
 UNIT-5

1.Why NoSql ?

 The concept of NoSQL (Not Only SQL) consists of technologies that provide storage and retrieval
without the tightly constrained models of traditional SQL relational databases.

 The motivation behind NoSQL is mainly simplified designs, horizontal scaling, and finer control
of the availability of data.

 NoSQL breaks away from the traditional structure of relational databases and allows developers
to implement models in ways that more closely fit the data flow needs of their systems. This
allows NoSQL databases to be implemented in ways that traditional relational databases could
never be structured.

 There are several different NoSql technologies such as HBase’s column structure, Redis’s
key/value structure, and Neo4j’s graph structure to implement the backend storage for web
applications and services.

2.Understanding MongoDB :
 MongoDB is a NoSQL database based on a document model where data objects are stored as

separate documents inside a collection.
 The motivation of the MongoDB language is to implement a data store that provides high

performance, high availability, and automatic scaling.

 Structure of MongoDB:

 2.1) Understanding Collections:

 MongoDB groups data together through collections. A collection is simply a grouping of

documents that have the same or a similar purpose.
 A collection acts similarly to a table in a traditional SQL database, with one major difference. In

MongoDB, a collection is not enforced by a strict schema; instead, documents in a collection can
have a slightly different structure from one another as needed. This reduces the need to break
items in a document into several different tables, which is often done in SQL implementations.

 2.2) Understanding Documents:

 A document is a representation of a single entity of data in the MongoDB database.

 A collection is made up of one or more related objects. However, in MongoDB, documents can
contain embedded subdocuments, thus providing a much closer inherent data model to your
applications.

 The records in MongoDB that represent documents are stored as BSON, which is a lightweight
binary form of JSON, with field:value pairs corresponding to JavaScript property:valuepairs.
These field:value pairs define the values stored in the document.

 Here Employee, admin, config, contact_list_db , local are the databases in MongoDB compass.
 The Employee database consist of Emp1 and Emp2 collections.

 Here Emp1 collection consist of One Document.

 That the document structure contains fields/properties that are strings, integers, arrays, and
objects, just like a JavaScript object.

 The field names cannot contain null characters, . (dots), or $ (dollar signs). Also, the _id field
name is reserved for the Object ID. The _id field is a unique ID for the system that is made up of
the following parts:
■ A 4-byte value representing the seconds since the last epoch

 ■ A 3-byte machine identifier
 ■ A 2-byte process ID
 ■ A 3-byte counter, starting with a random value.
 The maximum size of a document in MongoDB is 16MB, which prevents queries that result in
 an excessive amount of RAM being used or intensive hits to the file system.
 Although you may never come close, you still need to keep the maximum document size in mind
when designing some complex data types that contain file data.

3.MongoDB Data Types:

 The BSON data format provides several different types that are used when storing the JavaScript

objects to binary form. These types match the JavaScript type as closely as possible.
 It is important to understand these types because you can actually query MongoDB to find

objects that have a specific property that has a value of a certain type.
 For example, you can look for documents in a database whose timestamp value is a String

object or query for ones whose timestamp is a Date object.
 MongoDB assigns each of the data types an integer ID number from 1 to 255 that is used when

querying by type. Table 11.1 shows a list of the data types that MongoDB supports along with
the number MongoDB uses to identify them.

 Another thing to be aware of when working with different data types in MongoDB is the order

in which they are compared. When comparing values of different BSON types, MongoDB uses the
following comparison order from lowest to highest:

 1. Min Key (internal type)
 2. Null
 3. Numbers (32-bit integer, 64-bit integer, Double)
 4. String
 5. Object
 6. Array
 7. Binary Data
 8. Object ID
 9. Boolean
 10. Date, Timestamp
 11. Regular Expression
 12. Max Key (internal type)

UNIT – 5

GETTING STARTED WITH MONGODB:

• Building the MongoDB Environment

• Installing MongoDB

• Starting MongoDB

• Stopping MongoDB

• Accessing MongoDB from the Shell Client

BUILDING THE MONGODB ENVIRONMENT:

➢ To get started with MongoDB, the first task is to install it on your development system.

➢ Once installed on your development system, you can play around with the functionality, learn

the MongoDB shell, and prepare for “Getting Started with MongoDB and Node.js,” in which

you begin integrating MongoDB into your Node.js applications.

➢ The following sections cover installation, starting and stopping the database engine, and

accessing the shell client.

➢ Once you can do those things you are ready to begin using MongoDB in your environment.

INSTALLING MONGODB:

➢ The first step in getting MongoDB implemented into your Node.js environment is installing

the MongoDB server.

➢ There is a version of MongoDB for each of the major platforms, including Linux, Windows,

Solaris, and OS X.

➢ There is also an enterprise version available for the Red Hat, SuSE, Ubuntu, and Amazon

Linux distributions.

➢ The enterprise version of MongoDB is subscription-based and provides enhanced security,

management, and integration support.

➢ For the purpose of the learning MongoDB, the standard edition of MongoDB is perfect.

➢ Before continuing, go to the MongoDB website at

http://docs.mongodb.org/manual/installation/.

➢ Follow the links and instructions to download and install MongoDB in your environment:

As part of the installation and setup process, perform the following steps:

1. Download and extract the MongoDB files.

2. Add the <mongo_install_location>/bin to your system path.

3. Create a data files directory: <mongo_data_location>/data/db.

4. Start MongoDB using the following command from the console prompt:

mongod –dbpath <mongo_data_location>/data/db

STARTING MONGODB:

➢ Once you have installed MongoDB, you need to be able to start and stop the database engine.

➢ The database engine starts by executing the mongod (mongod.exe on Windows) executable

in the <mongo_install_location>/bin location.

➢ This executable starts MongoDB and begins listening for database requests on the configured

port.

➢ The mongod executable accepts several different parameters that provide methods of

controlling its behavior.

➢ For example, you can configure the IP address and port MongoDB listens on as well as

logging and authentication.

➢ Table 12.1 provides a list of some of the most commonly used parameters.

➢ Here is an example of starting MongoDB with a port and dbpath parameters:

mongod –port 28008 –dbpath <mongo_data_location>/data/db

STOPPING MONGODB:

➢ Each platform has different methods of stopping the mongod executable once it has started.

➢ However, one of the best methods is to stop it from the shell client because that cleanly shuts

down the current operations and forces the mongod to exit.

➢ To stop the MongoDB database from the shell client, use the following commands to switch

to the admin database and then shut down the database engine:

• use admin

• db.shutdownServer()

ACCESSING MONGODB FROM THE SHELL CLIENT:

➢ Once you have installed, configured, and started MongoDB, you can access it through the

MongoDB shell.

➢ The MongoDB shell is an interactive shell provided with MongoDB that allows you to

access, configure, and administer MongoDB databases, users, and much more.

➢ You use the shell for everything from setting up user accounts to creating databases to

querying the contents of the database.

➢ The following sections take you through some of the most common administration tasks that

you perform in the MongoDB shell.

➢ Specifically, you need to be able to create user accounts, databases, and collections to follow

the examples in the rest of the chapter.

➢ Also you should be able to perform at least rudimentary queries on documents to help you

troubleshoot any problems with accessing data.

➢ To start the MongoDB shell, first make sure that mongod is running, and then run the

mongod command, then execute the mongo command from the console prompt.

➢ The shell should start up as shown in Figure 12.1.

➢ Once you have accessed the MongoDB shell, you can administer all aspects of MongoDB.

➢ There are a couple of things to keep in mind when using MongoDB.

• First is that it is based on JavaScript and most of its syntax is available.

• Second, the shell provides direct access to the database and collections on the server so

changes you make directly impact the data on the server.

MongoDB shell commands and methods :

1. Starting the MongoDB Shell:

 - Open a terminal or command prompt.

 - Type `mongosh` and press Enter to start the MongoDB shell.

2. Database Operations:

 - `use database_name`: Switch to a specific database or create a new one.

 - `show dbs`: List all available databases.

 - `db.dropDatabase()`: Delete the current database.

3. Collection Operations:

 - `db.createCollection('collection_name')`: Create a new collection.

 - `show collections`: List all collections in the current database.

 - `db.collection_name.drop()`: Delete a collection.

4. Document Operations:

 - `db.collection_name.insertOne(document)`: Insert a single document into a collection.

 - `db.collection_name.insertMany(documents)`: Insert multiple documents into a collection.

 - `db.collection_name.find(query)`: Retrieve documents based on a query.

 - `db.collection_name.updateOne(filter, update)`: Update a single document that matches the

filter.

 - `db.collection_name.updateMany(filter, update)`: Update multiple documents that match the

filter.

 - `db.collection_name.deleteOne(filter)`: Delete a single document that matches the filter.

 - `db.collection_name.deleteMany(filter)`: Delete multiple documents that match the filter.

5. Query Operators:

 - Comparison operators: `$eq`, `$ne`, `$gt`, `$lt`, `$gte`, `$lte`.

 - Logical operators: `$and`, `$or`, `$not`, `$nor`.

 - Element operators: `$exists`, `$type`.

 - Array operators: `$in`, `$nin`, `$all`, `$elemMatch`.

6. Aggregation Pipeline:

 - Aggregation stages: `$match`, `$project`, `$group`, `$sort`, `$limit`, `$skip`, `$unwind`, `$lookup`,

`$addFields`, `$facet`.

 - Aggregation operators: `$sum`, `$avg`, `$min`, `$max`, `$first`, `$last`, `$push`, `$addToSet`,

`$size`, `$regexMatch`.

7. Indexing:

 - `db.collection_name.createIndex(keys, options)`: Create an index on specified keys.

 - `db.collection_name.explain().find(query)`: Display the execution plan of a query.

8. Miscellaneous:

 - `db.collection_name.count(query)`: Count the number of documents that match a query.

 - `db.collection_name.find().sort(sort_criteria)`: Sort documents based on specified criteria.

 - `db.collection_name.distinct(field)`: Retrieve distinct values of a field in a collection.

Adding MongoDB Driver to Node.js

To use MongoDB with Node.js, you'll need to add the MongoDB driver to your Node.js project.

Here's a step-by-step guide on how to add the MongoDB driver to Node.js:

1. Initialize your Node.js project:

 - Open your project directory in a terminal or command prompt.

 - Run `npm init` and follow the prompts to initialize a new Node.js project. This will create a

`package.json` file.

2. Install the MongoDB driver:

 - Run `npm install mongodb` to install the MongoDB driver package from the npm registry.

 - This command will download the MongoDB driver and add it as a dependency in your

`package.json` file.

3. Import the MongoDB driver in your Node.js code:

 - In your JavaScript file, import the MongoDB client using the following line:

     ``` 

     const { MongoClient } = require('mongodb'); 

     ``` 


4. Connect to a MongoDB database:

 - To connect to a MongoDB database, use the `MongoClient` object and its `connect()` method.

Here's an example:

 const uri = 'mongodb://localhost:27017'; // Replace with your MongoDB connection string

 const client = new MongoClient(uri);

 async function connectToDatabase() {

 try {

 await client.connect();

 console.log('Connected to the database');

 // Perform database operations here

 } catch (error) {

 console.error('Error connecting to the database', error);

 } finally {

 // Close the connection when done

 await client.close();

 }

 }

 connectToDatabase();

5. Perform MongoDB operations:

 - Once connected to the database, you can use the MongoDB driver to perform operations such as

inserting, updating, querying, and deleting documents. Refer to the MongoDB Node.js driver

documentation for more details and examples.

Remember to replace the `uri` variable with your actual MongoDB connection string, which should

include the hostname, port number, and any necessary authentication details.

By following these steps, you'll be able to add the MongoDB driver to your Node.js project and start

interacting with a MongoDB database.

Getting Started with MongoDB and Node.js

You can use several modules to access MongoDB from your Node.js

applications. The MongoDB group adopted the MongoDB Node.js driver as the

standard method. This driver provides all the functionality and is similar to the

native commands available in the MongoDB shell client.

Adding the MongoDB Driver to Node.js

The first step in implementing MongoDB access from your Node.js applications is

to add the MongoDB driver to your application project. The MongoDB Node.js

driver is the officially supported native Node.js driver for MongoDB. It has by far

the best implementation and is sponsored by MongoDB.

Adding the MongoDB Node.js driver to your project is a simple npm command.

From your project root directory, execute the following command using a console

prompt: npm install mongodb

A node_modules directory is created if it is not already there, and the mongodb

driver module is installed under it. Once that is done, your Node.js application files

can use the require('mongodb') command to access the mongodb module

functionality.

Connecting to MongoDB from Node.js

Once you have installed the mongodb module using the npm command, you can

begin accessing MongoDB from your Node.js applications by opening up a

connection to the MongoDB server. The connection acts as your interface to

create, update, and access data in the MongoDB database.

Accessing MongoDB is best done through the MongoClient class in the mongodb

module.

This class provides two main methods to create connections to MongoDB. One is

to create an instance of the MongoClient object and then use that object to create

and manage the

MongoDB connection. The other method uses a connection string to connect.

Either of these options works well.

Connecting to MongoDB from Node.js Using the MongoClient Object

Using a MongoClient object to connect to MongoDB involves creating an instance

of the client, opening a connection to the database, authenticating to the database if

necessary, and then handling logout and closure as needed.

To connect to MongoDB via a MongoClient object, first create an instance of the

MongoClient object using the following syntax:

var client = new MongoClient();

After you have created the MongoClient, you still need to open a connection to the

MongoDB server database using the connect(url, options, callback) method. The

url is composed of several components listed in Table 13.2. The following syntax

is used for these options:

mongodb://[username:password@]host[:port][/[database][?options]]

For example, to connect to a MongoDB database named MyDB on a host named

MyDBServer on port 8088, you would use the following URL:

client.connect('mongodb://MyDBServer:8088/MyDB');

In addition to the connection url information, you can also provide an options

object that specifies how the MongoClient object creates and manages the

connection to MongoDB. This options object is the second parameter to the

connect() method.

For example, the following code shows connecting to MongoDB with a reconnect

interval of 500 and a connection timeout of 1000 milliseconds:

client.connect ('mongodb://MyDBServer:8088/MyDB',{

connectTimeoutMS: 1000,reconnectInterval: 500 },

function(err, db){ . . . });

Table 13.3 lists the most important settings in the options object that you can set

when defining the MongoClient object. The callback method is called back with an

error as the first parameter if the connection fails or with a MongoClient object as

the second parameter if the connection is successful.

The callback function accepts an error as the first parameter, and a Db object

instance as the second parameter. If an error occurs, the Db object instance will be

null; otherwise, you can use it to access the database because the connection will

already be created and authenticated.

While in the callback function, you can access the MongoDB database using the

Db object passed in as the second parameter. When you are finished with the

connection, call close() on the Db object to close the connection.

.Listing 13.1 db_connect_url.js: Connecting to MongoDB

const mongoose = require('mongoose');

mongoose.connect('mongodb://127.0.0.1/SampleDB');

const db = mongoose.connection;

db.on('error',console.error.bind(console,'Error in Connection'));

db.once('open',function(){

 console.log("Database connection is Successful");

});

 Output

Database connection is Successful

