software process would need to
pass back information about the actual effort being used as this would allow adjustments to resource alloca-
tions to be made as necessary.

13.9 Comparison of peer review and pair programming
Here are some ways in which they might be contrasted:

Pair programming Peer review

Works on the principle that two heads are better than
one

Peer review groups could be made up of more people.

Driver and navigator are jointly responsible for producing
the software product

Developer solely responsible for the initial creation of
the product which is then reviewed.

Discussion of the rationale for the design as it is being
produced

Reviewers see the fi nal product only, not the reasoning
behind it unless design documentation provides the
rationale.

Real-time interaction between participants Batch orientation with focus on the documents.

Development effort doubled The time of several members of staff needed to study
documents and then attend the review meeting.

There could be further discussion of the respective advantages and disadvantages of each approach.

13.10 Th e important diff erences between a quality circle and a review group
The quality circle would be looking at the process in general while the review group would look at a particular
instance of a product. The use of review groups alone could be ineffi cient because they could be removing
the same type of defect again and again rather than addressing, as the quality circle does, the task of stopping
the defects at their source.

13.11 Validation versus verifi cation
It is possible to develop highly reliable software using validation techniques alone. However, this would
cause the development cost to increase drastically. Verifi cation techniques help achieve phase containment of
errors and provide a means to cost-effectively remove bugs.

Appendix C Answer Pointers 377

13.12 Testing at three levels
Debugging takes up a signifi cant part of the time taken by a testing process. Therefore, it is required to reduce
the testing time. Testing in three levels is the most cost and time effi cient way to debug the errors. If a failure
is detected when an integrated set of modules is being tested, it would be diffi cult to determine which module
exactly has the error.

General books on project management – not IS specifi c
Field, Mike and Laurie Keller, Project Management, London, International Thomson Business Press,

1998.

Haynes, Marion E., Project Management: Practical tools for success, Mento Park, CA, Crisp Publications,
2002.

Lock, Dennis, Project Management (9th edition), Aldershot, Gower, 2007.

Lockyer, Keith and James Gordon, Project Management and Project Network Techniques (7th edition),
London, Financial Times Prentice Hall, 2005.

Nickson, David and Suzy Siddons, Managing Projects, Made Simple Books, Oxford, Butterworth-
Heinemann, 1997.

General books on soft ware and IS management
Bennatan, E. M., On Time within Budget: Software project management practices and techniques, Chichester,

Wiley, 2000.

Cadle, James and Donald Yeates, Project Management for Information Systems (5th edition), London, FT
Prentice Hall, 2007.

Hughes, Bob (editor) Project Management for IT-related Projects, London, The British Computer Society,
2004.

Schwalbe, Kathy, IT Project Management (5th edition), London, Thomson Course Technology, 2007.

Other books worth looking at
Frederick Brooks, The Mythical Man-Month: Essays on Software Engineering, Anniversary Edition,

Reading, MA, Addison-Wesley, 1995. A slightly dated but classic exposition of the central issues of

Further Reading 379

software project management from the man who was in charge of the IBM 360 Operating System
development project. You should try to look at it at some time.

Chris Kemerer (ed) Software Project Management – Readings and Cases, Chicago, Irwin, McGraw-Hill,
1997. A collection of classic papers on topics such as estimation, risk management, life cycles, reuse
and process improvement. Strongly recommended.

Strategic planning and programme management
Offi ce of Government Commerce, Managing Successful Programmes, London, The Stationery Offi ce,

2007.

Offi ce of Government Commerce, For Successful Programme Management: Think MSP, London, The
Stationery Offi ce, 2007. An abridged guide to MSP.

Ould, Martyn, Managing Software Quality and Business Risk, Chichester, Wiley, 1999.

Reiss, Geoff, Malcolm Anthony, John Chapman, Geoff Leigh, Paul Rayner and Adrian Pyne Gower,
Book of Programme Management, Aldershot, Gower Publishing, 2006.

Project process models
DSDM Consortium, DSDM Atern Pocket Book Ashford, DSDM Consortium 2007.

Beck, Kent with Cynthia Andreas, Extreme Programming Explained: Embrace change (2nd edition),
Harlow, Addison-Wesley, 2004.

Booch, Grady, Object Solutions: Managing the object oriented project, Reading, MA, Addison-Wesley,
1996.

Gilb, Tom and Susannah Finzi, Principles of Software Engineering Management, Wokingham, Addison-
Wesley, 1988. Among other things, this book was one of the fi rst to introduce to a wider audience many
of the ideas that have subsequently been codifi ed in approaches such as DSDM.

Wood, Jane and Denise Silver, Joint Application Development, New York, Wiley, 1995.

PRINCE2
Offi ce of Government Commerce, Managing Successful Projects with PRINCE2, London, The Stationery

Offi ce, 2005.

Offi ce of Government Commerce, For Successful Project Management: Think PRINCE2, London, The
Stationery Offi ce, 2007. A condensed description of PRINCE2.

Offi ce of Government Commerce, People Issues and PRINCE2, London, The Stationery Offi ce, 2002.

Estimation
Boehm, Barry W. et al., Software Estimation with COCOMO II, Upper Saddle River, NJ, Prentice Hall,

2002.

Boehm, Barry W., Software Engineering Economics, Prentice Hall, 1981. Along with Brooks’ Mythical
man-month, one of the most frequently cited books on software project management.

Common Software Measurement International Consortium (COSMIC), COSMICFFP Measurement
Manual (www.1rg1.uqam.ca/cosmic-ffp/manual.html).

380 So ware Project Management

DeMarco, Tom, Controlling Software Projects: Management, measurement and estimation, Englewood
Cliffs, NJ, Yourdon Press, 1982.

Hughes, Bob, Practical Software Measurement, London, McGraw-Hill, 2002. Clearly we have an interest
here! Could be seen as a companion book to this one.

Symons, Charles R., Software Sizing and Estimating Mk II FPA (Function Point Analysis), Chichester,
Wiley, 1991. A book by the inventor of Mark II function points.

Control, risk and quality
Boehm, Barry W., Software Risk Management, IEEE Computer Society Press, 1989.

DeMarco, Tom and Timothy Lister, Waltzing with Bears: Managing Risk on Software Projects, New York,
Dorset House, 2003.

Down, Alex, Michael Coleman and Peter Absolon, Risk Management for Software Projects, Maidenhead,
McGraw-Hill, 1994.

Grey, Stephen, Practical Risk Assessment for Project Management, Chichester, Wiley, 1995.

Humphrey, Watts S., Managing the Software Process, Reading, MA, Addison-Wesley, 1990.

Leach, L. P., Critical Chain Project Management, Norwood, MA, Artech House, 2000.

Manns, Tom and Michael Coleman, Software Quality Assurance (2nd edition), Basingstoke, Macmillan,
1996.

People management
Arnold, John, Cary Cooper and Ivan Robertson, Work Psychology: Understanding human behaviour in

the workplace (4th edition), London, FT Prentice-Hall, 2004.

Belbin, Nigel, The Belbin Guide to Succeeding at Work, Cambridge, Belbin, 2008.

Belbin, R. Meredith, Management Teams: Why they succeed or fail (2nd edition), Oxford, Elsevier, 2003.

Belbin, R. Meredith, Team Roles at Work, Oxford, Butterworth-Heinemann, 1996.

DeMarco, Tom, Peter Hruschka, Tim Lister, Steve McMenamin, James Robertson and Suzanne
Robertson, Adrenaline Junkies and Template Zombies: Understanding Patterns of Project Behavior,
New York, Dorset House, 2008.

Handy, Charles B., Understanding Organizations (4th edition), London, Penguin, 1993.

Weinberg, G. M., The Psychology of Computer Programming, Silver Anniversary Edition, New York, Dorset
House, 1998.

Yourdon, Edward, Death March (2nd edition), Englewood Cliffs, NJ, Yourdon Press, 2003. We have reser-
vations about some aspects of this book, but it is certainly worth looking at.

Ethical and legal issues
Bainbridge, David, Introduction to Computer Law (6th edition), Harlow, Longman, 2007.

Bott, Frank, Professional Issues in Information Technology, London, The British Computer Society, 2005.

Holt, Jeremy and Jeremy Newton, A Manager’s Guide to IT Law, London, The British Computer Society,
2004.

Further Reading 381

Burnett, Rachel, IT Legal Risk Management, London, Institute for the Management of Information Systems,
2003.

Project management and other standards
Association for Project Management, APM Body of Knowledge (5th edition), High Wycombe, Association

for Project Management, 2006.

British Standards Institution, BS 6079-1:2002 Guide to Project Management, London, BSI, 2002.

British Standards Institution, TickIT Guide (5.5) A Guide to Software Quality Management System
Construction and Certifi cation to ISO 9001:2000, London, BSI, 2007.

ISO/IEC 12207:1995 Information technology: software lifecycle processes (amended 2002 and 2004).

ISO/IEC 15504-1:2004 Information technology: process assessment Part 1 Concepts and vocabulary.

ISO/IEC 15504-2:2004 Information technology: process assessment Part 2 Performing and assessment.

ISO/IEC 15504-3:2004 Information technology: process assessment Part 3 Guidance on performing an
assessment.

ISO/IEC 15504-4:2004 Information technology: process assessment Part 4 Guidance on use for process
improvement and process capability determination.

ISO/IEC 14598-1:1999 Information technology: software product evaluation Part 1 General overview.

ISO/IEC 14598-2:2000 Information technology: software product evaluation Part 2 Planning and
management.

ISO/IEC 9126-1:2001 Information technology: software product quality Part 1 Quality model.

ISO/IEC TR 9126-2:2003 Software engineering: product quality Part 2 External metrics.

ISO/IEC TR 9126-3:2003 Software engineering: product quality Part 3 Internal metrics.

ISO/IEC TR 9126-4:2004 Software engineering: product quality Part 4 Quality in use metrics.

Project Management Institute and PMI Standards Committee, A Guide to the Project Management Body
of Knowledge, Upper Derby, PA, PMI, 1996, www.pmi.org

Software Engineering Institute, CMMI for Development 1.2, Pittsburgh, SEI, 2006, www.sei.cmu.edu

Absolon, P., 207n
acceptance procedures, 244
acceptance support, 7
acceptance testing, 58, 246–247, 346
accessibility (‘right place’) dependencies, 279
account managers, 40
accounting rate of return (ARR) see return on investment

(ROI), 28
activities covered by software project management, 4–7
activity-based approach to identifying activities, 130–131
activity duration, 97, 144–146, 169

estimating using critical chain concepts, 175–180
estimating using Monte Carlo simulation, 173–175
estimating using PERT, 167–169
reducing, 11, 64, 81, 145, 163
see also elapsed time, 62

activity fl oat, 143, 144–145, 357
activity network, 41, 60, 358–359

drawing up from workfl ows, 131
modifying to take into account need for stages and

checkpoints, 61
activity-on-arrow networks, 135, 146–147n, 150

backward pass, 152 & n
drawing, 148–149, 357–358
dummy activities, 149
forward pass, 139–141, 150n–151n
identifying the critical path, 143–144, 153
labelling conventions, 138–139
lagged activities, 138

PERT networks, 169
rules and conventions, 146–148

activity-on-node networks, 135
activity fl oat, 144–145
adding the time dimension, 139
backward pass, 142, 142 & n
constructing, 135–138, 253n, 350
forward pass, 141 & n
hammock activities, 138
identifying critical activities, 145
identifying critical path, 143–144
labelling conventions, 138–139
lagged activities, 138
PERT network, 169
shortening the project duration, 145, 358

activity planning, 126–154
defi ning activities, 129–130
identifying activities, 130
network planning models see activity-on-arrow

networks; activity-on-node networks; Critical
Path Method (CPM); PERT (Program Evaluation
Review Technique)

objectives, 127–128
project schedules, 128–129
and resource allocation, 127–128, 183
sequencing and scheduling activities, 134–135
when to plan, 128

activity risks, identifi cation of, 63
activity schedule, 183

384 Index

activity span, 143
actual cost of work performed (ACWP), 219
additive tasks, 268
advertising job vacancies, 254
AG Communications, 272
agile manifesto, 88 & n
agile methods, 70, 76, 88–89

Atern (formerly Dynamic Systems Development
Method), 85–87

combining with stage-gate project management, 94
extreme programming (XP), 73, 88–92
scrum, 88, 92, 272–273
and software effort estimation, 97

airline seat reservation system, 72
Albrecht, A. J., 108n
Albrecht function point analysis, 108
algorithmic models, 103, 105
alternative dispute resolution, 245
estimating by analogy, 107
analysability, 292, 294, 295
Andreas, Cynthia, 89n
ANGEL software tool, 107
anti-discrimination policies
application composition model, 114
application-specifi c package, 72
arbitration, 245
architecture design, 6, 307, 376
architecture/risk resolution, 115
Arnold, J., 252n
artifacts, 18, 131, 315
Atern (formerly Dynamic Systems Development

Method), 85
attractiveness, 285, 294, 345

backward pass, 139, 142, 152
BACS (Bankers Automated Clearing Scheme), 52
Baggini, Julian, 283
Bainbridge, David, 234n, 239
Bankers Automated Clearing Scheme (BACS), 52
bar charts, 194, 231, 241
baseline budget, 217–219, 232
baselined products, 224
Beck, Kent, 89n, 259n, 272
Beecham, Sarah, 259n
Belbin, R. Meredith, 254n, 267n
benefi t profi les, 40
benefi ts, identifying and quantifying, 23, 26, 44

see also benefi t profi les; benefi ts management;
cost–benefi t analysis; cost–benefi t evaluation
techniques

benefi ts management, 43
Bennington, D., 77n
bespoke system, 234
black box testing, 316
Blichfeldt, B. S., 25n
blueprint, 39–40
Boehm, B. W., 10n, 78n, 103n, 253n
Booch, Grady, 83n, 84
Bott, M. F., 260n
bottom-up estimating, 104–105
brainstorming, 130, 159, 160, 269
British Computer Society (BCS), 22n, 255, 262, 281n
British Standards Institution (BSI), 130n, 300
Brooks, F. P., 4n, 97n, 101n, 271n
Brooks’ Law, 101n
BS 4335, 138
BS 6079, 130n, 131n, 216n
BS EN ISO 9001, 73n, 74, 226n, 300, 302, 323, 375
BS ISO/IEC 9126-1:2001, 292n, 292–297
BS ISO/IEC 15504-1:2004, 305n, 305–307
BS ISO/IEC 15939:2007, 291n
budgetted cost of work performed (BCWP), 216
budgeted cost of work scheduled (BCWS), 216
Burman, P. J., 191n
business case, 4, 12, 22–24, 87, 94, 158, 224, 330, 333
business change managers, 44
business cycle programmes, 36
business model, 12, 18, 39
business objective, 11, 22–23, 38
reconciling project objectives and, 13
business process re-engineering (BPR), 43
business system development (BSD) techniques, 74n

capability maturity models (CMM), 302–304
capability maturity model integration, 305
Capers Jones estimating rules of thumb, 120
Carr, Alfred, 261n
case-based reasoning see analogy, estimating by
case diagram cash fl ow forecasting, 26–27
evaluation techniques, 27–33, 268n
cause and effect, 156, 258
Central Computing and Telecommunications Agency see

Offi ce of Government Commerce (OGC) (formerly
Central Computing and Telecommunications Agency)

Cfsu (COSMIC functional size units), 113
change control, 53, 224–226, 231, 301, 325
change control standards, 53
change management, 18
changeability, 292, 294–295
Checkland, P., 71n

Index 385

checklists, 159
checkpoints, 61, 205
Cheney, P. M., 253n
chief programmer teams, 270–271
Chudoba, K. M., 283n
Ciborra, Claudio U., 256n
clean-room software development , 312–313
clean rooms, 76
closing a project, 328–329
CMM (capability maturity models), 302–304
CMMI (CMM Integration), 305, 307
COCOMO estimating models, 101n
COCOMO II Model Defi nition Manual, 110n, 114n, 118
code and test, 7, 342
code reuse, 17, 88, 92
codes of conduct , 262
coding standards, 92
coexistence, 295
Coleman, M., 207n
collective ownership, 91
common computer interface, 40
Common Software Measurement Consortium

(COSMIC), 112
communication genres, 265, 282–284
communication plans, 10, 40n, 284
communications strategy, 40
compensatory tasks, 268
complexity, 4, 73, 103, 105
compulsory users, 8
computer-based planning, 216
computer graphics, 72
computer-supported cooperative work (CSCW), 279
concurrent processing, 72, 74
confi guration librarian, 225–227, 327
confi guration management see software confi guration

management
confi guration management standards, 53
conformity, 4
conjunctive tasks, 268
contingency plan, 63, 166
continuous integration, 91
contract management , 246

acceptance, 246–247
contract management, 246
stages in, 239–243

invitation to tender (ITT), 241
evaluation of proposals, 242–243
evaluation plan, 240–241
requirements analysis, 5, 239–240

types of contract, 234–239
fi xed price contracts, 235

fi xed price per unit delivered contracts, 236–238
negotiated procedure, 238–239
open tendering process, 238
restricted tendering process, 238
time and materials contracts, 235–236
type of package, 369

typical terms of a contract, 243–245
acceptance procedures, 244
customer commitments, 244
defi nitions, 243
environment, 244
form of agreement, 243
goods and services to be supplied, 243–244
miscellaneous legal requirements, 245
ownership of the software, 244
price and payment method, 245
project and quality management, 245
standards, 245
timetable, 245

control points, 205
control systems, 74
Cooper, C. L., 252n
coordination dependencies, 279–280
copyright, 244 & n
cosmetic changes, 82
COSMIC full function points, 112–113
cost–benefi t analysis, 26, 34, 345
 and risk evaluation, 33–36
cost–benefi t evaluation techniques, 27–33
cost estimation, 118
cost schedules, 194–197, 216
cost variance (CV), 220, 223
costs, 23

detailed estimates of, 127
identifying and quantifying, 26
see also cost–benefi t analysis; cost–benefi t evaluation

techniques; cost schedules
impact of risk on, 163–164
monitoring, 202, 218–219

COTS (commercial off-the-shelf) software advantages
and disadvantages of, 165
contracts for, 2, 243, 245

Couger, J. D., 253 & n
CPM see Critical Path Method (CPM), 135
critical activities, identifying, 145, 363
critical chain concepts, 175–180

deriving ‘most likely’ activity durations, 176–177
inserting project and feeder buffers, 177–178
project execution, 178
using latest start dates for activities, 177

critical path, 139, 143, 153, 222

386 Index

identifying, 143–144, 153, 185, 360, 363
monitoring critical path activities, 221
shortening, 145, 358

Critical Path Method (C PM), 135, 153
applied to activity-on-arrow networks, 135, 146–153
applied to activity-on-node networks, 135, 146

critical resources, monitoring activities using, 222
Crowston, K., 270n
crystal technologies, 88
cumulative expenditure chart, 215
customer commitments, 244
customer insertion program, 353
customer relationships, 13
customized off-the-shelf software, 234

dangles in networks, 137–138
data collection, 16, 210
data groups, 112–113
data-oriented systems, 72
data processing, 16
day rates, 255 & n
De Reyck, B., 24n
decision making, 268–273

chief programmer teams, 271
egoless programming, 270–271, 310
extreme programming (XP), 89–92, 271
group decision making, 269, 270
mental obstacles to good decision making, 269
obstacles to good group decision making, 269
scrum, 92–93, 272–273
team heedfulness, 270

decision points, 246
see also milestones, 61, 246

decision trees, 35–36
decommissioning, 333, 334
deliverables, identifying and describing, 57–59
delivery planning, 42
Delphi technique, 107, 270, 372
DeMarco, Tom, 280 & n
Department for Work and Pensions, 2
department structure, 273–275

functional format, 273
project format, 274
matrix format, 275

departmentalization, 273
dependency diagrams, 41–42
design, 5

distinction between planning and, 5
detailed design, 6
development costs, 26
development fl exibility, 116

Dijkstra, E. W., 312n
directing a project, 328–329
disbenefi ts, 44
discount factor, 30 & n
discount rate, 29–30, 344

for risky projects, 33–34
discounted cash fl ow (DCF) techniques, 29n
disjunctive tasks, 268, 273
dispersed team, 115
documenting plan, 65
Down, A., 207n
DSDM see Atern (formerly Dynamic Systems

Development Method)
dummy activities, 149
DuPont Chemical Company, 135n
Dynamic Systems Development Method (DSDM)

see Atern (formerly Dynamic Systems
Development Method), 85–86

early design model, 114
earned value (EV), defi nition of, 216–218
earned value (EV) analysis, 216–221, 368
EDS, 234n
effect of schedule compression 119
effi ciency, 297
effort see software effort estimation, 97
effort drivers, 103
effort multipliers, 116, 118
egoless programming, 270–271, 310
elapsed time, 62, 292n

see also activity durations, 97, 176, 361
eligible candidates, 254
emails, 280
embedded systems, 8 & n, 72n, 104, 340
end stage assessment, 205
enterprise architecture, 53
Enterprise Resource Planning (ERP) systems, 53n
entertainment, software designed for, 72
entities, 293, 354
Entity Relationship Diagram (ERD), 71
entry requirements, 298, 375
equipment resources, 184–185
escalation of commitment, 269
escrow agreement, 244
Eskerod, P., 25n
estimate at completion (EAC), 220
ethical responsibilities, 261–262
Euclidean distance, 107, 354
European Union (formerly European Community), 238,

245
evaluation of individual projects, 25–27

Index 387

evaluation of proposals, 242–243
evaluation plan, 240–241
evolutionary prototypes, 79
exception plan, 224, 328–329
exception planning, 224
exception report, 224, 332
exclusive use, 244
executive role, 326
exit requirements, 299, 375
exits, 112, 113
expectancy theory of motivation, 257–258
expenditure on ICT projects, 2
experience, programmer productivity related to, 253
expert judgement, estimating by, 103, 106–107
expert system shells, 74
external input types, 108
external inquiry types, 108
external interface fi le types, 108
external output types, 108
external quality attributes, 292
external user types, 108
extreme programming (XP), 89, 271

combining with stage-gate project management, 94n
core practices, 90
core values, 89
limitations, 92
software effort estimation, 97

Fagan, M. E., 311n
Fagan inspection, 311, 313
Failla, Angelo, 267n, 268n
Fairley, Richard, 165
feasibility assessment, 127
feasibility study, 4, 22, 99, 339
feature-driven development, 88
feeding buffers, 178
feeding chain, 178
Ferns, D. C., 36
fi nancial case, 23
fi nancial plan, 40
fi t requirements, 279
fi tness for purpose, 279
Fitzgerald, B., 69n
fi xed price contracts, 235
fi xed price per unit delivered contracts, 236–238
fl exibility, 4
follow-on actions, 333
forty-hour week, 91
forward pass, 139, 141n, 150n–151n, 361
free fl oat, 144, 222n

Friedman Milton, 261 & n
function point analysis , 108

Albrecht function point analysis, 108–110
COSMIC full function points, 112–113
fi xed price per unit delivered contracts associated with,

236–238
function points Mark II, 110–112

function testing, 91
functionality, 81, 237, 293
functionality compliance, 293

Gaffney, J. E., Jr., 108n
Gallagher, Séamus, 279n, 280
Gantt, Henry, 64n, 213n
Gantt charts, 64 & n
Garmus, David general packages
generic product fl ows, documentation of, 59–60
Gilb, Tom, 83n, 85, 320n
global changes, 82
gold-plating, 83
Goldratt, Eliyahu, 176
Goodwin, P., 162
Gottlieb, R., 53n
government procurement, 238
graphics-based systems, 74
group heedfulness, 268
group norms, 256 & n, 269
group performance, 267–268
group tasks, categorization of , 267–268

hacking, 93
Halliday, Stephen, 300
Hamid, T. K., 101n
hammock activities, 138
Handy, Charles, 283n
hardware environment , 74, 76, 79, 295, 296
Hawthorne Effect, 252n
hazards, 156 & n
health and safety, 260
heavyweight methods, 70, 76
Herron, David, 236n
Herzberg, F., 258n
Herzberg’s two-factor theory, 257
heuristics, 269
high-level risks, 55

identifi cation of , 55–56, 73
monitoring and control of, 1

highlight reports, 332
historical data, need for, 102
home working, 281

388 Index

Hughes, B., 22n
Hughes, R.T., 107n
Human-Centred Design, 71
human–computer interface, 81, 339
hybrid approach to identifying activities, 131–133
hygiene factors, 257

IBM, 53n, 207n, 267n, 270n–271n, 311n
IFPUG see International FP User Group (IFPUG), 109
implementation requirements, 298
in-house projects, 4

defi nition of, 4
vs. outsourcing, 70–71

incremental delivery, 74, 82–85, 246n
advantages, 83
disadvantages, 83
incremental delivery plan, 83

incremental plan, 83–85
open technology plan, 83–84
system objectives, 83–84

infl ation, 27
information engineering, 74
information overload, 269
information systems, 8, 74
infrastructure programmes, 37
initiating a project, 328, 330
innovative partnerships, 37
inspections, 311
installation, 7, 94
installation standards and procedures,

identifi cation of, 53–54
integration testing, 59, 271–272, 279, 316
interfering fl oat, 144–145, 357
intermediate products, 57, 295
internal quality attributes, 289
internal rate of return, 32–33
International FP User Group (IFPUG), 109 & n
International Software Benchmarking Standards Group

(ISBSG), 102 & n
interoperability, 293, 295
interpretivist school, 251
invisibility, 4
invitation to tender (ITT) , 60, 66, 238, 241, 347
ISO 9000 series, 300
ISO 9001, 73n, 74, 226n, 245, 300–302, 323, 375
ISO 9004, 300
ISO/IEC 9126-1:2001, 292n
ISO/IEC 12207, 53n
ISO/IEC 14143–1:1998, 113
ISO/IEC 14598 296

ISO/IEC 15504, 305
ISO/IEC 15939:2007, 291n
ISO/IEC 19761:2003, 113
ISO/IEC 25000, 292n
ISPL Euromethod, 246n
issues, 155, 260, 262
iterations, 90, 128
Iyer, B., 53n

Jacobson, I., 131
JAD see joint application development (JAD), 76, 86n,

269n
Janoff, Norman S., 272n
Jensen, M. A., 266n
job enlargement, 43n, 258n
job enrichment, 258n
job holder profi le, 254
job specifi cation, 254
joint application development (JAD), 76, 269n

Kammerer, E. E., 270n
Karlström, D., 94n
key process areas, 304
Kitchenham, B. A., 99n
KLOC (thousands of lines of code), 103, 106
knowledge-based systems, 74, 350

labelling conventions, 138–139
labour resources, 184–185
ladder technique, 150
lagged activities, 138, 150
Landauer, Thomas K., 43n
latent errors, estimation of, 319
Lawrie, Robyn, 235n
Leach, L. P., 176n
leadership , 284–286

styles, 285–286, 373
learnability, 294
least squares regression, 106
legal advice, 243n
legal small print, in contracts, 245
Lessons Learnt Reports, 314
Levy, O., 13n
licences, 234, 243
life cycle approach, selection of, 56, 74–75
Likert, Rensis, 285n
liquidated damages, 245–246
Lister, Timothy, 280 & n
local changes, 82
logic-based programming languages, 74

Index 389

logical internal fi le types, 108
loops in networks, 137, 147
lower-level planning, 66
Lundin, Rolf A., 3n
Lyytinen, Kalle, 158

macro process, 93–94
Madnick, S. E., 101n
Mahapatra, R., 88n
maintainability, 292–294, 297, 322
maintenance factors, 257
management, activities covered by, 14
management control, 16–17
management goal, 101
management information reports, 52
management products, 57
managing iterative processes, 93–94
Mangalara, G., 88n
market, information on, 22
Martinez, Demian, 233n, 240n
Maslow, Abraham, 256
Maslow’s hierarchy of needs, 256–257
materials resources, 184–185
mathematical verifi cation techniques, 313
Mathiassen, L., 158n
matrix organization, 275
maturity, 115, 294, 302, 305
Maznevski, M. L., 284
McCall, James, 292
McChesney, Ian R., 279n
McFarlan, Warren, 24n
McGregor, Donald, 252
MDA see model-driven architectures (MDA), 76
means–end inversion, 69, 86
measurement programme, 54
measures of effectiveness, 11–12, 341
measures of work, 102–103
Memorandum of Agreement (MoA), 241
Merisal-Rantanen, H., 89n
metaphor, 90
method of work, 7
methodologies, 7–8, 71

choosing, 21, 45, 71, 153, 344
methods engineering, 68
methods tailoring, 68
micro process, 93–94
Microsoft Access, 81, 350
Microsoft Excel, 32
Microsoft Project, 279, 327, 335–336
milestones, 61, 94, 131, 206, 217, 226, 246

Mills, Harlan, 312
mission statement, 261
mock-ups, 81
model-driven architectures (MDA), 76
models, 70–71, 75
moderator, 312
money resources, 184–185
monitoring and control , 202–232

assessing progress, 205
change control, 53, 224–226, 325
collecting the data, 205–208
cost monitoring, 215–216
creating the framework, 202–205
earned value analysis, 216–221, 368
Gantt charts, 64 & n, 212
getting the project back to target, 222–224
partial completion reporting, 206–207
prioritizing monitoring, 221–222
red/amber/green (RAG) reporting, 207–208
responsibility for, 204
setting checkpoints, 205
slip charts, 213
taking snapshots, 205
timeline charts, 212
types of shortfall, 203
visualizing progress, 212–215

Monte Carlo simulation, 173–175
MoSCoW classifi cation, 87
most probable error lists, 314
motivation, 127, 255, 257–258

expectancy theory of motivation, 257–258
Hawthorne Effect, 252 & n
Herzberg’s two-factor theory, 257
Maslow’s hierarchy of needs, 256–257
methods of improving, 258–259
Oldham–Hackman job characteristics model, 258,

263
Taylorist model, 255–256
Theory X and Theory Y , 252

motivators, 256, 257

n-version programming, 74
National Audit Offi ce, 2 & n
NCC Group, 244
near-critical paths, 145
negotiated procedure, 238–239
Nerur, S., 88 & n
NESMA FP method, 113n
net present value (NPV), 29–32, 344

risk and, 33–34

390 Index

net profi t, 28
network planning models see activity-on-arrow

networks; activity-on-node networks; Critical Path
Method (CPM); PERT (Program Evaluation Review
Technique)

new product developments, 24
New York Times, 271
Norden’s work, 118

O’Kane, T., 69n
Object Constraint Language (OCL), 74, 76, 313
object points, 114
objective-driven project, 9, 71
objectives setting, 10–12

identifying project scope and objectives, 51
measures of effectiveness, 11–12, 341
sub-objectives and goals, 11

OCL see Object Constraint Language (OCL), 74n, 76,
313

‘off-shore’ staff , 281
off-specifi cation, 317
off-the-shelf software, 70, 242

advantages and disadvantages of , 229, 247, 376
contracts for , 2, 243, 245

Offi ce of Government Commerce (OGC) (formerly
Central Computing and Telecommunications
Agency), 38n, 47n

Oldham–Hackman job characteristics model, 258
on-site customers, 92
once-through model see waterfall model, 76
one-shot model see waterfall model, 76
OO approach, 72, 75
open tendering process, 238
operability, 294
operating systems, 228, 337, 340
operational costs, 26
Oracle, 165, 335
ordered list priority, 190
organic system, 113
organization and team structures, 273
organizational and operational infrastructure, 23
Organizational Behaviour (OB), 251–253
organizational structure, 38–39, 54, 250, 273, 279

departmentalization, 273
formal vs. informal, 204
and projects, 21

organizational stupidity, 4
Orlikowski, Wanda J., 256n
outline implementation plan, 23
outsourcing, 9, 20, 247, 273n

vs. in-house development, 70, 99, 235n
see also contract management

overheads, 196
overtime working, 44, 259
ownership of the software , 244

pair programming, 89, 91, 376
parametric models, 105–106

COCOMO models, 105, 253
Park, R. E., 103n
Parkinson, C. Northcote, 101n
Parkinson’s Law , 101, 175
Parkinson technique, estimating by, 103
partial completion reporting, 206–207
partial working model, 81
payback period, 28, 344
payment method, contract terms relating to, 245
peer review, 311n–312, 376
peer-to-peer communication, 112
people management, 305

ethical and professional concerns, 260–262
health and safety , 260
instruction in the best methods, 255
motivation, 127, 255, 257–258

expectancy theory of motivation, 257–258
Hawthorne Effect , 252n
Herzberg’s two-factor theory, 257
Maslow’s hierarchy of needs, 256–257
methods of improving, 258–259
Oldham–Hackman job characteristics model, 258
Taylorist model, 255–256
Theory X and Theory Y , 252

organizational behaviour, 251–253
selecting the right person for the job, 253–255

recruitment process , 254–255
Step Wise framework , 100, 250, 266, 289

stress, 259
understanding behaviour, 251–252

people-oriented management style, 286
performance measurement, 12
performance ratios, 220–221
performance-related pay, 252
PERT (Program Evaluation Review Technique),

135, 168n
activity-on-arrow networks used in, 135, 146, 150
activity standard deviations, 170, 172
advantages of, 83, 173, 277
calculating the expected activity duration, 169, 361
calculating the standard deviation of each project

event, 172, 178

Index 391

calculating the z values, 172
converting z values to probabilities, 172–173
likelihood of meeting targets, 170–171
monitoring high-risk activities, 222
using expected activity durations, 169–170

Petri nets, 74
piece-rates, 255, 256
PIM see platform-independent model (PIM), 76
Pinkus, Rosa Lynn B., 262
planned value (PV), 216, 368
planning see activity planning; project planning; strategic

planning; technical planning
platform-independent models (PIM), 76
platform-specifi c models (PSM), 76
PM-BOK , 156
political implications, 98
portability, 83, 293, 295–296
portability compliance, 295
portfolio project management, 24

portfolio defi nition, 24
portfolio management, 22, 24–25
portfolio optimization, 24–25
problems associated with , 228, 230, 275

positivist approach, 251
post architecture, 114
Post Implementation Review (PIR), 160n, 215, 314
post project review, 197, 334, 365

types of power, 373
precedence networks, 135, 147, 153

activity fl oat, 144–145
adding the time dimension, 139
backward pass, 139, 142, 152n
constructing, 135, 253n, 350
forward pass, 139, 141n, 150n, 151n
hammock activities, 138
identifying critical activities, 145, 363
identifying the critical path, 143–144, 153
labelling conventions , 138–139
lagged activities, 138, 150
PERT network, 169–171
shortening the project duration, 145

precedence requirements, 130, 223
precedentedness, 115
predictive measures, 12
price, contract terms relating to, 245
price to win estimation, 103
PRINCE (fi rst version), 5n, 47n, 52n, 324n
PRINCE2 method, 5n

capitalized initial letters used for terms in, 52
closing the project, 333–334

components, 132, 324–325
controlling a stage, 330–332
directing a project, 329
end stage assessment, 205
exception planning, 224
initiating the project, 330
introduction to, 47, 324
iterative approach taken by, 5n
managing product delivery, 332
managing stage boundaries, 328, 332–333
OGC responsible for introducing, 38, 47n
planning technique, 325–326
product-based approach used in, 130–131
Product Breakdown Structure (PBS) in, 57, 58, 60,

67, 131
Product Flow Diagram (PFD) in, 59, 67, 131, 225,

347
project organization, 55, 326–327
project procedures, 328–329
project stages, 327–328
project support, 327
responsibility in a PRINCE2 environment, 204n
risk defi ned in, 156
starting up a project, 329–330
Step Wise compared with, 47–48

principal project management processes,15
prioritizing activities, 190
probability chart, 161, 167, 174
probability impact grids, 164
process attributes, 305
process capability models, 302–310

capability maturity model (CMM), 302–304
implementing process improvement, 307–309
ISO 15504 process assessment, 305–307

process maturity, 115
process models, choice of, 75
process-oriented systems, 72
process quality management, 298–299
process reference model, 305
process requirements, 298
process uncertainty, 73
producer–customer (‘right time’) relationships, 279
product-based approach to identifying activities, 131
product and process metrics, 298
Product Breakdown Structures (PBS), 58
product delivery, management of, 332
product descriptions, 58
product-driven projects, 71
Product Flow Diagram (PFD), 59, 347
product instances, recognition of , 60

392 Index

product uncertainty, 73
‘productivity paradox’ in IT, 43n
programme, defi nition of, 36
programme brief, 39
programme director, 39
programme management, 41–42

creating a programme, 39–40
managing allocation of resources, 37–38
reservations about, 42
strategic, 38, 44
types of programmes, 36–37

programme manager, 39
programme mandate, 39
programme portfolio, 40
project analysis, 68
project approach, 68, 330
project authority, 11, 51
project board, 11, 52 & n, 204, 224, 327
Project brief, 42, 330
project buffer, 177
project characteristics, analysis of, 55–56, 69, 265, 289
project control cycle, 16, 203
project end report, 334
project execution, 5, 178
project infrastructure, identifi cation of, 53–55
project initiation, 330
project initiation document, 330, 334
project management board, 11, 204, 224
project management team, 327n, 328, 329
Project Mandate, 329
project objectives, 13, 51

modifying in light of stakeholder analysis, 52
reconciling business objectives and, 13

project plan , 328, 330
project planning, 47

based on method of work, 7
contents list for, 19
distinction between design and, 5
fi nancial plan, 40
identifying relationship between strategic planning

and, 53
iterative approach to, 5 & n
preliminary plan, 40, 160
software effort estimation in context of, 100
software quality and, 84n, 203n, 237n, 288
see also PRINCE2 method; Step Wise project

planning
project planning and control standards, 54
project planning software tools, 189
project procedures, 328–329

project products, 56, 57
documenting generic product fl ows, 59
identifying and describing, 57–59
recognizing product instances, 50, 60

project quality plan, 330
project review see review
project risk matrix, 33
project schedules, 128–129
project selection, 45, 269n
project steering committee, 11, 204
project success and failure, 12–13
project support, 327
project teams, 127, 211, 273, 276, 303

defi nition of, 264
organization of, 54–55
see also teams, 55n, 70n, 264

project termination, 211
projects, 4, 8, 9

characteristics distinguishing, 3
defi nition of, 2n
examples of, 108, 232, 237–238, 298, 319
routine and non-routine, 2–3
software projects vs. other types, 4
as temporary sub-organizations, 3

PROMPT, 324
prototyping, 74n, 79–81, 82

advantages and disadvantages, 83
controlling changes during, 82
documenting amendments alongside prototype testing,

138n, 150n
extent of, 81
learning from, 80–81
stages of a project where a prototype can be

appropriate, 350
types, 4, 108
what is being prototyped?, 81

PSM see platform-specifi c models (PSM), 76
Putnam’s work, 119

qualifi cation testing, 7
quality see software quality
quality-based project characteristics, 55
quality circles, 160, 311, 313–314
quality control, 300
quality criteria, 64, 346
quality in use, 292, 312n
quality management, 18
quality management systems (QMS), 300
quality plans, 321
quality policy, 301

Index 393

quality products, 300, 302–303, 323
quality standards and procedures manual, 54, 65
questionnaire survey, 56

RAD see rapid application development (RAD)
Radford, Paul, 235n
rapid application development (RAD), 76, 87–88
Rayleigh-Norden curve, 119
Raz, T.,179n
RDI Technologies, 236n
reads, 112
real-time systems, 74, 112, 114n
record types, 108
recoverability, 294, 322
recruitment process, 254–255
red/amber/green (RAG) reporting, 207–208
refactoring, 91
regression testing, 90, 317
Reiss, G., 37n
relay race principle, 178
releases, 90
reliability, 293, 320
renewal projects, 24
replaceability, 294–295
request for change, 331
request for proposal (RFP) see invitation to tender (ITT)
requests for change (RFC), 225
requirements analysis, 5–6, 239–240, 342
requirements driven projects, 83
requirements elicitation, 5, 339, 342
research and development programmes, 37
resource allocation, 64n, 127–128, 183

activity planning and, 127
assigning staff to activities, 364
between projects , 24–25, 41, 98, 127
cost schedules, 194–197, 216
counting the cost, 193
creating critical paths, 191–192
identifying resource requirements, 185–187
nature of resources, 184–185
resource schedule, 127, 183–184, 194
revising plans and estimates to take into account, 64
resource constraints, 50, 61, 64, 128
scheduling resources, 187–191
scheduling sequence, 197–199
shortening critical path, 222–223

resource dependency, 177
resource histograms, 188–189, 193–194
resource schedule, 184, 194, 222
resource uncertainty, 73

restricted tendering process, 238
return on investment (ROI) , 28–29, 344
review, 208–210

utility 208
candidate work products 209
roles, 209
process 209
data collection, 210

review points, 205
Rising, Linda, 272n

boundary between risk management and, 156
‘normal’ software project management, 156
categories of, 157–158
changes in situation with regard to, 333
defi nitions of, 156
evaluating risks using critical chain concept, 175–176
evaluating risks using Monte Carlo simulation,

173–175
evaluating risks using PERT technique , 167–171,

173, 183
framework for dealing with, 159
identifying activity risks, 63, 265
identifying high-level risks, 55–56, 73
key elements, 156, 207
monitoring and control of high-risk activities, 222
project risk and business risk, 23–24
risk assessment, 160–164, 193, 197
risk exposure, 160–164, 166
risk identifi cation, 159–160

brainstorming, 159–160
checklists , 159

risk management, 155
contingency, 63, 165–166, 222n, 235
deciding on risk actions, 361
risk register, 167

risk planning, 164–165
risk acceptance, 164
risk avoidance, 164
risk mitigation, 165
risk reduction, 164–165
risk transfer, 165

risk pooling, 161
risk proximity, 164n
risk reduction leverage (RRL), 166
see also risk evaluation, 33–36

risk evaluation, 33–36
cost–benefi t analysis, 34–35
decision trees, 35–36
risk and net present value, 33–34
risk identifi cation and ranking, 33

394 Index

risk profi le analysis, 35
risk log, 330
risk premium, 33
risk profi le analysis, 35
risky shift, 269
Robertson, I. T., 252n
role ambiguity, 259
role confl ict, 259
Ropponen, J.,158n
Ross, R., 10 & n
Rossi, M., 89 & n
Rumbaugh, J., 131n
Runeson, P., 94n
Russo, N. L., 69n

safety see health and safety, 260
safety-critical systems, 74, 295
safety policy document, 260
scale factors, 115, 355
schedule at completion (SAC), 220
schedule variance (SV), 219, 223
Schofi eld, C., 107n
Scholes, J., 71n
scientifi c management, 252n
scope creep, 226 & n, 368
scrum, 92–93, 272–273
security, 294
selecting a project, 49
selecting staff, 253–255

recruitment process, 254–255
Sema, 234n
semi-detached system, 114
service level agreement, 9n
services resources, 184–185
setup costs, 26
Sharp, Helen, 91
Shenhar, A. J., 13n
Shepperd, M., 107n, 108n
shrink-wrapped software see off-the-shelf software
Silver, Denise, 76n
simple design, 90
simulated interaction, 81
six sigma, 309
size drivers, 124
slack, 150, 153, 193
slip chart, 213
SLOC see source lines of code (SLOC)
SMART objectives, 11–12
social loafi ng, 268
sociotechnical model of risk, 158

Söderholm, Andres, 3n
soft systems approach, 72, 74
software breakage, 83
software code, ownership of, 70
software confi guration management, 226-229

terminologies 227
purpose, 228
process, 229
control, 230
open source tools, 231

software development life cycle, 71, 75, 305
software effort estimation, 62n, 97

agile methods and, 352
analogy, 103, 105, 107
basis for, 102
bottom-up estimating, 103–105
calculating productivity rates and using to estimate

effort, 351–352
COCOMO models, 105, 253
diffi culties of estimating, 97
effort vs. activity duration/elapsed time, 61–62, 97
expert judgement, 103, 106–107
function point analysis, 108–110
Albrecht function point analysis, 108–110
COSMIC full function points, 112–113
fi xed price per unit delivered contracts associated

with, 236–238
function points Mark II, 110–112
importance of realistic estimates, 97
problems with over- and under-estimates, 101
revising plan to create controllable activities, 62
stages when estimates are done, 99–100
techniques for, 21, 121, 180, 212
top-down estimating, 62

Software Engineering Institute (SEI), 103n, 303
software environment, 72, 249
software layers, 112
software processes, 75
software projects, 1, 207n

distinguishing characteristics of, 3
ways of categorizing, 8–9, 80

software quality, 84n, 288
defi ning, 290–292
importance of, 290
ISO 9126, 240, 292–297, 312n
measuring, 102, 236n, 288, 370
process capability models, 302–310
capability maturity model (CMM), 302–304
implementing process improvement, 307–309
ISO 15504 process assessment, 305–307

Index 395

product vs. process quality management, 298–299
quality management systems (BS EN ISO

9001:2000), 300–302
quality plans, 321
techniques to help enhance, 310–314

formal methods, 313
inspections, 311
lessons learnt reports, 314
software quality circles, 313
structured programming and clean-room software

development, 312–313
testing, 90–91

software quality circles (SWQC), 313
software requirements, 6, 270n, 309
source cases, 107
source lines of code (SLOC), 99n, 102, 108n
space resources, 184–185
specialized techniques, 74
specifi cation, 362
spiral model, 78–79, 94–95, 351
spreadsheets, 337
sprints, 272
SSADM see Structured Systems Analysis and Design

Method (SSADM), 54, 71, 85
stability, 294, 295
staff costs, 11, 196, 352

activities required for staff costs program, 352–353
staff selection, 249, 262

recruitment process, 254–255
staffi ng, 118
stage boundaries, management of, 328, 332–333
stage-gate model, 77

combining agile processes with, 94n
stage plan, 328, 331–332
Stages, 1, 5, 7, 61, 239
stakeholder map, 40
stakeholders, 10, 18, 40, 50–51, 340, 345
standard deviations, 169–170, 172n, 362
Standish Group, 2
starting up a project, 329–330
Step Wise project planning, 47–49, 265

activity planning in context of, 129
cross-reference of a planning document to Step Wise

activities, 348–349
introduction to, 1
people management in context of, 249
PRINCE2 compared, 325
product-based approach used in, 130–131
resource allocation in context of, 183
risk planning in context of, 63, 157

software effort estimation in context of, 61–62, 100
software quality in context, 288
step 0: select project, 49–51
step 1: identify project scope and objectives,

51–53, 289
step 2: identify project infrastructure, 53–55, 289
step 3: analyse project characteristics, 55–56, 69, 289
step 4: identify project products and activities, 56–61
step 5: estimate effort for each activity, 61–62
step 6: identify activity risks, 63
step 7: allocate resources, 64
step 8: review/publicize plan, 64–66
steps 9 and 10: execute plan/lower levels of

planning, 66
team working in context of, 264

stockholder ethical model, 371
story, 90
strategic planning, 53, 99
strategic programme management, 38
strategic programmes, 37
stress, 259
structured methods, 75–76
structured programming, 271, 311–313
Structured Systems Analysis and Design Method

(SSADM), 71, 85, 95
sub-objectives and goals, 11–12
success rate of ICT projects, 2
successful project, defi nition of, 97
suitable candidates, 209, 254
summary risk profi les, 164
suppliers’ proposals, evaluation of, 99
Symons, Charles R., 110n
system requirement, 6
system specifi cation, 99

tacit knowledge, 92
task catalogue, 131 & n
task-oriented management style, 286
task-subtask dependencies, 279
Taylor, Frederick Winslow, 252n
Taylor, N. R., 99n
Taylorist model, 255–256
TCA see technical complexity adjustment (TCA) team

cohesion, 110
test automation, 318
team heedfulness, 270
team managers, 327, 331
team plan, 332
team structure, 276-279

chief programmer team, 276

396 Index

democratic team, 277
mixed-control team, 278

teams, 264
communication genres, 265, 282–284
communication plans, 10, 40n, 264, 265, 284
coordination dependencies, 279–280
decision making, 268–273

chief programmer teams, 271
egoless programming, 270–271, 278, 310
extreme programming (XP), 271
group decision making, 269
mental obstacles to good decision making, 269
methods to reduce disadvantages of group

decision making, 270
obstacles to good group decision making, 269
scrum, 272–273
team heedfulness, 270

defi nitions of teams, 264
dispersed and virtual teams, 280–281
group performance, 267–268
leadership, 284–286

styles, 285–286, 373
organizational structures, 38, 39, 54–55, 250, 273,

279
departmentalization, 273
formal or informal, 204
and projects, 21

technical assessment, 25
technical complexity adjustment (TCA), 110
technical planning, 68
technical products, 57
technical report (TRs), 296
techniques, 71

specialized, 74, 88
technologies, selection of, 71
technology changes, 98
test case design, 316
test cases, 229, 317–319, 346
test plans, 209, 242, 246
testing, 90–91, 314

see also acceptance testing; integration testing
testing environment, 71
testing software, 316
‘Theory W’ software project management, 10 & n
Theory X, 252–253
Theory Y, 252–253
throw-away prototypes, 79
TickIT, 74
time and materials contracts, 235–236
time-boxing, 83, 86, 90, 103n, 352

time estimate at completion (TEAC), 220
time resources, 184–185
time variance (TV), 219–220
timeline charts, 212
tolerance line, 164
tools, project management, 335
top-down estimating, 62
top executives, fi nancial incentives for, 371
total fl oat priority, 190
traditional versus modern project management

practices, 17
traffi c-light method, 207n
training needs, 255, 262, 313
tranches of projects, 42
Trietsch, D., 179n
Tuckman, B. W., 266n
Tuure, T., 89n

unadjusted function points (UFPs), 110–111, 354
Unifi ed Software Development Process (USDP), 71, 131
unit testing, 64, 91, 154, 304, 316
United States Department of Defense (DOD), 302
usability, 239, 243, 279, 293, 322
usability (‘right thing’) dependencies 282, 279
usage charges, 196
usage profi le, 312
USDP see Unifi ed Software Development Process

(USDP), 71, 131
user, availability, 74
user requirements, 56, 59, 63, 73

detailed analysis of, 78
omitted in overall system specifi cation, 59–60
quality checks on, 348
requirements document, 208, 236, 239, 279, 307
uncertainties arising from, 73–74

user resistance, 73, 360

V-process model, 77, 314–316
validation, 80, 108n, 315–316, 339
value for money, 85, 220, 240–241, 369
value-to-cost ratios, 85
van Genuchten Michiel, 175
variance, 172, 219, 220

see also cost variance (CV); schedule variance (SV);
time variance (TV)

verifi cation, 313
verifi cation versus validation, 315
virtual teams, 280–281
vision statement, 39
voluntary users, 8

Index 397

warranty period, 247
waterfall model, 76–78, 87, 94, 96, 314, 351
Webb, Alan, 37n
weekly timesheets, 206n
Weinberg, G. M., 270n
Weinberg’s zeroth law of reliability, 101
Wood, Jane, 76n
word processing software, 374
Work Breakdown Structure (WBS), 130

hybrid, 131, 133
Work Packages, 134, 307, 331–332, 376

workfl ow, 131, 133
working hours, 114
World Trade Organization (WTO), 238
Wright, G., 162n
writes, 112–113, 194, 271

Yourdon, Edward, 259n

z values, 171–173n, 362
converting to probabilities, 172–173

Zawacki, A., 253n

	Cover

	Contents
	1. Introduction to Software Project Management
	1.1 Introduction
	1.2 Why is Software Project Management Important?
	1.3 What is a Project?
	1.4 Software Projects versus Other Types of Project
	1.5 Contract Management and Technical Project Management
	1.6 Activities Covered by Software Project Management
	1.7 Plans, Methods and Methodologies
	1.8 Some Ways of Categorizing Software Projects
	1.9 Stakeholders
	1.10 Setting Objectives
	1.11 The Business Case
	1.12 Project Success and Failure
	1.13 What is Management?
	1.14 Management Control
	1.15 Traditional versus Modern Project Management Practices
	Conclusion
	Annex 1 Contents List for a Project Plan
	Further Exercises

	2. Project Evaluation and Programme Management
	2.1 Introduction
	2.2 A Business Case
	2.3 Project Portfolio Management
	2.4 Evaluation of Individual Projects
	2.5 Cost–benefi t Evaluation Techniques
	2.6 Risk Evaluation
	2.7 Programme Management
	2.8 Managing the Allocation of Resources within Programmes
	2.9 Strategic Programme Management
	2.10 Creating a Programme
	2.11 Aids to Programme Management
	2.12 Some Reservations about Programme Management
	2.13 Benefi ts Management
	Conclusion
	Further Exercises

	3. An Overview of Project Planning
	3.1 Introduction to Step Wise Project Planning
	3.2 Step 0: Select Project
	3.3 Step 1: Identify Project Scope and Objectives
	3.4 Step 2: Identify Project Infrastructure
	3.5 Step 3: Analyse Project Characteristics
	3.6 Step 4: Identify Project Products and Activities
	3.7 Step 5: Estimate Effort for Each Activity
	3.8 Step 6: Identify Activity Risks
	3.9 Step 7: Allocate Resources
	3.10 Step 8: Review/Publicize Plan
	3.11 Steps 9 and 10: Execute Plan/Lower Levels of Planning
	Conclusion
	Further Exercises

	4. Selection of an Appropriate Project Approach
	4.1 Introduction
	4.2 Build or Buy?
	4.3 Choosing Methodologies and Technologies
	4.4 Software Processes and Process Models
	4.5 Choice of Process Models
	4.6 Structure versus Speed of Delivery
	4.7 The Waterfall Model
	4.8 The Spiral Model
	4.9 Software Prototyping
	4.10 Other Ways of Categorizing Prototypes
	4.11 Incremental Delivery
	4.12 Atern/Dynamic Systems Development Method
	4.13 Rapid Application Development
	4.14 Agile Methods
	4.15 Extreme Programming (XP)
	4.16 Scrum
	4.17 Managing Iterative Processes
	4.18 Selecting the Most Appropriate Process Model
	Conclusion
	Further Exercises

	5. Software Effort Estimation
	5.1 Introduction
	5.2 Where are Estimates Done?
	5.3 Problems with Over- and Under-Estimates
	5.4 The Basis for Software Estimating
	5.5 Software Effort Estimation Techniques
	5.6 Bottom-up Estimating
	5.7 The Top-down Approach and Parametric Models
	5.8 Expert Judgement
	5.9 Estimating by Analogy
	5.10 Albrecht Function Point Analysis
	5.11 Function Points Mark II
	5.12 COSMIC Full Function Points
	5.13 COCOMO II: A Parametric Productivity Model
	5.14 Cost Estimation
	5.15 Staffi ng Pattern
	5.16 Effect of Schedule Compression
	5.17 Capers Jones Estimating Rules of Thumb
	Conclusion
	Further Exercises

	6. Activity Planning
	6.1 Introduction
	6.2 The Objectives of Activity Planning
	6.3 When to Plan
	6.4 Project Schedules
	6.5 Projects and Activities
	6.6 Sequencing and Scheduling Activities
	6.7 Network Planning Models
	6.8 Formulating a Network Model
	6.9 Adding the Time Dimension
	6.10 The Forward Pass
	6.11 The Backward Pass
	6.12 Identifying the Critical Path
	6.13 Activity Float
	6.14 Shortening the Project Duration
	6.15 Identifying Critical Activities
	6.16 Activity-on-Arrow Networks
	Conclusion
	Further Exercises

	7. Risk Management
	7.1 Introduction
	7.2 Risk
	7.3 Categories of Risk
	7.4 A Framework for Dealing with Risk
	7.5 Risk Identifi cation
	7.6 Risk Assessment
	7.7 Risk Planning
	7.8 Risk Management
	7.9 Evaluating Risks to the Schedule
	7.10 Applying the PERT Technique
	7.11 Monte Carlo Simulation
	7.12 Critical Chain Concepts
	Conclusion
	Further Exercises

	8. Resource Allocation
	8.1 Introduction
	8.2 The Nature of Resources
	8.3 Identifying Resource Requirements
	8.4 Scheduling Resources
	8.5 Creating Critical Paths
	8.6 Counting the Cost
	8.7 Being Specifi c
	8.8 Publishing the Resource Schedule
	8.9 Cost Schedules
	8.10 The Scheduling Sequence
	Conclusion
	Further Exercises

	9. Monitoring and Control
	9.1 Introduction
	9.2 Creating the Framework
	9.3 Collecting the Data
	9.4 Review
	9.5 Project Termination Review
	9.6 Visualizing Progress
	9.7 Cost Monitoring
	9.8 Earned Value Analysis
	9.9 Prioritizing Monitoring
	9.10 Getting the Project Back to Target
	9.11 Change Control
	9.12 Software Confi guration Management (SCM)
	Conclusion
	Further Exercises

	10. Managing Contracts
	10.1 Introduction
	10.2 Types of Contract
	10.3 Stages in Contract Placement
	10.4 Typical Terms of a Contract
	10.5 Contract Management
	10.6 Acceptance
	Conclusion
	Further Exercises

	11. Managing People in Software Environments
	11.1 Introduction
	11.2 Understanding Behaviour
	11.3 Organizational Behaviour: A Background
	11.4 Selecting the Right Person for the Job
	11.5 Instruction in the Best Methods
	11.6 Motivation
	11.7 The Oldham–Hackman Job Characteristics Model
	11.8 Stress
	11.9 Health and Safety
	11.10 Some Ethical and Professional Concerns
	Conclusion
	Further Exercises

	12. Working in Teams
	12.1 Introduction
	12.2 Becoming a Team
	12.3 Decision Making
	12.4 Organization and Team Structures
	12.5 Coordination Dependencies
	12.6 Dispersed and Virtual Teams
	12.7 Communication Genres
	12.8 Communication Plans
	12.9 Leadership
	Conclusion
	Further Exercises

	13. Software Quality
	13.1 Introduction
	13.2 The Place of Software Quality in Project Planning
	13.3 The Importance of Software Quality
	13.4 Defi ning Software Quality
	13.5 ISO 9126
	13.6 Product and Process Metrics
	13.7 Product versus Process Quality Management
	13.8 Quality Management Systems
	13.9 Process Capability Models
	13.10 Techniques to Help Enhance Software Quality
	13.11 Testing
	13.12 Software Reliability
	13.13 Quality Plans
	Conclusion
	Further Exercises

	Appendix A Prince2—An Overview
	Appendix B Project Management Tools
	Appendix C Answer Pointers
	Further Reading
	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue true
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /FlateEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 18
 18
 18
 18
]
 /ConvertColors /NoConversion
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 1200
 /PresetName ([High Resolution])
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 18
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

