
7/31/2023

1

UNIT-5

SYLLABUS
• Code Generation: -
• Basic Blocks and Flow Graphs-Basic Blocks, Next use Information, Flow

Graphs, Representation of Flow Graph, Loops.
• Optimization of Basic Blocks:
• The DAG representation of basic blocks –Finding Local common

subexpressions – Dead code elimination – The use of Algebraic Identities -
• Machine independent code optimization -Principle sources of

Optimization- Causes of Redundancy, Running example: Quick Sort,
Semantic Preserving transformations, Global common sub expressions,
copy propagation, dead code elimination, code motion, induction
variables, and reduction in strength.

• Machine dependent code optimization:
• Peephole optimization: Eliminating redundant loads and stores –

Eliminating Unreachable code – Flow-of-control optimizations – Algebraic
simplification and Reduction in strength - Use of Machine idioms

• Register allocation: Global Register Allocation

7/31/2023

2

THREE ADDRESS CODE

• A graph representation of intermediate code that is helpful for
code generation.

• We can do a better job of register allocation if we know how
values are defined and used.

• We can do a better job of instruction selection by looking at
sequences of three-address statements.

• Transformations on flow graphs that turn the original
intermediate code into optimized code from which better target
code can be generated.

• The optimized code is turned into machine code using the code
generation technique.

7/31/2023

3

BASIC BLOCKS

• First job is to partition the three address code instructions
into basic blocks.

• We begin a new basic block with the first instruction and keep
adding instructions until we meet either a jump or a
conditional jump and labels, control proceeds sequentially
from one instruction to the next.

7/31/2023

4

7/31/2023

5

FLOW GRAPHS

TERMINOLOGY

7/31/2023

6

• The Basic block of each leader contains all the
instructions from itself until just before the
next leader

EXAMPLE 2

7/31/2023

7

7/31/2023

8

Next-Use Information.
• Knowing when the value of a variable will be used next is

essential for generating good code.
• If the value of a variable that is currently in a register will

never be referenced subsequently, then that register can be
assigned to another variable.

• The use of a name in a three-address statement is defined as
follows.

• Suppose three-address statement i assigns a value to x.
• If statement j has x as an operand, and control can flow from

statement i to j along a path that has no intervening
assignments to x, then we say statement j uses the value of x
computed at statement i.

• We further say that x is live at statement i.

7/31/2023

9

Algorithm for live-ness and next use information

7/31/2023

10

LOOPS

7/31/2023

11

7/31/2023

12

OPTIMIZATION OF BASIC BLOCKS

• Optimization of Basic Blocks:
Structure Preserving Transformation:

– The DAG representation of basic blocks
– Finding Local common sub expressions
– Dead code elimination

Algebraic transformations
– The use of Algebraic Identities
– Strength Reduction
– Constant folding

• A substantial improvement in the running time of
code can be performed by local optimization within
each block .

• More thorough global optimization which deals with
how information flows among the basic blocks of a
program

7/31/2023

13

We construct a DAG for a basic block as follows

7/31/2023

14

1. Finding Local Common Sub
expressions

7/31/2023

15

2. Dead code elimination

7/31/2023

16

• Ex 2:
if(1)

Print(“TOC”);
else

print(“TC”);

Ex 3:

3. Reordering of statements

7/31/2023

17

Renaming of temporary variables

Algebraic Transformations

for(i=0;i<=n;i++)
{
X=2*3+y -> X=6+y
}

7/31/2023

18

• e=t+b
=c+d+b
=c+b+d
=b+c+d
=a+d

7/31/2023

19

7/31/2023

20

• Machine independent code optimization -
Principle sources of Optimization- Causes of
Redundancy, Running example: Quick Sort,
Semantic Preserving transformations, Global
common sub expressions, copy propagation,
dead code elimination, code motion,
induction variables, and reduction in strength.

7/31/2023

21

Principle sources of Optimization

• A compiler optimization must preserve the semantics of the
original program.

• once a programmer chooses and implements a particular
algorithm, the compiler cannot understand enough about the
program to replace it with a substantially different and more
efficient algorithm.

• A compiler knows only how to apply relatively low-level
semantic transformations, using general facts such as
algebraic identities like i + 0 = i or program semantics such as
the fact that performing the same operation on the same
values yields the same result.

Causes of redundancy

7/31/2023

22

7/31/2023

23

• X=a[i]
– T6=4*i
– X=a[t6]

• A[j]=x
T10=4*j
A[t10]=x

7/31/2023

24

7/31/2023

25

7/31/2023

26

7/31/2023

27

7/31/2023

28

• Machine dependent code optimization:
• Peephole optimization: Eliminating redundant

loads and stores – Eliminating Unreachable
code – Flow-of-control optimizations –
Algebraic simplification and Reduction in
strength - Use of Machine idioms

• Register allocation: Global Register Allocation

• Machine-independent optimization phase tries to
improve the intermediate code to obtain a better
output.

• The optimized intermediate code does not
involve any absolute memory locations or CPU
registers.

• Machine-dependent optimization is done after
generation of the target code which is
transformed according to target machine
architecture.

• This involves CPU registers and may have absolute
memory references.

7/31/2023

29

Peephole optimization

• A simple but effective technique for locally
improving the target code is peephole
optimization,
– which is done by examining a sliding window of

target instructions (called the peephole) and replacing
instruction sequences within the peephole by a
shorter or faster sequence, whenever possible..

• Peephole optimization can also be applied
directly after intermediate code generation to
improve the intermediate representation

• The peephole is a small, sliding window on a program.
• The code in the peephole need not be contiguous,

although some implementations do require this.
• characteristic of peephole optimizations:

– Redundant-instruction elimination
– Flow-of-control optimizations
– Algebraic simplifications
– Use of machine idioms

7/31/2023

30

2. Eliminating Unreachable code/unnecessary jumps

• Another opportunity for peephole optimization is the removal of
unreachable instructions.

• An unlabeled instruction immediately following an unconditional
jump may be removed.

• This operation can be repeated to eliminate a sequence of
instructions.

• For example, for debugging purposes, a large program may have
within it certain code fragments that are executed only if a variable
debug is equal to 1.

7/31/2023

31

• In the intermediate representation, this code may look like

3. Flow-of-Control Optimizations

• Simple intermediate code-generation algorithms frequently
produce jumps to jumps, jumps to conditional jumps, or
conditional jumps to jumps.

• These unnecessary jumps can be eliminated in either the
intermediate code or the target code by the following types of
peephole optimizations.

7/31/2023

32

4. Algebraic simplification and Reduction in strength

• We discussed algebraic identities that could be used to simplify
DAG's. These algebraic identities can also be used by a peephole
optimizer to eliminate three-address statements such as

• x = x + 0 or x = x * 1 in the peephole.

7/31/2023

33

Reduction-in-strength

• Similarly, reduction-in-strength transformations can be applied in
the peep-hole to replace expensive operations by equivalent
cheaper ones on the target machine.

• Certain machine instructions are considerably cheaper than others
and can often be used as special cases of more expensive
operators.

• For ex-ample, x2 is invariably cheaper to implement as x * x than as
a call to an exponentiation routine.

• Fixed-point multiplication or division by a power of two is cheaper
to implement as a shift. Floating-point division by a constant can be
approximated as multiplication by a constant, which may be
cheaper.

5.Use of Machine idioms

• The target machine may have hardware instructions to implement
certain specific operations efficiently.

• Detecting situations that permit the use of these instructions can
reduce execution time significantly.

• For example, some machines have auto-increment and auto-
decrement addressing modes.

• These add or subtract one from an operand before or after using its
value.

• The use of the modes greatly improves the quality of code when
pushing or popping a stack, as in parameter passing.

• These modes can also be used in code for statements like x = x + 1.

7/31/2023

34

7/31/2023

35

