	PVP20
20CS3601- COMPILER DESIGN
Micro Syllabus
	Offering Branches
	Computer Science & Engineering

	Course Category:
	Program Core
	Credits:
	3

	Course Type:
	Theory
	Lecture-Tutorial- Practical:
	3-0-0

	Prerequisites:
	Formal Languages and Automata Theory
	Continuous Evaluation:
	30

	
	·
	Semester End Evaluation:
	70

	
	·
	Total Marks:
	100

	Course Outcomes

	Upon successful completion of the course, the student will be able to:

	CO1
	Understand the fundamental concepts of Compiler Design.
	L2

	CO2
	Apply top-down parsing techniques to generate the parse trees.
	L3

	CO3
	Apply bottom-up parsing techniques to generate parse tree for the given grammar.
	L3

	CO4
	Apply various code optimization techniques for intermediate code forms and Code Generation.
	L3

	CO5
	Analyze the given grammar and apply suitable parsing techniques.
	L4

	Course Content

	UNIT-1
	Language Processors: Overview of language processing system: – preprocessors – compiler – assembler – Linkers & loaders, difference between compiler and interpreter- structure of a compiler:–phases of a compiler.
Lexical Analysis: - Role of Lexical Analysis: Lexical analysis Versus Parsing – Tokens, Patterns, and Lexemes – Attributes for Tokens – Lexical errors - Input Buffering: Buffer Pairs – Sentinels
Specification of Tokens: Strings and Languages – Operations on Languages – Regular Expressions – Regular Definitions
 Recognition of Tokens: Transition Diagrams – Recognition of Reserved Words and Identifiers - Completion of the Running Example – Architecture of a Transition–Diagram-Based Lexical Analyzer
The Lexical Analyzer Generator (LEX): Use of Lex – Structure of Lex Programs
	CO1

	UNIT-2
	Syntax Analysis:
Introduction: The Role of the parser – Representative Grammars – Syntax Error Handling – Error Recovery Strategies.
Context Free Grammars: The formal definition of a CFG – Notational Conventions – Derivations – Parse trees and derivations – Ambiguity
Writing Grammar: Lexical Versus Syntax Analysis – Eliminating Ambiguity – Elimination of Left Recursion – Left Factoring
Top Down Parsing: Recursive Descent Parsing-FIRST and FOLLOW - LL(1) Grammars – Non recursive Predictive Parsing- Error Recovery in Predictive Parsing.
	CO1,CO2, CO5

	UNIT-3
	Bottom up Parsing: Reductions – Handle Pruning - Shift Reduce Parsing – Conflicts During Shift–Reduce Parsing.
Introduction to simple LR Parsing:
Why LR Parsers – Items and LR(0) Automaton - The LR-Parsing Algorithm - Constructing SLR–Parsing Tables
.
	CO1,CO3, CO5

	UNIT-4
	More powerful LR parsers: Canonical LR(1) items - Constructing LR(1) Set of Items – Canonical LR(1) Parsing Tables - Constructing LALR Parsing tables
Runtime Environments:
 Storage organization : Static versus Dynamic storage allocation
 Stack allocation of space: Activation Trees – Activation Records
 Heap management: Introduction to Garbage Collection: Design goals for Garbage Collectors – Reachability – Reference Counting Garbage Collectors
 Intermediate code:
 Variants of Syntax Trees: Directed Acyclic Graphs for Expressions
 Three address code: Addresses and Instructions- Quadruples - Triples - Indirect Triples.
	CO1,CO3, CO4, CO5

	UNIT-5
	Code Generation: -
Basic Blocks and Flow Graphs-Basic Blocks, Next use Information, Flow Graphs, Representation of Flow Graph, Loops.
Optimization of Basic Blocks:
The DAG representation of basic blocks –Finding Local common subexpressions – Dead code elimination – The use of Algebraic Identities -
Machine independent code optimization - Principle sources of Optimization - Causes of Redundancy, Running example: Quick Sort, Semantic Preserving transformations, Global common sub expressions, copy propagation, dead code elimination, code motion, induction variables, and reduction in strength.

Machine dependent code optimization:
 Peephole optimization: Eliminating redundant loads and stores – Eliminating Unreachable code – Flow-of-control optimizations – Algebraic simplification and Reduction in strength - Use of Machine idioms
Register allocation: Global Register Allocation

	CO1,CO4

	Learning Resources

	Text Books
	1. Compilers: Principles, Techniques and Tools, Alfred V. Aho, Monica S. Lam, Ravi Sethi, Jeffrey D. Ullman, Second Edition, Pearson Education

	Reference Books
	1. Modern Compiler Implementation in C- Andrew N. Appel, Cambridge University. 2. Principles of compiler design, V. Raghavan, Second edition, 2011, TMH.
3. Compiler Design, Muneeswaran K. First Edition, 2012, Oxford University Press.

	e- Resources & other digital material
	1.http://www.nptel.iitm.ac.in/downloads/106108052/
2.http://www.vssut.ac.in/lecture_notes/lecture1422914957.pdf

Course Coordinators								HOD
PVP Siddhartha Institute of Technology 		Page | 1
