
Algorithm – Definition and Properties
Algorithm Definition: - An algorithm is a finite set of instructions that , if followed ,
accomplishes a particular task

Characteristics/properties of an algorithm:-
1. Input : - An algorithm has zero (0) or more inputs.
2. Output : - An algorithm must produce one (1) or more outputs.
3. Finiteness : - An algorithm must contain a finite number of steps.
4. Definiteness : - Each step of an algorithm must be clear and unambiguous.
5. Effectiveness : - An algorithm should be effective i.e., operations can be
 performed with the given inputs in a finite period of time by
 a person using paper and pencil

Example- Algorithm specification

1. Algorithm Max(A, n)

2. // A is an array of size n.

3. {

4 Result:=A[1];

5 for i :=2 to n do

6 if A[i] > Result then Result:=A[i];

7 return Result;

8 }

Fundamentals of Algorithmic problem solving

The following are the steps for solving the problem algorithmically
• Understanding the problem

• Ascertaining(knowing) the capabilities of the Computational devices

• Choosing between exact and Approximate problem solving

• Algorithm Design techniques

• Designing algorithm and data structures

• Methods of specifying an Algorithm

• Proving an Algorithm’s correctness

• Analyze an Algorithm

• Coding an Algorithm

Need of Understanding the problem

• Understand completely the problem given by reading the description

carefully and ask the questions of self .

• Some of the problems that arise in computing applications quite often are

known algorithms. If the problem in question is one of the known algorithm,

then use it to known its strengths and weakness.

Ascertaining(Knowing) the Capabilities of a Computational Device

• After understanding the problem, know the architecture of the computational

device (which is based on Von-Neumann architecture) . The essence will be

captured using random-access machine(RAM) , which executes instructions

one after another i.e., sequential.

• Sequential algorithms vs parallel algorithms(not suitable for RAM model)

Choosing between exact and Approximate problem solving
• There exists some important problems which cannot be solved exactly for

most of the instances. Example : square roots, solving non-linear equations,
and evaluating definite integrals.

• Solving the problem exactly can be unacceptably slow because of problem’s
intrinsic complexity.

Deciding on Appropriate Data Structures
• Algorithms + Data Structures = Programs

Algorithm Design Techniques
• Algorithm Design technique is a general approach to solving the problems

algorithmically that is applicable to a variety of problems from different areas of
computing

• The reasons for knowing these techniques are
• Provide guidance for designing algorithms for new problems.
• It is cornerstone of computer science

Analyzing an Algorithm

• Time efficiency and space efficiency

• Time efficiency indicate how fast the algorithm runs, where as space efficiency indicate
how much extra memory the algorithm needs.

Coding an Algorithm
• Implemented as computer programs

Methods of specifying an Algorithm
• Using the natural language for specifying the algorithm makes difficult because of

inherent ambiguity of the language.

• Pseudocode – a mixture of a natural language and programming language constructs.

• Flow chart – obsolete, because it is convenient to represent simple algorithm but not all.

Proving an Algorithm’s Correctness
• Use proof of correctness by observation but , it is simple for some algorithms like GCD ,

factorial and so on, for others it is quite complex

• Use Mathematical Induction.

Algorithm Design and Analysis Process

Understand the problem

Decide on:
Computational means,
Exact vs Approximation,
Algorithm design technique

Design an algorithm

Prove correctness

Analyze the algorithm

Code the algorithm

Why do we need to Analyze
Algorithms?

To pick the efficient algorithm among many algorithms(solutions) of the
problem.

What is Analyzing an Algorithm? Analyzing an algorithm means predicting the resources that the algorithm
requires . The resources are time and space.

Framework for Analyzing algorithms

Language used for specification

Natural language – difficult because of inherent ambiguity.

Pseudocode – A mixture of English language and programming language

Flowchart – obsolete . Easy for simple algorithms

Assumptions for Analyzing an
Algorithm?

Implementation model (for writing programs) :
Random Access machine (RAM) model that contains instructions and
data types like an ordinary computer , and instructions are executed
sequentially.

Methods of Analyzing
1. Apriori Estimates(performance Analysis)

2. Posteriori testing(performance Measurement).

Fundamentals of Analysis of Algorithm efficiency

Define the terms running time and input size
In general, the time taken by the algorithm grows with size of the input, so define running time as a function of
input size.

Input size

It depends on the problem. For example sorting- the input size is an
array size, for multiplying two integers – input size is the binary
representation of the integer, for graph problems – input size is nodes
and edges.

Running time
The running time of an algorithm on a particular input is the number
of primitive operations or “steps” executed.

Notion of step
A step is considered as machine-independent as possible (or) a line in

pseudocode.

How to find the number of steps of an
algorithm/pseudocode?

Use step count or frequency method .
It produces a function like 2n2+4n+100 or 4n3+10 ,which is
inconvenient for comparing the algorithms.
So, we estimate at what rate the algorithms grows with the increase of
input size, known as rate of growth or order of growth

Rate of growth or Order of growth
Considering only leading term(highest degree term) and dropping

constants and other terms , which are insignificant for large values of

input(n). i.e., for 2n2+4n+100 = n2 or 4n3+10 = n3

Asymptotic notation
Asymptotic notations provide a convenient way to represent the rate of

growth of an algorithm and compare them. (Big-Oh, Big-Omega, Big-

Theta, small-oh, small-omega)

Analysis of Algorithm
• The performance/efficiency of algorithms can be measured on the scales of time and space.

• The performance of a program is the amount of computer memory and time needed to run a
program. We use two approaches to determine the performance of a program.

 1) An analytical approach known as Apriori estimates (known as performance

 analysis)

 2) An experimental study known as a posteriori testing(known as performance

 measurement)

In a Apriori analysis we obtain a function (of some relevant parameters) which bounds the

algorithm's computing time.

In a posteriori testing we collect actual statistics about the algorithm's consumption of time

and space, while it is executing.(it is difficult to measure because , it contains actual running

time + other processing time of the system to be considered)

A Priori Analysis
• In a priori analysis we obtain a function (of some relevant parameters)

which bounds the algorithm's computing time.

• Uses count or frequency table method to find the order of magnitude of the
algorithm in a function of input.

Frequency method (or) step count:-

It denotes the number of times a statement to be executed.

Generally, count value will be given depending upon corresponding statements.

• For comments, declarations the frequency count is zero (0).

• For Assignments, return statements the frequency count is 1.

Using count variable method

Step count is 2n+3

Using frequency table method

Step count is 2n+3

Example -2
Statement s/e Frequency Total steps

Algorithm matrix_add(int a[][],int b[][])
{
 int i , j;
 int c[n][n];
 for i:=1 to n do
 {
 for j:=1 to n do
 {
 c[i][j] = a[i][j]+b[i][j];
 }
 }
}

Example -2
Statement s/e Frequency Total steps

Algorithm matrix_add(int a[][],int b[][])
{
 int i , j;
 int c[n][n];
 for i:=1 to n do
 {
 for j:=1 to n do
 {
 c[i][j] = a[i][j]+b[i][j];
 }
 }
}

0 - 0

0 - 0

0 - 0

0 - 0

1 n+1 n+1

0 - 0

1 n*(n+1) n*n+n

0 - 0

1 n * n n*n

0 - 0

0 - 0

0 - 0

Step count is 2n2 + 2n +1

Example -2

Statement s/e Frequency
Total
steps

Algorithm matrix_add(int a[][],int b[][]) {
 int i , j;
 int c[n][n];
 for(i= 0 ; i < n ; i++) {
 for (j =0; j < n ; j++) {
 c[i][j] = a[i][j]+b[i][j];
 }
 }

0 0 0

0 - 0

0 - 0

1 n+1 n+1

1 n*(n+1) n*(n+1)

1 n*n n*n

0 - 0

0 - 0

2n2+2n+1

Step count is 2n2+2n+1

Calculate the total number of steps using frequency method

statement s/e frequency Total steps

n=0 n > 0 n=0 n > 0

1. Algorithm RSum(a,n)
2. {
3. if(n<=0) then
4. return 0.0;
5. else
6. return Rsum(a,n-1)+a[n];
7. }

Calculate the total number of steps using frequency method

statement s/e frequency Total steps

n=0 n > 0 n=0 n > 0

1. Algorithm RSum(a,n)
2. {
3. if(n<=0) then
4. return 0.0;
5. else
6. return Rsum(a,n-1)+a[n];
7. }

0 - - 0 0

0 - - 0 0

1 1 1 1 1

1 1 0 1 0

0 - - 0 0

1 + x 0 1 0 1+x

0 - - 0

Total 2 2 + x

x= tRsum(n-1)

1. Algorithm Fibonacci(n)

2. // Compute the nth Fibonacci number.

3. {

4. if (n < 1) then

5. print(n);

6. else

7. {

8. fnm2=0;fnm1=0;

9. for i:=2 to n do

10. {

11. fn:=fnm1 + fnm2;

12. fnm2:= fnm1; fnm1=fn;

13. }

14. print(fn);

15. }

16.}

1. Algorithm Fibonacci(n)

2. // Compute the nth Fibonacci number.

3. {

4. if (n < 1) then

5. print(n);

6. else

7. {

8. fnm2=0;fnm1=0;

9. for i:=1 to n do

10. {

11. fn:=fnm1 + fnm2;

12. fnm2:= fnm1; fnm1=fn;

13. }

14. print(fn);

15. }

16.}

0 - - 0 0

0 - - 0 0

0 - - 0 0

1 1 1 1 1

1 1 0 1 0

0 - - 0 0

0 - 0 0

2 0 1 0 2

1 0 n+1 0 n+1

0 - - - 0

1 0 n 0 n

2 0 n 0 2n

0 - - - 0

1 0 1 0 1

0 - - 0 0

0 - - 0 0

s/ e n<=1 n>1 n<=1 n>1

If n>1
step
count:
4n+5

1. Algorithm Fibonacci(n)

2. // Compute the nth Fibonacci number.

3. {

4. if (n < 1) then

5. print(n);

6. else

7. {

8. fnm2=0;fnm1=0;

9. for i:=1 to n do

10. {

11. fn:=fnm1 + fnm2;

12. fnm2:= fnm1; fnm1=fn;

13. }

14. print(fn);

15. }

16.}

	Slide 1: Algorithm – Definition and Properties
	Slide 2: Example- Algorithm specification
	Slide 3: Fundamentals of Algorithmic problem solving
	Slide 4
	Slide 5
	Slide 6
	Slide 7: Algorithm Design and Analysis Process
	Slide 8: Fundamentals of Analysis of Algorithm efficiency
	Slide 9
	Slide 10: Analysis of Algorithm
	Slide 11: A Priori Analysis
	Slide 12: Using count variable method
	Slide 13: Using frequency table method
	Slide 14: Example -2
	Slide 15: Example -2
	Slide 16: Example -2
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

