
Asymptotic Notation
• As step count is inconvenient method to compare two or more algorithms .so, we use

asymptotic notation.

• Asymptotic notation is the study of how the running time of an algorithm increases with the
size of the input in the limit, as the size of the input increases without bound.

• A convenient notation to represent the rate of growth of an algorithm is Asymptotic notation.

• There are 5 types of Asymptotic notation

➢Big Oh notation (O)
➢Big Omega notation (Ω)
➢Theta notation (θ)
➢Little Oh notation (o)
➢Little omega notation (ω)

2

Asymptotic notations (cont..)

The function f(n) = O(g(n)) (read as “f of n is Big oh of g of n”) iff (if and only if)
there exist positive constants c and no Such that f(n) < =c* g(n) for all n, n >= no

Big-Oh (O) notation

(or)

We can represent Big-oh as set representation

Example

Proof : Let 3n2+2n <= 4n2 and f(n) = 3n2+2n and c*g(n)= 4*n2 find n0

Let n0 = 2 then 3 * (4) + 2* 2 <= 4*4 => 16 <=16
 n0 = 3 then 3 * (9) + 2* 3 <= 4* 9 => 32 <=36

i.e., f(n) <= c*g(n) for all n0 >=2 . Therefore 3n2+2n = O(n2)

2. n4 + 100n2 + 10n + 50 is O(n4)

3. 10n3 + 2n2 is O(n3)

4. n3 - n2 is O(n3)

5. constants

➢ 10 is O(1)

➢ 1273 is O(1)

1. f(n)= 3n2+2n can be written as O(n2)

4

Asymptotic notations (cont..)

The function f(n) = (g(n)) (read as “f of n is omega of g of n”) iff (if and only if)
there exist positive constants c and no Such that 0 < =c* g(n) <=f(n)for all n, n >= no

Big-Omega () notation

(or)

We can represent Big-Omega() as set representation

5

Examples

• 5n2 = (n)

• 100n + 5 ≠ (n2)

• n = (2n), n3 = (n2), n = (logn)

 c, n0 such that: 0  cn  5n2  cn  5n2  c = 1 and n0 = 1

 c, n0 such that: 0  cn2  100n + 5

100n + 5  100n + 5n ( n  1) = 105n

cn2  105n n(cn – 105)  0

Since n is positive  cn – 105  0  n  105/c

 contradiction: n cannot be smaller than a constant

6

Asymptotic notations (cont.)

The function f(n) = (g(n)) (read as “f of n is Theta of g of n”) iff (if and only if) there

exist positive constants c1,c2, and no Such that 0 < =c1* g(n) <=f(n)<=c2*g(n)for all n,

n >= no

Theta () notation

(or)

We can represent Big- Theta() as set representation

The asymptotic upper bound provided by O-notation may or may not be asymptotically tight.

The bound 2n2=O(n2) is asymptotically tight, but the bound 2n=O(n2) is not.

Use o-notation to denote an upper bound that is not asymptotically tight.

f(n) becomes insignificant relative to g(n) as n approaches infinity; that is,

Small-oh (o) -notation

By analogy, ω-notation is to Ω-notation as o-notation is to O-notation.

ω-notation is used to denote a lower bound that is not asymptotically tight.

Small Omega (ω) -notation

9

Worst , Best and Average-case efficiencies
• Worst case

• Provides a upper bound on running time

• An absolute guarantee that the algorithm would not run longer, no matter what

the inputs are

• Best case

• Provides a lower bound on running time

• Input is the one for which the algorithm runs the fastest

• Average case

• Provides a prediction about the running time

• Assumes that the input is random

Lower Bound RunningTime Upper Bound 

O(1) < O(log n) < O(n) < O(n log n) < O(n2) < O(n3) < O(2n) < O(n!) < O(nn)

Different types of efficiency classes

Constant O(1)

Logarithm O(log n)

Linear O(n)

Linear Logarithm O(n *Log n)

Quadratic O(n2)

Cubic O(n3)

Exponential O(2n)

Factorial O(n!)

Exponential O(nn)

Order of growth of the functions

Basic Efficiency Classes

Properties of Asymptotic notation

1.

2.

3.

Contd..

Big-Oh (O) notation Theta () notationBig-Omega () notation

sum = 0;
for (i=1; i<=n; i++)
 sum += n;

sum = 0;
for (i=1; i<=n; i++) // First for loop
 for (j=1; j<=i; j++) // is a double loop
 sum++;
for (k=0; k<n; k++) // Second for loop
 A[k] = k;

Example 1

Example 2

Example 3

sum1 = 0;
for (k=1; k<=n; k*=2) // Do log n times

for (j=1; j<=n; j++) // Do n times
 sum1++;
sum2 = 0;
for (k=1; k<=n; k*=2) // Do log n times
 for (j=1; j<=k; j++) // Do k times
 sum2++;

Write the asymptotic notations for the following functions

1. f(n) = log n2 g(n) = log n +5

2. f(n) = sqrt(n) g(n) = log n2

3. f(n) = (log n)2 g(n) = log n

4. f(n) = n g(n) = log 2 n

5. f(n) = n log n + n g(n) = log n

6. f(n) = log n2 g(n) = (log n)2

7. f(n) = 2n g(n) = 10 n2

8. f(n) = 2n g(n) = n log n

9. f(n) = 2n g(n) = 3n

10. f(n) = 2n g(n) = nn

	Slide 1: Asymptotic Notation
	Slide 2: Asymptotic notations (cont..)
	Slide 3: Example
	Slide 4: Asymptotic notations (cont..)
	Slide 5: Examples
	Slide 6: Asymptotic notations (cont.)
	Slide 7
	Slide 8
	Slide 9: Worst , Best and Average-case efficiencies
	Slide 10
	Slide 11: Properties of Asymptotic notation
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18: Write the asymptotic notations for the following functions

