
7/31/2023

1

• Language Processors: Overview of language processing
system: – preprocessors – compiler – assembler – Linkers &
loaders, difference between compiler and interpreter-
structure of a compiler:–phases of a compiler.

• Lexical Analysis: - Role of Lexical Analysis: Lexical analysis
Versus Parsing – Tokens, Patterns, and Lexemes – Attributes
for Tokens – Lexical errors - Input Buffering: Buffer Pairs –
Sentinels

• Specification of Tokens: Strings and Languages – Operations
on Languages – Regular Expressions – Regular Definitions

• Recognition of Tokens: Transition Diagrams – Recognition of
Reserved Words and Identifiers - Completion of the Running
Example – Architecture of a Transition–Diagram-Based Lexical
Analyzer

• The Lexical Analyzer Generator (LEX): Use of Lex – Structure
of Lex Programs

7/31/2023

2

Code optimization

• Code optimization phase attempts to improve the
intermediate code, so that faster-running machine
code will result.

• Faster/shorter/Less power consumable target code.
• Compiler spent significant amount of time on this

phase.
• Optimized Three address code after Code

Optimization phase for the example statement is

Code Generation

• It takes intermediate representation of the source
program as input and maps it into the target
language.

• If the target language is machine code, registers or
memory locations are selected for each of the
variables used by the program.

• Intermediate instructions are translated into
sequences of machine instructions

7/31/2023

3

• Crucial part is assignment of registers to hold variables.
• First operand of each instruction specifies destination.
• F-> floating point number
• #-> 60.0 consider as immediate constant

• MOVF id3, R2
• MULF #60.0, R2
• MOVF id2, R1
• ADDF R2, R1
• MOVF R1, id1

Error handler

• Each phase encounters errors.
• After detecting an error, a phase must somehow deal

with that error, so that compilation can proceed,
allowing further errors in the source program to be
detected.

• Lexical analysis phase can detect errors that do not form
any token of the language.

• Syntax analysis phase can detect the token stream that
violates the (structure (or) syntax rules of the language.

• Semantic analysis phase detects the constructs that
have no meaning to the operation involved.

7/31/2023

4

Phase Pass

The process of compilation is
carried in various steps.
Each step is called a phase

One complete scan of the
source language is called pass
It includes reading an input file
and writing to an output file

Different phases include:
LA,SA,SeA,ICG,CO,CG

Many phases can be grouped as
one pass
The task of compilation may be
carried out in single pass or
multiple passes

Role of Lexical Analysis

• The lexical analyzer is the first phase of a compiler.
• Its main task is to read the input characters and

produce as output a sequence of tokens that the
parser uses for syntax analysis.

• Another task of lexical analyzer is stripping out from
the source program comments and white space in
the form of blank and tab and newline characters.

• Correlating error messages from the compiler with
the source program.

7/31/2023

5

• The lexical analyzer may keep track of the number of newline
characters seen, so that line number can be associated with an
error message.

• In some compilers, the lexical analyzer is in charge of making a
copy of the source program with the error messages marked in
it.

• If the lexical analyzer finds a token invalid, it generates an
error.

• The lexical analyzer works closely with the syntax analyzer.

• It reads character streams from the source code, checks for
legal tokens, and passes the data to the syntax analyzer when
it demands.

• The lexical analyzer collects information about tokens into their
associated attributes.

• After identifying the tokens, the strings are entered into
database called a symbol table.

• It works in two phases:

1. Scan

2. Separation of tokens

7/31/2023

6

Lexical analysis Vs Parsing

• All compilers separate the task of analyzing syntax
into two different parts.

• Lexical and syntax

• Lexical-> small scale language constructs

– Names and literals

• Syntax-> large scale language constructs

– expressions, statements and program units

Why lexical analysis is separated from
syntax analysis?

1. Simplicity
– lexical analysis is simplified because it is less complex than

syntax analyser
– Syntax analyser can be smaller and cleaner by removing low

level details of lexical analysis
2. Efficiency

– lexical analysis should be optimized (requires significant portion
of total compile time)

– Syntax analysis should not be optimized
3. Portability

– Lexical analysis may not be portable because input device-
specific peculiarities can be restricted to scanner

– Syntax analysis is always portable

7/31/2023

7

Token

• Token is a sequence of characters that can be treated as a
single logical entity. Sequence of characters having the
collective meaning in the source program

• Typical tokens are identifiers, keywords, operators,
special symbols, constants.

• Pattern: Set of rules that describe tokens
• Lexeme: Sequence of characters in the source program

that are matched with a pattern of the token
• Ex: keyword if if condition
• relational op <,>,<= < or <= or >

7/31/2023

8

Lexical errors

• It is hard for lexical analyzer to tell without aid of
other computers, that there is a source code
error.

• Some errors are out of power of lexical analyzer
to recognize: – fi (a == f(x)) …

• Lexical analyzer can not tell whether fi is a
misspelling keyword if or an undeclared function
identifier. Since fi is valid lexeme.

• Such errors are recognized when no pattern for
tokens matches a character sequence.

• Other phase of the compiler probably parser
handle this type of error.

• If lexical analyser unable to proceed because of
none of the patterns for tokens matches any
prefix of the remaining input ,

• The simplest recovery strategy is panic mode
recovery

7/31/2023

9

Error recovery

• Panic mode: successive characters are ignored
until we reach to a well formed token
– Delete one character from the remaining input
– Insert a missing character into the remaining input
– Replace a character by another character
– Transpose two adjacent characters

Input Buffering:
Buffer Pairs – Sentinels

7/31/2023

10

Buffer pairs

• Because of the amount of time taken to
process characters and number of characters
must be processed during the compilation of
large source program, specialized buffering
techniques have been introduced.

• We need to introduce a two buffer scheme to
handle large look-aheads safely

• Each buffer is of same size N
• N is usually size of disk block
• We can read N characters into a buffer
• If fewer than N characters remain in the

input file, then a special character
represented by eof marks the end of the
source file.

7/31/2023

11

• Two pointers to the input are maintained:
• 1. Pointer lexeme begin :marks the beginning

of the current lexeme
• 2. Pointer forward: scans until a pattern match

is found
• Once the next lexeme is determined, forward

is set to the character at its right end.
• Lexeme begin is set to the character

immediately after the lexeme just found.

7/31/2023

12

Sentinels

• For each character read we make two tests:
– one for the end of the buffer
– One to determine what character is read

We can combine the buffer-end test with the
test for the current character if we extend each
buffer to hold a sentinel character at the end.

The sentinel is a special character that can not
be part of the source program -eof

• Eof is marked for the end of the entire input.
• Any eof that appears other than at the end of

a buffer means that the input is at an end.

7/31/2023

13

Specification of Tokens

• In theory of compilation regular expressions
are used to formalize the specification of
tokens

• Regular expressions are means for specifying
regular languages
– Strings and Languages
–Operations on Languages
–Regular Expressions
–Regular Definitions

7/31/2023

14

Strings and Languages

7/31/2023

15

7/31/2023

16

7/31/2023

17

7/31/2023

18

7/31/2023

19

7/31/2023

20

Recognition of Tokens

• Transition Diagrams
• Recognition of Reserved Words and Identifiers
• Completion of the Running Example
• Architecture of a Transition–Diagram-Based

Lexical Analyzer

7/31/2023

21

7/31/2023

22

7/31/2023

23

7/31/2023

24

7/31/2023

25

7/31/2023

26

7/31/2023

27

• An input file, which we call lex.1, is written in the
Lex language and describes the lexical analyzer to
be generated.

• The Lex compiler transforms lex.1 to a C program,
in a file that is always named lex.yy.c.

• The latter file is compiled by the C compiler into a
file called a. out, as always.

• The C-compiler output is a working lexical analyzer
that can take a stream of input characters and
produce a stream of tokens.

• The attribute value, whether it be another numeric
code, a pointer to the symbol table, or nothing, is
placed in a global variable yylval, which is shared
between the lexical analyzer and parser, thereby
making it simple to return both the name and an
attribute value of a token.

7/31/2023

28

• The declarations section includes declarations of
variables, manifest constants (identifiers declared to
stand for a constant, e.g., the name of a token), and
regular definitions.

• The translation rules each have the form

Pattern{ Action}

• Each pattern is a regular expression, which may use the
regular definitions of the declaration section.

• The actions are fragments of code, typically written in C,
although many variants of Lex using other languages
have been created.

• The third section holds whatever additional functions are
used in the actions.

• Alternatively, these functions can be compiled separately

and loaded with the lexical analyzer.

7/31/2023

29

• When called by the parser, the lexical analyzer
begins reading its remaining input, one character at
a time, until it finds the longest prefix of the input
that matches one of the patterns P.

• It then executes the associated action A.
• Typically, A, will return to the parser, but if it does

not (e.g., because P describes whitespace or
comments), then the lexical analyzer proceeds to
find additional lexemes, until one of the
corresponding actions causes a return to the
parser.

• The lexical analyzer returns a single value, the
token name, to the parser, but uses the shared,
integer variable yylval to pass additional
information about the lexeme found, if needed.

7/31/2023

30

