
8/4/2023

1

COMPILER DESIGN

REDUCING FRAGMENTATION

MANUAL DEALLOCATION REQUESTS

WHAT IS FRAGMENTATION ?

Fragmentation is an unwanted problem

where the memory blocks cannot be allocated

to the processes due to their small size and the

blocks remain unused.

8/4/2023

2

REDUCING FRAGMENTATION

At the beginning of program execution, the heap is one contiguous

unit of free space.

As the program allocates and deallocates memory, this space is

broken up into free and used chunks of memory.

We refer to the free chunks of memory as holes.

WITH EACH ALLOCATION REQUEST, THE MEMORY MANAGER MUST PLACE
THE REQUESTED CHUNK OF MEMORY INTO A LARGE-ENOUGH HOLE.

MEMORY
MANAGER

[Allocate
Requested
Chunk] OR

[Return Allocation
Failure]

Large-enough
Hole Found

OR
No Hole Found

[Return Pointer
to Chunk]

Search for Free
Memory[Allocation

Request]

8/4/2023

3

With each deallocation request, the freed chunks of memory
are added back to the pool of free space

MEMORY
MANAGER

Add Chunk to
Free Space

Pool

Free Memory
Chunk

Deallocation
Request

It has been found empirically that a good strategy for minimizing fragmentation for
real-life programs is to allocate the requested memory in the smallest available hole
that is large enough.

best-fit first-fit

8/4/2023

4

To implement best-fit placement more efficiently, we can
separate free space into bins, according to their sizes.

For example:
 the Lea memory manager, used in the GNU C compiler gcc,
aligns all chunks to 8-byte boundaries. There is a bin for every
multiple of 8-byte chunks from 16 bytes to 512 bytes.

There is always a chunk of free space that can be extended by
requesting more pages from the operating system. Called the
wilderness chunk, this chunk is treated by Lea as the largest-sized
bin because of its extensibility.

Managing and Coalescing Free Space :

When an object is deallocated manually, the memory manager must make its
chunk free, so it can be allocated again. In some circumstances, it may also be
possible to combine (coalesce) that chunk with adjacent chunks of the heap, to form a
larger chunk

 A simple allocation/deallocation scheme is to keep a bitmap, with one bit for
each chunk in the bin. A 1 indicates the chunk is occupied; 0 indicates it is free.

When a chunk is deallocated, we change its 1 to a 0. When we need to
allocate a chunk, we find any chunk with a 0 bit, change that bit to a 1 ,and use
the corresponding chunk.

8/4/2023

5

There are two data structures that are useful to support coalescing of adjacent
free blocks:
 Boundary Tags. At both the low and high ends of each chunk, whether free or

allocated, we keep vital information. At both ends, we keep a free/used bit
that tells whether or not the block is currently allocated (used) or available
(free)

 A Doubly Linked, Embedded Free List. The free chunks (but not the allocated
chunks) are also linked in a doubly linked list. The pointers for this list are within
the blocks themselves, say adjacent to the boundary tags at either end. Thus, no
additional space is needed for the free list, although its existence does place a
lower bound on how small chunks can get; they must accommodate two
boundary tags and two pointers, even if the object is a single byte.

1.Manual memory management can lead to errors,
including memory leaks and dangling pointers.

2.Memory leaks occur when memory is not deallocated and
can slow down programs over time.

3.Dangling pointers occur when memory that has been
deallocated is accessed, leading to unpredictable program
behavior.

4.Automatic garbage collection can help prevent memory
leaks, but cannot prevent dangling pointers.

Manual Deallocation Requests:
Problems with Manual Deallocation

8/4/2023

6

5.Programmers must be careful when manually deallocating memory to
avoid leaving behind dangling pointers.

6.Accessing illegal memory addresses can cause program crashes and
produce incorrect results, so input validation and bounds-checking are
important.

7.Long-running or nonstop programs like operating systems or server
code must be particularly careful about memory management to prevent
issues from accumulating over time and causing program failures.

8.Careful memory management and avoiding errors like dangling
pointers are especially important in applications where security is a
concern, as vulnerabilities in memory management can be exploited by
attackers to take control of the program or access sensitive data.

Compiler , Lexical analysis, Tokenization, Parsing, Syntax analysis, Abstract syntax
tree,

Semantic analysis, Symbol table, Type checking, Intermediate code, Optimization, Code

generation, Code optimization, Control flow analysis, Data flow analysis, Loop
optimization,

Register allocation, Constant folding, Dead code elimination, Static single assignment
form (SSA),

Just-in-time (JIT) compilation, Garbage collection, Code generation for object-oriented
languages,

Virtual machine, Dynamic linking, Dynamic loading, Linker, Loader, Preprocessor, Macro

expansion, Conditional compilation, Recursive descent parsing, Bottom-up parsing, LR
parsing, LL parsing, Shift-reduce parsing, Parsing table, Backus-Naur Form (BNF),
Extended Backus-Naur Form (EBNF), Compiler front-end, Compiler back-end, Target
machine, Assembly language, Code optimization techniques, Loop unrolling, Inlining,
Interprocedural analysis, Loop interchange, Loop fusion, Function call optimization,
Control flow graph, Data dependency analysis, Register renaming, Static analysis,

