
Pointers
• Pointers are used to store the address of an data object.

• Pointers are used to avoid unnecessary copies when passing an arguments to functions.

• Pointer are used to support dynamic memory management.(allocating memory at run-time).

Syntax for defining the pointer

 datatype *ptr_name;

Type of pointer Description

int *ptr ; A pointer which is declared but not defined is known as wild pointer

int *ptr=NULL; A pointer which is declared and initialized to Null is known as Null Pointer

void *ptr;

A pointer whose data type is not specified is known as void pointer (or) generic pointer

int a=10
ptr=&a;
int a1=*(int*)ptr

float b=2.34f;
ptr=&b;
float b1=*(float*)ptr

char ch=‘x’;
ptr=&ch;
char ch1=*(char*)ptrr;

Declaration Description

int *ptr ; ptr is pointing to an integer variable i.e., it holds the address of integer variable

char *ptr ; ptr is pointing to character variable

struct student{
 int rno;
 char name[30];
};
 struct student *ptr;

ptr is pointing to student variable which is an user-defined data types
Accessing members using pointer:
 struct student s;
 ptr=&s;
 ptr->rno; (or) (*ptr).rno;
 ptr->name; (or) (*ptr).name;

class student{
 int rno;
 string name;
};
 student *ptr;

ptr is pointing to student objects.
Accessing members using pointer:
 student s;
 ptr=&s;
 ptr->rno; (or) (*ptr).rno;
 ptr->name; (or) (*ptr).name;

Type Casting
Converting one type of object to another type of object is known as type casting. It can be done
in two ways : implicit and explicit type casting.

Implicit type casting Explicit type casting(using (type) operator)

Pre-defined data type bool -> char -> short int -> int -
> unsigned int -> long ->
unsigned -> long long -> float ->
double -> long double

double a=2.34;
int b=(int) a;

User-defined data type
(classes)
: unrelated classes
class A {
 public: int a;
};
class B {
 public: int b;
};

No Implicit type casting A aobj;
B bobj;
aobj.a=10;
Bobj.b=20;
A *pa=&aobj;
B *pb=&bobj;
cout<<“ a value= “<< pa->a<<endl; //ok
cout<<“ bvalue= “<< pb->b<<endl; //ok

pa=(A*)&bobj; // forced casting
pb=(B*)&aobj; // forced casting
cout<<“ a value= “<< pa->a<<endl; //prints garbage
cout<<“ bvalue= “<< pb->b<<endl; //prints garbage

Type casting

User-defined data type (classes)
: related classes (inheritance hierarchy)

class A {
 public: int a;
};
class B: public A {
 public: int b;
};

A aobj;
B bobj;

aobj.a=10;
bobj.a=15;
bobj.b=20;

A *pa=&aobj; // pointer to base
B *pb=&bobj; // pointer to derived class

cout << pa->a<<endl; //ok prints 10
cout << pb->a << pb->b << endl; //ok prints 15 and 20

pa=&bobj; // upcasting
cout << pa->a<<endl; // prints 10
cout<<pa->b<<endl; //error- class A doesn’t know the class B members

pb= (B*)&aobj; // downcasting- forced casting
cout << pb->a<<endl; // ok prints 15;
cout<< pb->b<<endl; // ok but prints garbage value

Binding
Attaching the function definition to a function call is known as Binding.

• Static binding (early binding)

• Dynamic binding(late binding)

Type of a Object
• The static type of the object is the type declared for the object while writing the code.
• The dynamic type of the object is determined by the type of the object to which it refers at run-

time.
Class A { };
Class B: public A {};
int main(){
 A *p; // static type of p is A
 p= new B // dynamic type of p is B
}

Static and Dynamic Binding

• Static binding(early binding): when a function invocation binds to the function definition based on the
static type of objects.
➢ Done at compile-time
➢ Examples: Normal function calls, overloaded function calls, and overloaded operators.

Static binding Dynamic Binding

Time of Event occurred Compile-time Run-time

Information All the information needed to call a
function must be known at compile-time

All the information needed to
call a function is known at
compile-time

Advantage Efficiency Flexibility

Time Fast Execution Slow execution

Actual object Actual object is not used for binding Actual object is used for binding

• Dynamic binding(late binding) : When a function invocation binds to the function definition based on
the dynamic type of objects
➢ Done at run-time.
➢ Examples: Function pointers , and virtual functions

Virtual functions
• Virtual function is a member function that can be redefined in other derived classes.

• Compiler ensures that calling of function definition is done based on the type of the object not
the type of the pointer or reference.

• A class that inherits a virtual function is called a polymorphic class.

#include <iostream>
using namespace std;
class A {
 public: void f() { cout << "Class A" << endl; }
};
class B: public A {
 public: void f() { cout << "Class B" << endl; }
};
void g(A& arg) {
 arg.f();
}
int main() {
 B x;
 g(x);
 return 0;
}

#include <iostream>
using namespace std;
class A {
 public: virtual void f() { cout << "Class A" << endl; }
};
class B: public A {
 public: void f() { cout << "Class B" << endl; }
};
void g(A& arg) {
 arg.f();
}
int main() {
 B x;
 g(x);
 return 0;
}

Output
 class A

Output
 class B

class B {
 public:
 void f(){
 cout<<"B::f()"<<endl;
 }

virtual void g() {
 cout<<"B::g()"<<endl;
 }
};
class D : public B {
 public:
 void f() {
 cout<<"D::f()"<<endl;
 }
 void g() {
 cout<<"D::g()"<<endl;
 }
};

int main(){
 B b;
 D d;
 B *pb=&b;
 B *pd=&d;

 B &rb=b;
 B &rd=d;

 b.f();
 b.g();
 d.f();
 d.g();

 pb->f();
 pb->g();
 pd->f();
 pd->g();

 rb.f();
 rb.g();
 rd.f();
 rd.g();
 return 0;
}

Base class pointer can hold the
address of derived class objects.

Static binding

Dynamic binding
Static binding
Dynamic binding

Static binding

Dynamic binding
Static binding
Dynamic binding

We can create an alias to derived
classes using base class reference.

Example: Static vs Dynamic binding

class A {
 public:

virtual void f() {
 cout<<“A::f()"<<endl;
 }
};
class B: public A {
 public:
 void f(int x) {
 cout<<“B::f(int)"<<endl;
 }
};
class C: public B {

public:
 void f() {
 cout<<“C::f()”<<endl;
 }

};

int main() {
 B bobj;
 C cobj;
 A* pa1=&bobj;
 A* pa2=&cobj;
// bobj.f();
 pa1->f();
 pa2->f();
 return 0;

}

Example : Overloaded functions in inheritance

It is not a virtual function
but, it hides A::f()

B::f is not virtual function, it hides
A::f().So, compiler will not allow the
function call bobj.f().

It is a virtual function

Abstract Class
• If a base class contains at least one pure virtual function then it is called Abstract class.
• A virtual function whose method signature is initialized to zero(=0) is known pure virtual function.
 class A {
 public:
 void h(){….}; // non-virtual function
 virtual void f() { ..…} ; // virtual function
 virtual void g() = 0; // pure virtual function
 };
• Abstract class Instantiation(creating an object) is not possible.

class A{
 public: virtual void f()=0;
};
class B:public A{
 public:
 void f() {cout<<B::f()”<<endl;}
 void g(){cout<<"B::g()"<<endl;}
 };
int main(){
 B bobj;
 bobj.f(); bobj.g();
 return 0;
}

Class A is Abstract class

pure virtual function must be
overridded in derived class.
Otherwise, derived class will
become Abstract class

class Shapes{
public : virtual void draw()=0;

};
class Polygon:public Shapes{
 public : void draw() { cout<<"drawing using triangulation..."<<endl;}
};
class ClosedConics:public Shapes{
};
class Triange:public Polygon{
 public: void draw(){ cout<<"triangle: draw by lines"<<endl;}
};
class Quadrilateral: public Polygon{
 public: void draw(){ cout<<"quadrilateral: draw by lines"<<endl;};
};
class Circle:public ClosedConics{
 public: void draw(){cout<<“Circel: draw by breshenham's algorithm"<<endl;}
};
class Ellipse:public ClosedConics{
 public: void draw(){ cout<<"ellipse: draw by "<<endl;}
};

int main(){
 Shapes* s[]={new Triange,
 new Quadrilateral,
 new Circle,
 new Ellipse};
 for(int i=0;i<sizeof(s)/sizeof(Shapes*);i++)
 s[i]->draw();
 return 0;
}

Example: Abstract class

	Slide 1: Pointers
	Slide 2
	Slide 3: Type Casting
	Slide 4
	Slide 5: Binding
	Slide 6: Static and Dynamic Binding
	Slide 7: Virtual functions
	Slide 8
	Slide 9
	Slide 10: Abstract Class
	Slide 11

