
7/31/2023

1

RUN-TIME ENVIRONMENT
(Part-I)

STORAGE ORGANISATION

CONTENTS :

• RUN-TIME ENVIRONMENT
• LOGICAL ADDRESS SPACE
• STORAGE ORGANISATION

• STATIC STORAGE ALLOCATION
• DYNAMIC STORAGE ALLOCATION

7/31/2023

2

RUN-TIME ENVIRONMENT
• To perform those implementations, the compiler creates and

manages a run-time environment in which target programs are
executed.

• This environment deals with a variety of issues such as –
• Layout and storage allocation for objects of the source program
• The mechanisms used by the target program to access variables
• Linkages between procedures
• Mechanisms for parameter passing
• Interface to the operating system, i/o devices, and other programs

STORAGE ORGANISATION
• The target program runs in its own logical address space in which

each program value has a location
• The management and organization of this logical address space is

shared between the compiler, operating system, and target
machine.

• The logical address is mapped into the physical address by the
operating system.

7/31/2023

3

STORAGE ORGANISATION

STORAGE ORGANISATION
• We assume the run-time storage comes in blocks of bytes.
• 1 byte = 8 bits
• Four bytes form a machine word
• Multibyte objects are stored in consecutive bytes and give the

address of the first byte.
• An elementary datatype, such as char, int, etc can be stored in an

integral number of bytes.
• Storage for an aggregate type, such as an array or structure, must

be large enough to hold all its components.

7/31/2023

4

LOGICAL ADDRESS SPACE
• The size of generated target code is fixed at compile time, so the

compiler can place the executable target code in the code region
(statically determined).

• The size of program objects such as global constants, and the data
generated by the compiler, such as information to support garbage
collection are known at compile time. So, they can be place in the
Static region (statically determined).

• The Heap and stack regions are at the opposite ends of remaining
address space. (Dynamically determined). Their size can change as
the program executes.

LOGICAL ADDRESS SPACE
• The stack is used to store data structures called activation records

that get generated during procedure calls
• The activation record is used to store information about the status

of the machine, such as the program counter and machine
registers.

• The stack grows towards lower addresses, the heap towards
higher.

• Many programming languages allow the allocation and
deallocation of data under program control.

• Ex: In C, functions such as malloc and free are used to obtain and
give back arbitrary chunks of storage.

• The heap is used to manage this kind of long-lived data.

7/31/2023

5

STATIC Vs DYNAMIC STORAGE ALLOCATION
• Storage allocation decision is static if it can be made by the

compiler by only looking at the text of the program, not at what
the program does when it executes.

• Decision is dynamic if it can be decided only when the program
is running

• Many compilers use a combination of the two strategies for
dynamic storage allocation:

• Stack storage: Names local to a procedure
• Heap storage: Data that may outlive the call to the procedure (It is area

of virtual memory that allows objects or other data elements to obtain
storage when created and return storage when they are invalidated)

To support heap management, “garbage collection” enables the run-time
system to detect useless data elements and reuse their storage, even if
the space is not returned explicitly.

