UNIT-5

SYLLABUS

Code Generation: -

Basic Blocks and Flow Graphs-Basic Blocks, Next use Information, Flow
Graphs, Representation of Flow Graph, Loops.

Optimization of Basic Blocks:

The DAG representation of basic blocks —Finding Local common
subexpressions — Dead code elimination — The use of Algebraic Identities -
Machine independent code optimization -Principle sources of
Optimization- Causes of Redundancy, Running example: Quick Sort,
Semantic Preserving transformations, Global common sub expressions,
copy propagation, dead code elimination, code motion, induction
variables, and reduction in strength.

Machine dependent code optimization:

Peephole optimization: Eliminating redundant loads and stores —
Eliminating Unreachable code — Flow-of-control optimizations — Algebraic
simplification and Reduction in strength - Use of Machine idioms

Register allocation: Global Register Allocation

7/31/2023

THREE ADDRESS CODE

A graph representation of intermediate code that is helpful for
code generation.

We can do a better job of register allocation if we know how
values are defined and used.

We can do a better job of instruction selection by looking at
sequences of three-address statements.

Transformations on flow graphs that turn the original
intermediate code into optimized code from which better target
code can be generated.

The optimized code is turned into machine code using the code
generation technique.

7/31/2023

7/31/2023

BASIC BLOCKS

* First job is to partition the three address code instructions
into basic blocks.

* We begin a new basic block with the first instruction and keep
adding instructions until we meet either a jump or a
conditional jump and labels, control proceeds sequentially
from one instruction to the next.

Basic Blocks construction

Algorithm 8.5: Partitioning three-address instructions into basic blocks.
INPUT: A sequence of three-address instructions.

OUTPUT: A list of the basic blocks for that sequence in which each instruction
is assigned to exactly one basic block.

METHOD: First, we determine those instructions in the intermediate code that
are leaders, that is, the first instructions in some basic block. The instruction
just past the end of the intermediate program is not included as a leader. The
rules for finding leaders are:

1. The first three-address instruction in the intermediate code is a leader.
2. Any instruction that is the target of a conditional or unconditional jump

is a leader.

3. Any instruction that immediately follows a conditional or unconditional
jump is a leader.

Then, for each leader, its basic block consists of itself and all instructions up to
but not including the next leader or the end of the intermediate program. O

for i from 1 to 10 do

for j from 1 to 10 1) i=1
ali, j] = 0.0;) i1
for ¢ from 1 to 10 do 3 tl=10+%1
aft,i] = 1.0; 4 12=11+]
5 t3=8xt2
Source code 6) 4=13-88
7) altd] = 0.0
§ jej+t
is= «— leader S
D jei « leader 9) it § <= 10 goto (3)
3) t1=10%4i «— leader 1’0}121.,1
4) t2=t1+j .
5) t3eget2 11) if i <= 10 goto (2)
6G) t4=t3 - v
7; a:u] . u.za 1) i=1
m_7|-7301 13) th=i-1
he et Ml B N 14) t6 = 88 ¥ 15
:;: :f=11<- 10 goto (2) i 15) afté] = 1.0
13) t5=d-1 <« leader 16) i=i+1
o e 17) if i < 10 goto (13)
16) i=41i+1

) 17) if i <= 10 goto (13) -
Figure 8.7: Intermediate code to set a 10 x 10 matrix to an identity matrix

Basic Blocks and Flow Graphs

The representation is constructed as follows:

1. Partition the intermediate code into basic blocks, which are maximal se-
quences of consecutive three-address instructions with the properties that

(a) The flow of control can only enter the basic block through the first
instruction in the block. That is, there are no jumps into the middle
of the block.

(b) Control will leave the block without halting or branching, except
possibly at the last instruction in the block.

2. The basic blocks become the nodes of a flow graph, whose edges indicate
which blocks can follow which other blocks.

7/31/2023

FLOW GRAPHS

Each basic block is a node i the How grapk.

There is an edqe between blocks B and C of the flow
graph if:

L there is o (conditional or unconditional) jump
from from the end of B to the start of C, or

2.C immediately follows B and B does not end with
an unconditional jump.

TERMINOLOGY

® B is a predecessor of C

o C is a successor of B

7/31/2023

* The Basic block of each leader contains all the
instructions from itself until just before the

next leader
61 it

YRS
B3 [t1 = 10 + s

7/31/2023

d |dentifying leaders

* (1) is the beginning — hence leader
* (3) is the target of a jump — hence leader
—Lines (1) and (2) is a basic block

» Statement following (12) is a leader
— Statements (3) to (12) is another basic block

B1 is the
predecessor
of B2 and B2
is the by
successor of
Bl

7/31/2023

Next-Use Information.

* Knowing when the value of a variable will be used next is
essential for generating good code.

* If the value of a variable that is currently in a register will
never be referenced subsequently, then that register can be
assigned to another variable.

* The use of a name in a three-address statement is defined as
follows.

* Suppose three-address statement i assigns a value to x.

* If statement j has x as an operand, and control can flow from
statement i to j along a path that has no intervening
assignments to x, then we say statement j uses the value of x
computed at statement i.

* We further say that x is live at statement i.

assuming there
are Ko assigiments

to x between i and j

vee = K OF ses

Skabement | uses x, and x is live at L.

7/31/2023

7/31/2023

Algorithm for live-ness and next use information

Determining the Liveness and next-use information for each
statement in a basic block,

INPUT: A basic block B of three address instructions. Assume
the Sjmboi. table ihi&iod.tv shows all hoh-temporary variables
in B as being Live on exit,

QUTPUT: At ecach statement i: x = y+zinB we attach to i the
liveness and next-use information for x, y, and 2.

METHOD: We start ot the last statement in B and scan
backwards to the beqginning of B, At each statement i: x = Y 4
z in B do the following:
1) attach to statement i the information currently
found in the Sjmbot table regarding the next-use and
Lliveness of x, Y and z,
2) In the symbol table, set x to "not live" and "no next
use"”,
3) In the Sjmbol table, set Y and z to "live" and the
next uses of y and z ko instruction L.

LOOPS

Programming-language constructs like while-statements, do-while-statements,
and for-statements naturally give rise to loops in programs. Since virtually every
program spends most of its time in executing its loops, it is especially important
for a compiler to generate good code for loops. Many code transformations
depend upon the identification of “loops” in a flow graph. We say that a set of
nodes L in a flow graph is a loop if

1. There is a node in L called the loop entry with the property that no other
node in L has a predecessor outside L. That is, every path from the entry
of the entire flow graph to any node in L goes through the loop entry.

2. Every node in L has a nonempty path, completely within L, to the entry
of L.
1. Bj by itself.
2. Bg by itself.

3. {BZ: -83: B'l}-

7/31/2023

10

The first two are single nodes with an edge to the node itself. For instance,
B; forms a loop with Bs as its entry. Note that the second requirement for a
loop is that there be a nonempty path from Bj to itself. Thus, a single node
like B2, which does not have an edge By —+ B, is not a loop, since there is no
nonempty path from Bs to itself within {Bs}.

The third loop, L = { By, B3, By}, has B; as its loop entry. Note that among
these three nodes, only Bs has a predecessor, By, that is not in L. Further, each
of the three nodes has a nonempty path to B staying within L. For instance,
B> has the pa.th By + By —+ By —+Bs. O

=3 T
-
-

[i=2" . 7 sl

|1:-i —e
|

T2 = t1 +

Deevv P

= el o

Code Optimization

* Elimination of unnecessary instructions in object code, or the replacement of one sequence of
instructions by a faster sequence of instructions that does the same thing is usually called
“code improvement” or “code optimization”,

¢ Types of optimization

* |:Machine independent optimization

¢ 2:Machine dependent optimization

o Machine independent optimization:

¢ The process of optimizing intermediate code instruction is called as machine independent
optimization

* Types of machine independent optimization

* | .Local optimization :optimization within cach basic block by itself

¢ 2.Global optimization : how information flows among the basic blocks of a program.

¢ |.Local optimization

* Local Common Subexpressions elimination

¢+ Dead Code Elimination

¢ The Algebraic Optimization

i

7/31/2023

11

OPTIMIZATION OF BASIC BLOCKS

* Optimization of Basic Blocks:

Structure Preserving Transformation:
— The DAG representation of basic blocks
— Finding Local common sub expressions
— Dead code elimination

Algebraic transformations
— The use of Algebraic Identities
— Strength Reduction
— Constant folding

* A substantial improvement in the running time of
code can be performed by local optimization within

each block .

* More thorough global optimization which deals with
how information flows among the basic blocks of a

program

7/31/2023

12

7/31/2023

The DAG Representation of Basic Blocks

We construct a DAG for a basic block as follows

13

The DAG representation of a basic block lets us perform several code-
improving transformations on the code represented by the block.

a) We can eliminate local common subezpressions, that is, instructions that
compute a value that has already been computed.

b) We can climinate dead code, that is, instructions that compute a value
that is never used.

¢) We can reorder statements that do not depend on one another; such
reordering may reduce the time a temporary value needs to be preserved
in a register.

d) We can apply algebraic laws to reorder operands of three-address instrue-
tions, and sometimes thereby simplify the computation.

1. Finding Local Common Sub

expressions
a=b+c
b a-4d
c=b+c
d =& =
a=b+c b.d
d=a-4d . do
c=d+ c
bo Co

7/31/2023

14

0 T

I
o oo
+ 1
n R QRO

2. Dead code elimination

® The code having ‘no next use’ or ‘not live’ are dead code
* Ex: x=a*b

x=a*bhb

¢ X is dead code
s After removal of dead code
y=a+c
o z=y+d
z=y +d
+ *x” have ‘no next use’ or ‘not live’ Z
d
y <
L d

7/31/2023

15

e Ex 2:

if(1)
Print(“TOC”);
else
print(“TC");

Ex 3:

3. Reordering of statements

7/31/2023

16

Renaming of temporary variables

Algebraic Transformations

1.Algebraic identities, another important class of optimizations on basic blocks. arithmetic
identities, such as Xx+0=0+x=x, x-0=x

x*¥l=1*x=x, x/1=x
2.Strength reduction , replacing a more expensive operator by a cheaper one.
EXPENSIVE ~ CHEAPER

x? = k%
2*%x = X+ x
%2 = x*0D.5

3.Constant folding .Here we evaluate constant expressions at compile time and replace the

Vi

for(i=0;i<=n;i++)
{
X=2*3+y -> X=6+y

}

7/31/2023

17

_ 4.algebraic Simplification, Apply a'lgebraic transformations such as commutativity and
associativity

Ex1l: a=b+c -
t=c+d mmp : 2 - :: ;
e=t+b
If t is not needed outside this block, we can change this sequence to
* e=t+b Bx 2ix "y-x %= x *{y-2)
—c+d+b Ex 3: y=x+a
Z=y-a
=c+b+d w=z"b
Backward substitution
=b+c+d w=z*b =(y-a)*b= (x+a-a)*b=x*b
=a+d w=x*b
5.Copy Propagation ,coping constant or variable from one statement to other .
Ex 1l: x=2
y=x'b

Representation of Array References

The proper way to represent array in a DAG is as follows.

1. x = a[i], is represented by creating a node with operator =[] and two children a,
and index i. Variable x becomes a label of this new node.

2.a[j] =y, is represented by a new node with operator []= and three children
representing a, j and y. There is no variable labeling this node.

What is different is that the creation of this node kills all currently constructed nodes
whose value depends on a.

A node that has been killed cannot receive any more labels; that is, it cannot become
a common subexpression. 2D

Ex 1:The DAG for the basic block o

; ille — /
x = ali] x o Ll
afi]=y \}6 >

z=a[i] " i]- y

The node N for x is created first, but when the node labeled []= is
created, N 1s killed.

Thus, when the node for z is created, it cannot be identified with N, and
a new node with the same operands a and i must be created instead.

7/31/2023

18

Ex 2:The DAG for the basic block [
B
= Al
bl] = b3 -
1
12 a

A node can kill if it has a descendant that is an array.

[f j and 1 represent the same value , then b[1] and b[j] represent the same location.
Therefore it is important to have the third instruction, b[j] =y, kill the node with x as
its attached variable.

However, as both the killed node and the node that does the killing have a as a
grandchild, not as a child.

Ex 3: C Tl=

. =2
t5=i=1 oy —~
t6 = 88 * t5 a [6@ 1.0 Q
a[t6] = 1.0 o} -
i=1+] 88 B MY 10 B

if 1 <= 10 goto B

7/31/2023

19

* Machine independent code optimization -
Principle sources of Optimization- Causes of
Redundancy, Running example: Quick Sort,
Semantic Preserving transformations, Global
common sub expressions, copy propagation,
dead code elimination, code motion,
induction variables, and reduction in strength.

Code optimization

+ Elimination of unnecessary instructions

« Replacement of one sequence of instructions by a faster sequence of
instructions

 Local optimization
* Global optimizations

— based on data flow analyses

Most global optimizations are based on data-flow analyses, which are algo-
rithms to gather information about a program. The results of data-flow analyses
all have the same form: for each instruction in the program, they specify some
property that must hold every time that instruction is executed. The analyses
differ in the properties they compute.

7/31/2023

20

7/31/2023

Principle sources of Optimization

* A compiler optimization must preserve the semantics of the
original program.

* once a programmer chooses and implements a particular
algorithm, the compiler cannot understand enough about the
program to replace it with a substantially different and more
efficient algorithm.

* A compiler knows only how to apply relatively low-level
semantic transformations, using general facts such as
algebraic identities like i + 0 = j or program semantics such as
the fact that performing the same operation on the same
values yields the same result.

Causes of redundancy

Redundant operations are
— at the source level

— aside effect of having written the program in a high-level languace

Each of high-level data-structure accesses expands into a number of
low-level arithmetic operations

Programmers are not aware of these low-level operations and cannot
eliminate the redundancies themselves.

By having a compiler eliminate the redundancies

— The programs are both efficient and easy to maintain

21

A Running Example: Quicksort

void quicksort(int m, int n)
/* recursively sorts alm] through a[n] */

{
int i, j;
int v; x;
if (n <= m) return;
/* fragment begins here */
i=m-1; j =n; v = alnl;
while (1) {
do i = i+1; while (a[i] < v);
do j = j-1; while (a[j] > v);
if (i >= j) break;
x = alil; alil = al[jl; aljl = x; /* swap a[il, alj] */
}
x = alil; alil = aln]; aln] = x; /* swap alil, a[n] */
/* fragment ends here */
quicksort(m,j); quicksort(i+i,n);
¥
(1) i=m-1 (18) t7 = 4x%i
(2 Jj=n (17) t8 = 4xj
(3) tl = 4*n (18) t9 = a[t8]
(4) v = a[ti] (19) alt7] = t9
(8) i=1i#1 (20) t10 = 4xj
(8) t2 = 4xi (21) alt10] = x
(7) t3 = al[t2] (22) goto (B)
(8) if t3<v goto (5) (23) t11 = 4=%i
(9 j=3j-1 (24) x = a[t11]
(10) t4d = 4%j (25) t12 = 4%j
(11) ts = a[t4] (26) t13 = 4
(12) if t5>v goto (9) (27 t14 = a[t13]
(13) if i>=j goto (23) (28) alt12] = t14
(14) t6 = 4%i (29) t15 = 4%n
(15) x = al[t6] (30) alt15] = x

Figure 9.2: Three-address code for fragment in Fig. 9.1

7/31/2023

22

Notice that every array access in the original program
translates into a pair of steps, consisting of a multiplication and an array-
subscripting operation. As a result, this short program fragment translates
into a rather long sequence of three-address operations.

* X=a[i]
— T6=4*i
— X=a[t6]
* Alj]=x
T10=4%*]
A[t10]=x

Semantics-Preserving Transformations

A number of ways in which a compiler can improve a program without
changing the function it computes
— Common-sub expression elimination
— Copy propagation
— Dead-code elimination
— Constant folding

7/31/2023

23

Common Subexpressions

« Common subexpression
— Previously computed

— The values of the variables not changed

» Local:
th = 4%j B th = 4*i B
x = a[té] x = a[t6] i
L7 w 44§ t8 = 4*j
B = 4*j [t9 = a[t8]
t9 = a[t8] a[tE] = 9
a[t7?] = t9 | aft8) = x |
t10 = 4*j5 goto B, |
a[tlo] = x B A
goto B, |
(a) Before. (b} After.
B,
+ Global 7
f y 2.
(t2 = 4*i -
\ t3 = a[t2)
if ti<v goto #,
j = 31 B
'/ﬁlia -Jno-t ‘
\ 't5 = ajtd]
\ if tS5ev qohuﬂj
l; i>=j qotol?d B,
\T —
- .
M. %
t6 = 4%i B, |t11 = 4i ®s
_ E |x = aft11]
| ’:ﬂ ’ifs,] 12 = 4+i
=21 t13 = 4*n
| |9 = a[t8) tld = a[tll3)
a[te] = t9 .:|1212|‘- t14
= 4*n
\ F”ts] =5 a[tls] = x
\ |goto B, g ——
i

7/31/2023

24

t3 = a[t2]

"‘\x if ti<v goto B,
~ A J__ ;

1

{ 1313 By
| | t4 = 4]

&5 = a[td)
\\ if t5>v goto B

. ,—-——|

it i>=j§ gotoh‘nw B,
/ -”'_

.
-

- B
r_L_ .S -
|z =t3 B, F: = t3 | B
| aft2] = ¢5 t14 = atl)|

\ | artd) = x a[t2] = tl14

\ | gote B, | | a[el] = x :

N —_— —_ |

—

"2.Copy Propagation

¢ Assignments of the form u = v called copy statements, or copies for short.
copy-propagation transformation is to use v for u.

» Block Bs after copy propagation

e x=1t3 e x=13
o a[t2]=1t5 e at2] =15
* a[t4]=x . 4] =03
* goto B2 ¢ goto B,
[a d+eJ |b= d+el t = dte t=d+eE
=t | |b=t |

=

(a)

Figure 9.6: Copies introduced during common subexpression elimination

(b

7/31/2023

25

3.Dead-Code Elimination

-

A variable is /ive at a point in a program if its value can be used subsequently; otherwise, it is
dead or no next use at that point.
A dead (or useless) code statements compute values that never get used.
Ex: if (debug) print ...

debug = FALSE
If copy propagation replaces debug by FALSE, then the print statement is dead because it
cannot be reached.

One advantage of copy propagation is that it often turns the copy state-
ment info dead code. For example, copy propagation followed by dead-code

elimination removes the assignment to z and transforms the code
into

x=13

s xX=1(3 alt2] = t5
a[t2] =15 e af2] =15 a[t4] = t3
a[t4] = x e a[d]=13
w2 & R, goto By

4,Code Motion

L]

Loops are a very important place for optimizations, especially the inner loops where programs
tend to spend the bulk of their time.

The running time of a program may be improved if we decrease the number of instructions in
an inner loop, even if we increase the amount of code outside that loop.

Modification that decreases the amount of code in a loop is code motion.

Ex1: o (= limit-2

while (i <= limit-2) W o \while fi<=1

Now, the computation of limit-2 is performed once, before we enter the loop.

printf(j);

i++: i

Ex “ , e inti=la=2;
inti-1,a-2, : .
i o inth=a*3
while (i<50) o while (i<50)
{ ¢ {
intj=ita*3; . int j=itb;
printf(j); .
[]
[]

7/31/2023

26

variable ¢limination & stre

ngth reduction

Flow graph after Copy Propagation , Dead-Code Elimination , Code Motion, induction-

aftd] = e3| 5
goto B,

alel] = e3

aftz] = t14| B¢

iemal B
; : nl-l 3‘ j=n !
tl = 4'n
1 = 4%
: & .“'l'l v = altl)
t2 = 40i
td - 4
{=in B, /- N
t2 = 4°4
td) = ale2) t2 = t2ed B,
if thev goto8, €3 = afe2)
| if t3ev goto B,
IR By
[TEX T] B4 = bd=d B,
t5 = afed) t5 = altd)
if £S>v goto B, if tSev goto B
By B,
B
X =t} B X = £} L3
. [e2) = &5 t14 = aft1)
t2) = t5 tl4 = a(t1) -
:{t‘: T alt2) = ©14 aled] = e3) g alt2] - t14| B4
i - u-l ’
j=n !
El = 4%n
v = aftl]
t2 = 44
Ed = 4%
[£2 = E2ed B,
) = afe2)
if tiev goto B,
Ed = Ed=4 "
tS = alt4)
if tS»v goto B,
if c2>t4 gotoB,| B,
ae2] = t5 tl4 = afel)

7/31/2023

27

7/31/2023

* Machine dependent code optimization:

e Peephole optimization: Eliminating redundant
loads and stores — Eliminating Unreachable
code - Flow-of-control optimizations -
Algebraic simplification and Reduction in
strength - Use of Machine idioms

* Register allocation: Global Register Allocation

* Machine-independent optimization phase tries to
improve the intermediate code to obtain a better
output.

e The optimized intermediate code does not
involve any absolute memory locations or CPU
registers.

* Machine-dependent optimization is done after

generation of the target code which s
transformed according to target machine
architecture.

 This involves CPU registers and may have absolute
memory references.

28

Peephole optimization

* A simple but effective technique for locally
improving the target code is peephole
optimization,

— which is done by examining a sliding window of
target instructions (called the peephole) and replacing
instruction sequences within the peephole by a
shorter or faster sequence, whenever possible..

* Peephole optimization can also be applied
directly after intermediate code generation to
improve the intermediate representation

* The peephole is a small, sliding window on a program.

* The code in the peephole need not be contiguous,
although some implementations do require this.
* characteristic of peephole optimizations:
— Redundant-instruction elimination
— Flow-of-control optimizations
— Algebraic simplifications
— Use of machine idioms

7/31/2023

29

Eliminating Redundant Loads and Stores

* Il the target code contains the instruction sequence:

MOV R, a
MOV a, R

* Instruction 2 can always be removed if it does not have a label.
o Ifitis labeled, there is no guarantee that step 1 will always be executed

belore step 2.

g 1.1

MOVR,a
L1: MOV a, R

2. Eliminating Unreachable code/unnecessary jumps

* Another opportunity for peephole optimization is the removal of

unreachable instructions.

* An unlabeled instruction immediately following an unconditional

jump may be removed.

* This operation can be repeated to eliminate a sequence of

instructions.

* For example, for debugging purposes, a large program may have
within it certain code fragments that are executed only if a variable

debug is equal to 1.

7/31/2023

30

* Inthe intermediate representation, this code may look like

if debug == 1 goto L1
goto L2
Li: print debugging information

L2:

One obvious peephole optimization is to eliminate jumps over jumps. Thus, no matter what the value of
debug, the code sequence above can be replaced by

if debug != 1 goto L2
print debugging information
L2:

If debug is set to 0 at the beginning of the program, constant propagation would transform this sequence
into
if 0 != 1 goto L2

print debugging information
L2:

Now the argument of the first statement always evaluates to #rue, so the statement can be replaced by
goto L2. Then all statements that print debug-ging information are unreachable and can be eliminated one

at a time.

3. Flow-of-Control Optimizations

* Simple intermediate code-generation algorithms frequently
produce jumps to jumps, jumps to conditional jumps, or
conditional jumps to jumps.

* These unnecessary jumps can be eliminated in either the
intermediate code or the target code by the following types of
peephole optimizations.

goto L1

Lil: goto L2
by the sequence
goto L2

Li: goto L2

7/31/2023

31

if a < b goto L1
Li: goto L2

can be replaced by the sequence

if a <b goto L2

L1: goto L2

Finally, suppose there is only one jump to L1 and L1 is preceded by an
unconditional goto. Then the sequence
goto L1

Li: if a < b goto L2
L3:

may be replaced by the sequence
if a < b goto L2
goto L3

L3:

4. Algebraic simplification and Reduction in strength

We discussed algebraic identities that could be used to simplify
DAG's. These algebraic identities can also be used by a peephole
optimizer to eliminate three-address statements such as

x=x+0 or Xx=x *1 in the peephole.

7/31/2023

32

Reduction-in-strength

Similarly, reduction-in-strength transformations can be applied in
the peep-hole to replace expensive operations by equivalent
cheaper ones on the target machine.

Certain machine instructions are considerably cheaper than others
and can often be used as special cases of more expensive
operators.

For ex-ample, x? is invariably cheaper to implement as x * x than as
a call to an exponentiation routine.

Fixed-point multiplication or division by a power of two is cheaper
to implement as a shift. Floating-point division by a constant can be
approximated as multiplication by a constant, which may be
cheaper.

5.Use of Machine idioms

The target machine may have hardware instructions to implement
certain specific operations efficiently.

Detecting situations that permit the use of these instructions can
reduce execution time significantly.

For example, some machines have auto-increment and auto-
decrement addressing modes.

These add or subtract one from an operand before or after using its
value.

The use of the modes greatly improves the quality of code when
pushing or popping a stack, as in parameter passing.
These modes can also be used in code for statements like x = x + 1.

7/31/2023

33

7/31/2023

Instruction involving only register operands are shorter and
faster then those involving memory operands. This also
means that proper use of register help in generating the good
code. This section presents various strategies for deciding
what values in a program should reside in registers(register
allocation)and in which register each value should reside
(register assignment).

One approach to register allocation and assignment 1s to
assign specific value in an object program to certain registers.
This approach has the advantage that 1t simplifies the design
of a compiler.

/antage 1s that , applied too strictly , it uses registers
inefficiently; certain registers may go unused over substantial

portions of code, while unnecessary loads and stores are
generated.

Now we will discuss various strategies used in register and
assignment and those

Global Register Allocation

Usage Counts

Register Assignment for Outer Loops

Register Allocation by Graph Coloring

34

7/31/2023

Generating the code the registers are used to hold the value
for the duration of single block.

All the live variables are stored at the end of each block.

For the variables that are used consistently we can allocate
specific set of registers.

Hence allocation of variables to specific registers that is
consistent across the block boundaries is called global register
allocation.

The global register allocation has a strategy of storing the
most frequently used variables in fixed registers throughout
the loop

Another strategy is to assign some fixed number of global
registers to hold the most active value in each inner loop.

The registers not already allocated may be used to hold values
local to one block

In certain language like C or Bliss programmer can do the
register allocation by using register declaration.

35

