Language Processors: Overview of language processing
system: — preprocessors — compiler — assembler — Linkers &
loaders, difference between compiler and interpreter-
structure of a compiler:—phases of a compiler.

Lexical Analysis: - Role of Lexical Analysis: Lexical analysis
Versus Parsing — Tokens, Patterns, and Lexemes — Attributes
for Tokens — Lexical errors - Input Buffering: Buffer Pairs —
Sentinels

Specification of Tokens: Strings and Languages — Operations
on Languages — Regular Expressions — Regular Definitions

Recognition of Tokens: Transition Diagrams — Recognition of
Reserved Words and Identifiers - Completion of the Running
Example — Architecture of a Transition—Diagram-Based Lexical
Analyzer

The Lexical Analyzer Generator (LEX): Use of Lex — Structure
of Lex Programs

Compiler

Analysis Synthesis

Target

Source

w
v

Program

Program

Analysis and Synthests model

7/31/2023

Code optimization

Code optimization phase attempts to improve the
intermediate code, so that faster-running machine
code will result.

Faster/shorter/Less power consumable target code.

Compiler spent significant amount of time on this
phase.

Optimized Three address code after Code
Optimization phase for the example statement is

= Example:
tl = inttofloat (60) tl = 143 * 60.0

£2 = id3 * &1 1 id1l = id2 + t1
t3 = id2 + £2 L
idl = t3

Code Generation

It takes intermediate representation of the source
program as input and maps it into the target
language.

If the target language is machine code, registers or
memory locations are selected for each of the
variables used by the program.

Intermediate instructions are translated into
sequences of machine instructions

7/31/2023

Crucial part is assignment of registers to hold variables.
First operand of each instruction specifies destination.
F-> floating point number

#-> 60.0 consider as immediate constant

« MOVF id3, R2

« MULF #60.0, R2
« MOVF id2, R1

« ADDF R2, R1

« MOVF R1, id1

Error handler

Each phase encounters errors.

After detecting an error, a phase must somehow deal
with that error, so that compilation can proceed,
allowing further errors in the source program to be
detected.

Lexical analysis phase can detect errors that do not form
any token of the language.

Syntax analysis phase can detect the token stream that
violates the (structure (or) syntax rules of the language.

Semantic analysis phase detects the constructs that
have no meaning to the operation involved.

7/31/2023

7/31/2023

The process of compilation is One complete scan of the

carried in various steps. source language is called pass

Each step is called a phase It includes reading an input file
and writing to an output file

Different phases include: Many phases can be grouped as
LA,SA,SeA,ICG,CO,CG one pass
The task of compilation may be
carried out in single pass or
multiple passes

Role of Lexical Analysis

* The lexical analyzer is the first phase of a compiler.

* Its main task is to read the input characters and
produce as output a sequence of tokens that the
parser uses for syntax analysis.

* Another task of lexical analyzer is stripping out from
the source program comments and white space in
the form of blank and tab and newline characters.

* Correlating error messages from the compiler with
the source program.

7/31/2023

, oke
source fexical e —
rogram anulyzer e T
prog 2 rel next
roken
symbaol
table

* The lexical analyzer may keep track of the number of newline
characters seen, so that line number can be associated with an
error message.

* In some compilers, the lexical analyzer is in charge of making a
copy of the source program with the error messages marked in
it.

« If the lexical analyzer finds a token invalid, it generates an
error.

* The lexical analyzer works closely with the syntax analyzer.

e It reads character streams from the source code, checks for
legal tokens, and passes the data to the syntax analyzer when
it demands.

* The lexical analyzer collects information about tokens into their
associated attributes.

« After identifying the tokens, the strings are entered into
database called a symbol table.

* It works in two phases:
1. Scan
2. Separation of tokens

Lexical analysis Vs Parsing

* All compilers separate the task of analyzing syntax
into two different parts.

* Lexical and syntax
* Lexical-> small scale language constructs
— Names and literals
* Syntax-> large scale language constructs
— expressions, statements and program units

Why lexical analysis is separated from
syntax analysis?
1. Simplicity

— lexical analysis is simplified because it is less complex than
syntax analyser

— Syntax analyser can be smaller and cleaner by removing low
level details of lexical analysis

2. Efficiency

— lexical analysis should be optimized (requires significant portion
of total compile time)

— Syntax analysis should not be optimized
3. Portability

— Lexical analysis may not be portable because input device-
specific peculiarities can be restricted to scanner

— Syntax analysis is always portable

7/31/2023

7/31/2023

Token

* Token is a sequence of characters that can be treated as a
single logical entity. Sequence of characters having the
collective meaning in the source program

* Typical tokens are identifiers, keywords, operators,
special symbols, constants.

e Pattern: Set of rules that describe tokens

* Lexeme: Sequence of characters in the source program
that are matched with a pattern of the token

* Ex: keyword if if condition

relationalop <,><= <or<=or>

Attributes for Tokens:
* A token has only a single attribute — a pointer to the symbol-table
entry in which the information about the token is kept.
* The token names and associated attribute values for the statement
¢ E=M*C+2 are written below as a sequence of pairs.
<id, pointer to symbol-table entry for E>
<assign_op>
<id, pointer to symbol-table entry for M>
<mult_op>
<id, pointer to symbol-table entry for C>
<add_op>

<number, integer value 2>

7/31/2023

Lexical errors

* It is hard for lexical analyzer to tell without aid of
other computers, that there is a source code
error.

* Some errors are out of power of lexical analyzer
to recognize: —fi (a == f(x)) ...
* Lexical analyzer can not tell whether fi is a

misspelling keyword if or an undeclared function
identifier. Since fi is valid lexeme.

* Such errors are recognized when no pattern for
tokens matches a character sequence.

e Other phase of the compiler probably parser
handle this type of error.

* If lexical analyser unable to proceed because of
none of the patterns for tokens matches any
prefix of the remaining input,

 The simplest recovery strategy is panic mode
recovery

7/31/2023

Error recovery

* Panic mode: successive characters are ignored
until we reach to a well formed token
— Delete one character from the remaining input
— Insert a missing character into the remaining input
— Replace a character by another character
— Transpose two adjacent characters

Input Buffering:

Buffer Pairs — Sentinels
Input Buffering

* There are times when a lexical analyzer needs to
look ahead several characters beyond the lexeme
for a token before a match can be announced.

» Buffering techniques can be used to reduce the
overhead required to process input characters.

¢ The buffer is divided into two N-character halves.

f E : A == ZMZ*ICI‘Z*ZzZCOfZ E : : I

T Sorward

lexeme_beginning

Fig. 3.3. An input buffecr in two halves.

7/31/2023

Buffer pairs

* Because of the amount of time taken to
process characters and number of characters
must be processed during the compilation of
large source program, specialized buffering
techniques have been introduced.

* We need to introduce a two buffer scheme to
handle large look-aheads safely

T R . O FE R T
B = ;M:*-l’-::t*;*rzzeol"

}

T forward
lexemeBegin

Figure 3.3: Using a pair of input buffers
* Each buffer is of same size N
* N is usually size of disk block
* We can read N characters into a buffer

* If fewer than N characters remain in the
input file, then a special character
represented by eof marks the end of the
source file.

10

Two pointers to the input are maintained:

1. Pointer lexeme begin :marks the beginning
of the current lexeme

2. Pointer forward: scans until a pattern match
is found

Once the next lexeme is determined, forward
is set to the character at its right end.

Lexeme begin is set to the character
immediately after the lexeme just found.

Input Buffering(Cont.)

if forward at end of first half then begin
reload second half;
Jorward := forward + 1
end
else if forward at cnd of sccond half then begin
reload first half;
move forward to beginning of first half
end
else forward := forward + 1;

Fig. 3.4. Codc to advance forward pointer.

7/31/2023

11

7/31/2023

Sentinels

* For each character read we make two tests:
— one for the end of the buffer
— One to determine what character is read
» We can combine the buffer-end test with the

test for the current character if we extend each
buffer to hold a sentinel character at the end.

»The sentinel is a special character that can not
be part of the source program -eof

* Eof is marked for the end of the entire input.

* Any eof that appears other than at the end of
a buffer means that the input is at an end.

[7 el Tl misieefcicic zer T e

T forward
lexemeBegin

Figure 3.4: Sentinels at the end of each buffer

12

Sentinels
to Improving Input Buffering (Cont.)

forward := forward + 1,
if forwardt = eof then begin
if forward at end of first half then begin
reload second half;
Sforward := forward + |

end

else if forward at end of sccond half then begin
reload first half;
move forward to beginning of first half

end

else /= eof within a buffer signifying end of input */
terminatc lexical analysis

end

Specification of Tokens

* In theory of compilation regular expressions
are used to formalize the specification of
tokens

* Regular expressions are means for specifying
regular languages

—Strings and Languages

— Operations on Languages
—Regular Expressions
—Regular Definitions

7/31/2023

13

Strings and Languages

Some Concepts:
* symbol: letters, digits, and punctuation
* alphabet: any finite set of symbols

e.g. {0,1}, ASCII, Unicode

» string: a finite sequence of symbols

|s|: length of a string s
€: empty string

* language: any countable set of strings

e.g. d, {€}, C programs, English sentences

The following string-related terms are commonly used:

1.

A prefiz of string s is any string obtained by removing zero or more
symbols from the end of s. For example, ban, banana, and € are
prefixes of banana.,

. A suffiz of string s is any string obtained by removing zero or more

symbols from the beginning of s. For example, nana, banana, and €
are suffixes of banana.

. A substring of s is obtained by deleting any prefix and any suffix

from s. For instance, banana, nan, and € are substrings of banana.

. The proper prefixes, suffixes, and substrings of a string s are those,

prefixes, suffixes, and substrings, respectively, of s that are not € or
not equal to & itself.

. A subsequence of s is any string formed by deleting zero or more

not necessarily consecutive positions of s. For example, baan is a
subsequence of banana.

7/31/2023

14

7/31/2023

Operations on strings:
* concatenation: Xy
e.g. 1) x=dog,y = house ,xy = doghouse.

2) es=se=s

* exponentiation:
§° =e §'=S§"1s
=5
$* =85
§° =SSS

Operations on Languages

* union: LUM={s [sisinLorsisin M}

* concatenation: LM = {st [sis in L and t is in M}
* closure:

a) Kleene closure:

b) Positive closure: L =UL

=l

15

7/31/2023

1. L U D is the set of letters and digits — strictly speaking the language
with 62 strings of length one, each of which strings is cither one letter or
one digit.

9. LD is the set of 520 strings of length two, each consisting of one letter
followed by one digit.

3. L" is the set of all 4letter strings,
4, L* is the set of all strings of letters, including e, the empty string.

. L{L U D)* is the set of all strings of letters and digits beginning with a
letter.

(=g]

6. D" is the set of all strings of one or more digits.

Regular Expressions

* Describing languages
e.g. Cidentifiers: letter (letter [digit)*
notice:

a) The regular expressions are built recursively out of smaller
regular expressions

b) Each regular expression r denotes a language L(r)
* BASIS: (two rules)
1. € is a regular expression, and L(€) is {€}

2. If aiis a symbolin 3 ,then ais a regular expression,
and L(a) = {a}

16

7/31/2023

* INDUCTION:

1.(r)|(s) is a regular expression denoting the language L(r) U
L(s)

2. (r)(s) is a regular expression denoting the language L(r)L(s)
3. (r)* is a regular expression denoting (L(r))*

4. (r) is a regular expression denoting L(r)

* Some conventions:

1. * has highest precedence and is left associative

2. Concatenation has second highest precedence and is left
associative

3. | has lowest precedence and is left associative

e.g. (a)[((b)*(c)) =alb*c
* regular set:

A language that can be defined by a regular expression
* equivalent

Two regular expressions r and s denote the same
regular set, write r=s

17

7/31/2023

* Algebraic laws for regular expressions

LAW DESCRIPTION
r|s = s|r | is commutative
rl(s]t) = (r|s)|t | is associative
r(st) = (rs)t Concatenation is associative
r(s|t) = rs|rt; (s|t)r = sr|tr | Concatenation distributes over |
| r=rE=T ¢ is the identity for concatenation
r* = (rle)* ¢ is guaranteed in a closure
= * is idempotent

Regular Definitions
* Regular Definition

A sequence of definitions of the form:
dl->r1
d2->r2

dn->rn
where:
1. Each di is a new symbol
2. Each riis a regular expression

18

7/31/2023

 Example:

C identifiers

letter ->A[B]|...[Z]alb] ...|]z] _
digit->0[/1/.../9

id ->letter (letter [digit)*

* The regular definition for Unsigned numbers (integer or floating point)
such as 5280, 0.01234, 6.336E4, or 1.89E-4.

o

L - R

e

o

digit =2 0|1)2 ... | 9

digits = digit digit*

optionalFraction < .digits | &

optionalExponent 2 (E(+ |- | &) digits) | &

number <2 digits optionalFraction optionalExponent

* More examples: integer constant, string constants, reserved words, operator,

real constant.

19

Extensions of Regular Expressions
* One or more instances: +

1. (r)+denotes the language (L(r))+
2.r*=r+lE
3.r+=rr*=r*r
 Zero or one instance: ?
1. r? =ri€
2. L(r?) =L(r) U {€}
* Character classes:
l.a,la; 1. .. |la,=laa,...a,].
2.alb]... |z=[a-z]

Recognition of Tokens

Transition Diagrams
Recognition of Reserved Words and Identifiers
Completion of the Running Example

Architecture of a Transition—Diagram-Based
Lexical Analyzer

7/31/2023

20

7/31/2023

. Recognition of Tokens

How to recognize tokens?

Reserved words: if, else, then...
Id: letter

Number: digit

Relop: <. >, =, <=, 5=, <>...

Ws: blank, tab, newline...

Transition Diagrams

« States: represents a condition

* Edges: directed from one state to another

* Some Conventions:

1. Accepting or final states

2. *: retract the forward pointer one position

3. Start or initial state

21

7/31/2023

Transition Diagrams for >=

6

start {{E} > _/—,\ — @
other .

Fig. 3.11. Transition diagram for >=.

* start state : stare 0 in the above example
 If input character is >, go to state 6.

» other refers to any character that is not indicated
by any of the other edges leaving s.

Transition Diagrams for
Relational Operators

start—, <
0

other
® return(relop, GT)

Fig. 3.12. Transition diagram for relational operators.

22

7/31/2023

Recognition of Reserved Words and Identifiers

Two ways to handle reserved words:
* Install the reserved words in the symbol table initially

letter or digit
S
start letter (| other /—\ i
—=(9 10 —-@ return (geToken(), installD ())

Create separate transition diagrams for each
keyword
start t o~ ~ ¢ - 1 mmnletfdlg \@ *

./ L

« gettoken(): return token (id, if, then,...) if it
looks the symbol table

« install id(): return O if keyword or a pointer
to the symbol table entry if id

23

7/31/2023

* Transition diagram for token number

digit digit digit
start alw(\' dlgll(_\,}z ~ + —-&it(joth =) *
DU LD LRI G R
— g e -

* Transition diagram for whitespace

delim

@ delim @ other @ .

start

Implement a Transition Diagrams

» A sequence of transition diagrams can be
converted into a program to look for tokens.

» Each state gets a segment of code.

24

state and start record the current state and the
start state of current transition diagram.

lexical_value is assigned the pointer returned by
install_id() and install_ num() when an identifier
or number is found.

When a diagram fails, the function fail() is used
to retract the forward pointer to the position of the
lexeme beginning pointer and to return the start

state of the next diagram. If all diagrams fail the
function fail() calls an error-recovery routine.

Architecture of a Transition-Diagram-Based
Lexical Analyzer

* A sketch of getRelop() to simulate the transition

diagram for relop

TOKEN getRelop()
{
TOKEN retToken = new(RELOP);
while(1) { /* repeat character processing until a return
or failure occurs =/
switch(state) {
case 0: ¢ = nextChar();
if (¢ == <’) state = 1;
else if (¢ == '=?) gtate = 5;
else if (¢ == ?>?) gtate = 6;
else fail(); /# lexeme is not a relop */
break;
case 1: ...

case 8: retract();
retToken.attribute = GT;
return(retToken) ;

7/31/2023

25

7/31/2023

int state = 0, start = 0;
int lexical_value;
/% to "return" second component of token */
int fail()
i

forward = token_beginning;
switch (start) f{

case 0: start = 9; break;
case 9: start = 12; break;
case 12: start = 20; break;
case 20: start = 25; break;

case 25: recover(); break;
default: /# compiler error */
}
return start;

» Ways code fit into the entire lexical analyzer

1. Arrange for the transition diagrams for each
token to be tried sequentially

2. Run the various transition diagrams "in
parallel"

3. Combine all the transition diagrams into one
(preferred)

26

Lexical Analyzer Generator - Lex

Lex Source program

m Lexical —
lex1 Compiler =
. Sequence
of tokens

Input stream

An input file, which we call lex.1, is written in the
Lex language and describes the lexical analyzer to
be generated.

The Lex compiler transforms lex.1 to a C program,
in a file that is always named lex.yy.c.

The latter file is compiled by the C compiler into a
file called a. out, as always.

The C-compiler output is a working lexical analyzer
that can take a stream of input characters and
produce a stream of tokens.

The attribute value, whether it be another numeric
code, a pointer to the symbol table, or nothing, is
placed in a global variable yylval, which is shared
between the lexical analyzer and parser, thereby
making it simple to return both the name and an
attribute value of a token.

7/31/2023

27

7/31/2023

Structure of Lex programs

declarations

%%

translation rules —————— Pattern {Action}
%%

auxiliary functions

The declarations section includes declarations of
variables, manifest constants (identifiers declared to
stand for a constant, e.g., the name of a token), and
regular definitions.

The translation rules each have the form
Pattern{ Action}

Each pattern is a regular expression, which may use the
regular definitions of the declaration section.

The actions are fragments of code, typically written in C,
although many variants of Lex using other languages
have been created.

The third section holds whatever additional functions are
used in the actions.

Alternatively, these functions can be compiled separately

and loaded with the lexical analyzer.

28

When called by the parser, the lexical analyzer
begins reading its remaining input, one character at
a time, until it finds the longest prefix of the input
that matches one of the patterns P.

It then executes the associated action A.

Typically, A, will return to the parser, but if it does
not (e.g., because P describes whitespace or
comments), then the lexical analyzer proceeds to
find additional lexemes, until one of the
corresponding actions causes a return to the
parser.

The lexical analyzer returns a single value, the
token name, to the parser, but uses the shared,
integer variable yylval to pass additional
information about the lexeme found, if needed.

A
/* definitions of manifest constants
LT, LE, EQ, NE, GT, GE,
IF, THEN, ELSE, ID, NUMBER, RELOP */
#
%Y

/* regular definitions */

delim [\t\n]

ws {delim}+

letter [A-Za-z]

digit [0-9] _

id {letter}({letter} |{digit}) =

number {digit}+(\.{digitH) 7(E[+-17{digit}+) 7
Wt

{ws} {/* no action and no return */}

if {return(IF);}

then {return(THEN) ; }

else {return(ELSE);}

{id} {yylval = (int) installID(); return(ID);}

{number} {yylval
et {yylval
ne=n {yylval

(int) installNum(); return(NUMBER);}
LT; return(RELOP);}
LE; return(RELOP);}

7/31/2023

29

M {yylval = EQ; return(RELOP);}
ey {yylval = NE; return(RELOP);}

nyn {yylval = GT; return(RELOP);}
=N {yylval = GE; return(RELOP):;}
hh

int installID() {/* function to install the lexeme, whose
first character is pointed to by yytext,
and whose length is yyleng, into the
symbol table and return a pointer
thereto */

}

int installNum() {/* similar to installID, but puts numer-
ical constants into a separate table %/

}

The action taken when id is matched is

1. Function installID() is called to place the lexeme found in the symbol
table.

2. This function returns a pointer to the symbol table, which is placed in
global variable yylval, where it can be used by the parser or a later
component of the compiler. Note that installID() has available to it
two variables that are set automatically by the lexical analyzer that Lex
generates:

(a) yytext is a pointer to the beginning of the lexeme, analogous to
lexemeBegin in Fig. 3.3.

{(b) yyleng is the length of the lexeme found.

3. The token name ID is returned to the parser.

The action taken when a lexeme matching the pattern number is similar, using
the auxiliary function installNum(). O

7/31/2023

30

