Exception Handling

Errors that occur at program runtime can seriously interrupt the normal flow of a program. Some
common causes of errors are

» Division by 0, or values that are too large or small for a type

» No memory available for dynamic allocation.

» Error on file access, for example, file not found.

» Attempt to access an invalid address in main memory

» |Invalid user input

Traditional Error Handling

* Traditional structured programming languages use normal syntax to handle errors:
» errors in function calls are indicated by special return values.

» global error variables or flags are set when errors occur, and then checked again later.

* |f a function uses its return value to indicate errors, the return value must be examined whenever
the function is called, even if no error has occurred.

if(func()>0)
// Return value positive => o.k.

else
// Treat errors

* Error variables and flags must also be checked after every corresponding action.
* Need to continually check for errors while a program is executing, if not, the consequences may be

fatal.

Support for Error Handling in C

* CLanguage does not provide any specific feature for error handling. So, developers use normal
programming features to handle errors.

e Cstandard Library provides a collection of headers that can be used for handling errors in different
contexts.

* Language Feature

» Return value and parameters

» Local goto

Standard Library Support

» Global variables(<errno.h>)

» Abnormal termination (<stdlib.h>)

» Condiitional Termination (<assert.h>)
» Non-Local goto (<setjmp.h>)

» Signals (<signal.h>)

Error Handling in C using errno.h

#include<errno.h>
#include<math.h>
#include<stdio.h>
int main(){
double x,y,result;
scanf("%lf%If",&x,&y);
errno=0;
result=pow(x,y);
if(errno == EDOM) J/if base is=Ve'and expo is not integer
printf("Domain error on x/y pair\n");
else{
if(errno == ERANGE) //if fange of base is more than the double max
printf("range error in result\n");
else
printf("x to the y=%d\n",(int) result);
}

return O;

Support for Error Handling in C++

C++ introduces a new approach to error handling, known as Exception Handling.

Exception handling separates the detection and handling of exceptional flow from the normal flow
of the program.

The basic idea is that errors occurring in one particular part of the program are reported to
another part of the program, known as the calling environment. The calling environment performs
central error handling.

An application program no longer needs to continually check for errors, because in case of an
error, control is automatically transferred to the calling environment.

When reporting an error, specific information on the error cause can be added. This information is
evaluated by the error-handling routines in the calling environment.

Fundamentals of Exception Handling in C++

* Exceptions are conditions that arise infrequently and unexpectedly at run-time that might crash
the entire system or application.

* Types of Exceptions

d Asynchronous
v' Exceptions that come Unexpectedly
v' Example- an Interrupt in a program
v Takes control away from the Executing Thread context to a context that is different from that

which caused the Exception

[Synchronous
v" Planned Exceptions
v" Handled in an organized manner
v' Example- Exception implemented using throw statement.

* Features provided by C++ for Exception handling
s try block - which is used to guard the code that might raise an exception
s throw expression — generate an exception object and throw the object to handler

/

s catch block — it is an exception handler, which handles the exception (i.e., resolves) or re-throw

Guidelines for Exception Handling

A try block contains the program code in which errors can occur and exceptions can be thrown. Normally, a
try block will consist of a group of functions that can produce similar errors.

Each catch block defines an exception handler, where the exception declaration, which is enclosed in

parentheses, defines the type of exceptions the handler can catch. The catch blocks immediately follow the
try block. A minimum of one catch block is required.

try {

statement 1;
statement 2;
throw excj;

}

catch(Typel excl){ // Typel exceptions are handled here.}
catch (Type2 exc2){ // Type2 exceptions are handled here.}

catch (Typen excn){ // Typen exceptions are handled here.}
catch(...){

// All other exceptions are handled here.

Flow chart of Exception Handling in C++

Normal flow of Execution

No

Code in try block

Is Yes

Exception
W

o

Exceptional flow of Execution

,/' throw ExceptionObject(EO) | .
\
II ‘\
'I v \
1 \
! catch ([Typel Type2 TypeN) | No match
I v v \ 4 1 \ 4
\ | Execute Execute Execute ': terminate()
\| the catch the catch the catch | function is
\| statement statement statement |1 | called

"| the after the last catch block

Execute the first statement of /
o

'

(End of the program

Example: Divide-by-Zero Exception

with Exception handling

without Exception handling #include<iostream>
_ _ using namespace std;
#include<iostream> int main(){
using namespace std; double a.b.result:
int main(){ _ ’

double a.b.result: cout<<"Enter a and b values"<<endl;

cout<<"Enter a and b values"<<endl; cin>>a>>D;
cin>>a>>h; try{
result=a/b; 1f(b==0)
cout<<"a/b="<<result<<endl; throw (string)"divide by zero";
return O; result=a/b;
} outout: }cout<< a/b="<<result<<endl;
Enter a and b values
25 catch(string& s){
a/b=0.666667 cout<<s<<end|;
1
Enter a and b values Enter a and b values return O;
2 0 12 0 }

a/b=inf divide by zero

Example 1

#include <iostream>
using namespace std;

int main()
{ Output:
cout << "Start of main"<<end|;
try { // start a try block Start of main
cout << "Inside try block"<<endl; Inside try block

Caught an exception —— value is: 100
End of main

throw 100; // throw an error

cout << "This will not execute'<<end]l;
}
catch (int i) { // catch an error

cout << "Caught an exception -- value is: "<<i<<end]l;

}

cout << "End of main"<<endl;
return O;

Example 2

If the catch block can not match the type of argument ,then abnormal termination is happened by
calling terminate() function.

#include <iostream>

using namespace std;

int main()

{ Output:
cout << "Start of main"<<end|;
try{ //start a try block

NI RSO [e [SR{a"A o] [o]e SESY=Iole | I tcrminate called after throwing an instance of 'int'
throw 100; // throw an error
cout << "This will not execute'<<end]l;

Start of main
Inside try block

Catch does)f't
match the
exception thrown }

catch (double i) { // won't work for an int exception
cout << "Caught an exception -- value is: "<<i<<end];

}

cout << "End"<<end]l;
return O;

Example 3
An exception can be thrown from outside the try block as long as it is thrown by a function that is called from

within try block.
void func(int test)

{
cout << "Inside func, test is: " << test << "\n";
if(test)
throw test;
} Output:
int main() Start of main
{ Inside try block

Inside func, test is: 0

cout << "Start of main"<<endl;

try { // start a try block Inside func, test is: 1

cout << "Inside try block\n"; Caught an .exception —— value is: 1
End of main

func(0);

func(1);

func(2); // it is not executed

}

catch (int i) { // catch an error
cout << "Caught an exception -- value is: "<<i<<end|;

}

cout << "End of main"<<endl;
return O;

Example 4

A try block can be localized to a function, then for each time the function is entered, the exception
handling relative to that function is reset.

// Localize a try/catch to a function.

void func(int test)
{
try{
cout << "Inside func, test is: " << test << "\n";
if(test) throw test; Output:
h
catch (int i) { Start of main
cout << "Caught an exception -- value is: "<<i<<end]l; Inside func, test is: ©
! Inside func, test is: 1
Caught an exception —— value is: 1
} : Inside func, test is: 2
int ma1n() Caught an exception —— value is: 2
d End of main
cout << "Start of main"<<endl;
func(0);
func(1);
func(2);
cout << "End of main"<<end];
return 0;

Catching Class Types

* An exception can be of any type, including class types that you create.
* Inreal-world programs, most exceptions will be class types rather than built-in types.
* Define an exception class and create an object at throw expression

int main()
{
inti;
. try {
class MyExceptlon { cout << "Enter a positive number: ";
public: cin >> i
string emsg; i£(1<0)
int value;

throw MyException(" is Not Positive", i);
cout<<i<<" is positive"<<end];
}
catch (MyException e) { // catch an error
cout << e.value<< e.emsg << end];

MyException() { emsg="";value=0; }
MyException(string s1, inte) {
emsg=s1;
value = ¢;
}
¥ ;

return 0;
}

Enter a positive number: 6

Enter a positive number: -6
-6 is Not Positive

Output:
6 is positive

Multiple catch statements

void func(int test)

{

try{
if(test) throw test;

else throw "Value is zero";

}
catch(int i) {

cout << "Caught Exception #: " << i <<end]|;

Example 6

}
catch(const char *str) {
cout << "Caught a string: "<<str<<end|; Output:
}
Iy Start of main()
int main() Caught Exception #: 1
{ Caught Exception #: 2
cout << "Start of main()"<<end|; Caught a string: Value is zero
_ Caught Exception #: 3
func(1); :
End of main()
func(2);
func(0);
func(3);
cout << "End of main()"<<end]l;
return O;

Catching all Exception using single catch() statement

Example 7

void func(int test)

{

}

try{
if(test==0) throw test; // throw int

if(test==1) throw 'a'; // throw char
if(test==2) throw 123.23; // throw double
}
atch(...) { // catch all exceptions
cout << "Exception Caught "<<end]|;

}

int main()

{

cout << "Start of main()"<<end|;
func(0);

func(1);

func(2);

cout << "End of main()"<<endl;
return O;

Output:

Start of main()
Exception Caught

Exception Caught
Exception Caught
End of main()

Restricting Exceptions or Specifying exceptions

* You can restrict or specify the type of exceptions that a function can throw outside of itself.
* To accomplish these restrictions, you must add a throw clause to a function definition.
* The general form of this is shown here:

ret-type func-name(arg-list) throw(type-list)

{
}

/ This function can only throw ints, chars, and doubles.
void func(int test) throw(int, char, double)
{

if(test==0) throw test; // throw int

if(test==1) throw 'a’; // throw char

if(test==2) throw 123.23; // throw double

}

// .

Example 8

int main()
// This function can only throw ints, chars, and doubles. {
void func(int test) throw(int, char, double) COl;t << "start of main()"<<end|;
try
{ func(0);

if(test==0) throw test; // throw int

}

if(test==1) throw 'a'; // throw char
if(test==2) throw 123.23; // throw double

}

try{ try{ try{
func(0); func(1); func(2);

start of main()
Caught an integer

start of main() start of main()
Caught char Caught double

end of main() el @7 e end of main()

catch(int i) {

cout << "Caught an integer'<<endl;
}
catch(char c) {

cout << "Caught char'<<endl;
}
catch(double d) {

cout << "Caught double"<<endl;
}
cout << "end of main()"<<end]l;
return O;

Rethrowing an Exception

Rethrowing an Exception can be done by
calling throw with no exception.
Rethrow can be done from only catch
block , which can be handled by outer
try/catch sequence.

Start of main
Caught char * inside func

Caught char * inside main
End of main

#include <iostream>
using namespace std;
void func()

{
try {

throw "hello"; // throw a char *
}
gcatch(const char *) {// catch a char *
cout << "Caught char * inside func\n";
throw ; // rethrow char * out of function

}

}
int main()
{

cout << "Start of main“<<endl;

try{
func();

}
catch(const char *) {
cout << "Caught char * inside main\n";
}
cout << "End of main”<<end|";
return O;

Exception stages

Error Incidence

* Synchronous (S/W) logical error
* Asynchronous (H/W) Interrupt(s/w Interrupt)

Create Object and Raise Exception
* Create an Exception object which can be of pre-defined data type or user-defined classes.

Detect Exception

* Polling — software tests
* Notification — Control stack adjustments

Handle Exception
* lIgnore : do not catch
* Act: catch,handle,and re-throw
* Own: catch and handle

Recover from Exception
* Continue Execution: If handled inside the program
* Abort Execution : If handled outside the program

Error Handling in C using errno.h

#include<errno.h>
#include<math.h>
#include<stdio.h>
int main(){
double x,y,result;
scanf("%If%If",&x,&y);
errno=0;

result=pow(x,y);

if(errno == EDOM) [/ if base is —ve and expo is not integer
printf("Domain error on x/y pair\n");
else{
if(errno == ERANGE)
printf("range error in result\n");
else
printf("x to the y=%d\n",(int) result);
}

return O;

Catching all Exception

using single catch() statement

Example 7

{

A

void func(int test)

try{
if(test==0) throw test; // throw int

if(test==1) throw 'a'; // throw char
— if(test==2) throw 123.23; // throw double

}

catch(...) { // catch all exceptions
cout << "Exception Caught "<<end]|;

}

t main()

cout << "Start of main()"<<end|;

func(0);

func(1);

func(2);

cout << "End of main()"<<endl;
return O;

Output:

Start of main()
Exception Caught

Exception Caught
Exception Caught
End of main()

	Slide 1: Exception Handling
	Slide 2: Traditional Error Handling
	Slide 3: Support for Error Handling in C
	Slide 4
	Slide 5: Support for Error Handling in C++
	Slide 6: Fundamentals of Exception Handling in C++
	Slide 7: Guidelines for Exception Handling
	Slide 8
	Slide 9: Example: Divide-by-Zero Exception
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17: Restricting Exceptions or Specifying exceptions
	Slide 18
	Slide 19: Rethrowing an Exception
	Slide 20: Exception stages
	Slide 21
	Slide 22

