UNIT – 2
GETTING STARTED WITH NODE.JS:
· Understanding Node.js
· Installing Node.js
· Working with Node Packages
· Creating a Node.js Application
· Writing Data to the Console
[bookmark: understanding_nodejs]UNDERSTANDING NODE.JS:
· Node.js was developed in 2009 by Ryan Dahl as an answer to the frustration caused by concurrency issues, especially when dealing with web services.
· Google had just come out with the V8 JavaScript engine for the Chrome web browser, which was highly optimized for web traffic.
· Dahl created Node.js on top of V8 as a server-side environment that matched the client-side environment in the browser.
· The result is an extremely scalable server-side environment that allows developers to more easily bridge the gap between client and server.
· The fact that Node.js is written in JavaScript allows developers to easily navigate back and forth between client and server code and even reuse code between the two environments.
· Node.js has a great ecosystem with new extensions being written all the time.
· The Node.js environment is clean and easy to install, configure, and deploy. Literally in only an hour or two you can have a Node.js web server up and running.
Who Uses Node.js?
· Node.js quickly gained popularity among a wide variety of companies. These companies use Node.js first and foremost for scalability but also for ease of maintenance and faster development.
· The following are just a few of the companies using the Node.js technology:
■ Yahoo!
■ LinkedIn
■ eBay
■ New York Times
■ Dow Jones
■ Microsoft
What Is Node.js Used For?
· Node.js can be used for a wide variety of purposes. Because it is based on V8 and has highly
optimized code to handle HTTP traffic, the most common use is as a web server.
· However, Node.js can also be used for a variety of other web services such as:
■ Web services APIs such as REST
■ Real-time multiplayer games
■ Backend web services such as cross-domain, server-side requests
■ Web-based applications
■ Multiclient communication such as IM
What Does Node.js Come With?
Node.js comes with many built-in modules available right out of the box. This book covers
many but not all of these modules:
Assertion testing: Allows you to test functionality within your code.
Buffer: Enables interaction with TCP streams and file system operations.
C/C++ add-ons: Allows for C or C++ code to be used just like any other Node.js module.
Child processes: Allows you to create child processes.
Cluster: Enables the use of multicore systems.
Command line options: Gives you Node.js commands to use from a terminal.
Console: Gives the user a debugging console.
Crypto: Allows for the creation of custom encryption.
Debugger: Allows debugging of a Node.js file.
DNS: Allows connections to DNS servers.
Errors: Allows for the handling of errors.
Events: Enables the handling of asynchronous events.
File system: Allows for file I/O with both synchronous and asynchronous methods.
Globals: Makes frequently used modules available without having to include them first.
HTTP: Enables support for many HTTP features.
HTTPS: Enables HTTP over the TLS/SSL.
Modules: Provides the module loading system for Node.js.
Net: Allows the creation of servers and clients.
OS: Allows access to the operating system that Node.js is running on.
Path: Enables access to file and directory paths.
Process: Provides information and allows control over the current Node.js process.
Query strings: Allows for parsing and formatting URL queries.
Readline: Enables an interface to read from a data stream.
REPL: Allows developers to create a command shell.
Stream: Provides an API to build objects with the stream interface
String decoder: Provides an API to decode buffer objects into strings.
Timers: Allows for scheduling functions to be called in the future.
TLS/SSL: Implements TLS and SSL protocols.
URL: Enables URL resolution and parsing.
Utilities: Provides support for various apps and modules.
V8: Exposes APIs for the Node.js version of V8.
VM: Allows for a V8 virtual machine to run and compile code.
ZLIB: Enables compression using Gzip and Deflate/Inflate.
[bookmark: installing_nodejs]INSTALLING NODE.JS
To easily install Node.js, download an installer from the Node.js website at http://nodejs.org.
The Node.js installer installs the necessary files on your PC to get Node.js up and running. No
additional configuration is necessary to start creating Node.js applications.
Looking at the Node.js Install Location
If you look at the install location, you will see a couple of executable files and a node_modules Folder. The node executable file starts the Node.js JavaScript VM. The following list describes the executables in the Node.js install location that you need to get started:
· node: This file starts a Node.js JavaScript VM. If you pass in a JavaScript file location, Node.js executes that script. If no target JavaScript file is specified, then a script prompt is shown that allows you to execute JavaScript code directly from the console.
· npm: This command is used to manage the Node.js packages discussed in the next section.
· node_modules: This folder contains the installed Node.js packages. These packages act as
libraries that extend the capabilities of Node.js.
Verify Node.js Executables
Take a minute and verify that Node.js is installed and working before moving on. To do so, open a console prompt and execute the following command to bring up a Node.js VM:
node
Next, at the Node.js prompt execute the following to write "Hello World" to the screen.
>console.log("Hello World");
You should see "Hello World" output to the console screen. Now exit the console using
 Ctrl+C in Windows or Cmd+C on a Mac.
Next, verify that the npm command is working by executing the following command in the
OS console prompt:
npm version
You should see output similar to the following:
{ npm: '3.10.5',
ares: '1.10.1-DEV',
http_parser: '2.7.0',
icu: '57.1',
modules: '48',
node: '6.5.0',
openssl: '1.0.2h',
uv: '1.9.1',
v8: '5.1.281.81',
zlib: '1.2.8'}
Selecting a Node.js IDE
· If you are planning on using an Integrated Development Environment (IDE) for your Node.js projects, you should take a minute and configure that now as well.
· Most developers are particular about the IDE that they like to use, and there will likely be a way to configure at least for JavaScript if not Node.js directly.
· For example, Eclipse has some great Node.js plugins, and the WebStorm IDE by IntelliJ has some good features for Node.js built in.
· If you are unsure of where to start, we use Visual Studio Code for the built-in TypeScript functionality required later in this book. That said, you can use any editor you want to generate your Node.js web applications. In reality, all you need is a decent text editor.
· Almost all the code you will generate will be .js, .json, .html, and .css. So pick the editor in which you feel the most comfortable writing those types of files.
[bookmark: working_with_nodepackages]WORKING WITH NODE PACKAGES
One of the most powerful features of the Node.js framework is the ability to easily extend
it with additional Node Packaged Modules (NPMs) using the Node Package Manager (NPM).
That’s right, in the Node.js world, NPM stands for two things. This book refers to the Node
Packaged Modules as modules to make it easier to follow.
What Are Node Packaged Modules?
· A Node Packaged Module is a packaged library that can easily be shared, reused, and installed in different projects. Many different modules are available for a variety of purposes. For example, the Mongoose module provides an ODM (Operational Data Model) for MongoDB, Express extends Node’s HTTP capabilities, and so on.
· Node.js modules are created by various third-party organizations to provide the needed features that Node.js lacks out of the box. This community of contributors is active in adding and updating modules.
· Node Packaged Modules include a package.json file that defines the packages. The package.json file includes informational metadata, such as the name, version author, and contributors, as well as control metadata, such as dependencies and other requirements that the Node Package Manager uses when performing actions such as installation and publishing.

Understanding the Node Package Registry
The Node modules have a managed location called the Node Package Registry where packages are registered. This allows you to publish your own packages in a location where others can use them as well as download packages that others have created.
The Node Package Registry is located at https://npmjs.com. From this location you can view the newest and most popular modules as well as search for specific packages, as shown in Figure 3.1.

[image:]
 Figure 3.1 The official Node Package Modules website
Using the Node Package Manager
The Node Package Manager you have already seen is a command-line utility. It allows you
to find, install, remove, publish, and do everything else related to Node Package Modules.
The Node Package Manager provides the link between the Node Package Registry and
your development environment.
The simplest way to really explain the Node Package Manager is to list some of the command-
line options and what they do. You use many of these options in the rest of this chapter and
through out the book. Table 3.1 lists the Node Package Manager commands.

[image:]
[image:]
Searching for Node Package Modules
· You can also search for modules in the Node Package Registry directly from the command prompt using the npm search <search_string> command.
For example, the following command searches for modules related to openssl and displays the results.
[image:]
Installing Node Packaged Modules
· To use a Node module in your applications, it must first be installed where Node can find it.
· To install a Node module, use the npm install <module_name> command.
· This downloads the Node module to your development environment and places it into the node_modules folder where the install command is run.
· For example, the following command installs the express module:
‘npm install express’
Using package.json
· All Node modules must include a package.json file in their root directory.
· The package.json file is a simple JSON text file that defines the module including dependencies.
· The package.json file can contain a number of different directives to tell the Node Package Manager how to handle the module.
· The following is an example of a package.json file with a name, version, description, and
dependencies:
{
"name": "my_module",
"version": "0.1.0",
"description": "a simple node.js module",
"dependencies" : {
"express" : "latest"
}
}
· The only required directives in the package.json file are name and version. The rest depend on what you want to include.
[image:]
[image:]
Creating a Node.js Application
· Now you have enough information to jump into a Node.js project and get your feet wet.
· In this section, you create your own Node Packaged Module and then use that module as a library in a Node.js application.
[bookmark: nodejs_application]CREATING A NODE.JS PACKAGED MODULE
· To create a Node.js Packaged Module you need to create the functionality in JavaScript, define the package using a package.json file, and then either publish it to the registry or package it for local use.
· Node.js modules are a type of package that can be published to npm.
· There are three steps you need to follow:
1. Create a ‘package.json’ file
2. Create the file that will be loaded when your module is required by another application
3. Test your module
· Create a ‘package.json’ file:
· To create a package.json file, on the command line, in the root directory of your Node.js module, run “npm init”.
· For scoped modules, run npm init --scope=@scope-name
· For unscoped modules, run npm init
· To create a default package.json using information extracted from the current directory, use the npm init command with the --yes or –y flag.
· Provide responses for the required fields (name and version), as well as the main field:
name: The name of your module.
version: The initial module version.(recommended – 1.0.0)
· Default values extracted from the current directory
name: the current directory name
version: always 1.0.0
description: info from the README, or an empty string ""
scripts: by default creates an empty test script
keywords: empty
author: empty
license: ISC
bugs: information from the current directory, if present
homepage: information from the current directory, if present
· Example:
 [image:]
· Create the file that will be loaded when your module is required by another application:
· In the file, add a function as a property of the exports object. This will make the function available to other code:
exports.printMsg = function() {
 console.log("This is a message from the demo package");
}
· Test your module
 [image:]
[bookmark: writing_data]WRITING DATA TO THE CONSOLE
· One of the most useful modules in Node.js during the development process is the console
 module.
· This module provides a lot of functionality when writing debug and information statements to the console.
· The console module allows you to control output to the console, implement time delta output, and write tracebacks and assertions to the console.
· Because the console module is so widely used, you do not need to load it into your modules
using a require() statement.
· You simply call the console function using console.<function>(<parameters>).
[image:]
[image:]
	

	
image5.png
Table 3.2 Directives used in the package.json file

Directive
name

preferGlobal

version
author
description

contributors

bin

scripts

main

Description
Unique name of package.

Indicates this module prefers
to be installed globally.

Version of the module.

Author of the project.

Textual description of module.

Additional contributors to
the module.

Binary to be installed
globally with project.

Specifies parameters that
execute console apps when
launching node.

Specifies the main entry
point for the app. This can
be a binary or a js file.

Example
"name": "camelot"

"preferGlobal": true

"version": 0.0.1

author": "arthur@???.com"
"description”: 'a silly place"
"contributors": [
{ "name": "gwen",
"email": "gwen@???.com"}]
*bin: {

"excalibur®:
"./bin/excalibur"}

"scriptst {

"start": "node ./bin/
excalibur®,
"test": "echo testing"}

"main": "./bin/excalibur"

image6.png
Directive

Description

Example

repository

keywords

dependencies

engines

Specifies the repository type
and location of the package.

Specifies keywords that show
up in the npm search.

Modules and versions this
module depends on. You can
use the * and x wildcards.

Version of node this package
works with.

"repository": {
"type": "git",
"location":
"http://???.com/c.git"}

"keywords": [

"swallow", "unladen"]
"dependencies": {

"express": "latest",

"connect": "2.x.x,

"cookies": ")
"engines": {

"node": ">=6.5"}

image7.png
> npm init --yes
urote to /home/monatheoctocat/my_package/package.json:

“name”: “my_package”,

"description”:

"test”: "echo \"Error: no test specified\" 8& exit 1"
1
“repository”: {
“type": "git",
"url”: "https://github.com/monatheoctocat/my_package.git”

: "https://github.com/monatheoctocat/my_package/issues"

omepage”: "https://github.com/monatheoctocat/my_package”

image8.png
w

&

o

. Publish your package to npm:

o For private packages and unscoped packages, use npm publish .

o For scoped public packages, use npm publish --access public

On the command line, create a new test directory outside of your project
directory.

mkdir test-directory [l

. Switch to the new directory:

cd /path/to/test-directory [i=]

In the test directory, install your module:

npm install <your-module-name> [l

. In the test directory, create a test.js file which requires your module and

calls your module as a method.

On the command line, run node test.js . The message sent to the
console.log should appear.

image9.png
Table 3.3 Member functions of the console module

Function

Description

log((datal, [

info([datal, [...])

error([datal, [...])

warn ([datal,

)

dir(obj)

time (label)

Writes data output to the console. The data variable can be a string
or an object that can be resolved to a string. Additional parameters
can also be sent. For example:

console.log("There are %d items", 5);

>>There are 5 items

Same as console. log.

Same as console. log; however, the output is also sent to
stderr.

Same as console.error.

Writes out a string representation of a JavaScript object to the con-
sole. For example:
console.dir ({name:"Brad", role:"Author"});

>> { name: 'Brad', role: 'Author' }

Assigns a current timestamp with ms precision to the string 1abel.

image10.png
Function

timeEnd (label) Creates a delta between the current time and the timestamp
assigned to Label and outputs the results. For example:
console. time ("FileWrite") ;
£.write(data); //takes about 500ms
console.timeEnd ("FileWrite") ;
>> FileWrite: 500ms

trace (label) Writes out a stack trace of the current position in code to stderr.

For example:

module. trace ("traceMark") ;

>>Trace: traceMark
at Object.<anonymous> (C:\test.js:24:9)
at Module. compile (module.js:456:26)
at Object.Module._ext.js (module.js:474:10)
at Module.load (module.js:356:32)
at Function.Module. load (module.js
at Function.Module.runMain(module.js:49
at startup (node.js:119:16)
at node.js:901:3

12:12)
0)

assert (expression, Writes the message and stack trace to the console if expression
[message]) evaluates to false.

image1.png
« % C O B e hosiwwwnomiscomn v 0 Qe

Packages people 'npm install' a lot

browserify gulp

browser-side require() the node way The streaming build system

14,40 published 2 months ago by feross 39.1 published a year ago by phated

grunt-cli grunt

The grunt command line interface The JavaScript Task Runner

12,0 published 2 year ago by viadikoff 1.0.1 published a year ago by shama

bower express

The browser package manager Fast, unopinionated, minimalist web fram.
180 published 8 months ago by sheerun 4153 published 2 months ago by dougwiison

image2.png
Table 3.1 npm command-ine options (with express as the package, where appropriate)

Option Description Example
search Finds module packages in the repository mpm search express
install Installs a package either using a npm install

package . json file, from the npm install express

repository, or a local location
npm

npm

install -g Installs a package globally npn

install express@0.l.l
install ../tModule.tgz

install express -g

image3.png
Option Description Example

remove Removes a module npm remove express

pack Packages the module defined by the npm pack
package. json file into a .tgz file

view Displays module details npm view express

publish Publishes the module defined by a npm publish
package. json file to the registry

unpublish Unpublishes a module you have npm unpublish myModule
published

owner Allows you to add, remove, and list add bdayley myModule

owners of a package in the repository

npm
npm

npm

rm bdayley myModule
1s myModule

image4.png
npm search openssl

3 DESCRIPTION
o Srbitrary-precision integer arithmetic using Opensse

ertgen Certificate generation Tibrary that uses the openss) comand |
Toherpipe T wraoper aroing spensa] for encryption/decryption

2 gen Generates OpenSsL Certificate Signing Requests

erype ended openss] bindings.

ixedentropy 35 /) V8 Supports custom sources of entropy. // by default,

ackba Simple, strong encryption.

dechardcoress] Nardeorsssi s packege for obtaining low-level asynchronous
rea QpenSSL's RSA encrypt/decrypt routines
penss] Shenza wrazper
bencs]-urapper Openssl wapper

GhenssL S E5A encrypt/decrypt routines
a1 3 rapper for Opersal s remtl
1fe1gned Gererate self signed certificates private and public keys
Shieydecrypt Dacrypt encrypied ssh private keys

Verification of SSL certificates

sl-keychain OpenSsi Keychain and Key generation module
21-keygen ShenssL ey Generation module
rsa RERpub1 cprivate Key crypts

509-keygen node. 35 mdule to generate self-signed certificate via openss]

Figure 3.2 Searching for Node js modules from the command prompt

